Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (295)

Search Parameters:
Keywords = land take monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3996 KB  
Article
Demand Assessment and Integration Feasibility Analysis for Advanced and Urban Air Mobility in Illinois
by Vasileios Volakakis, Christopher Cummings, Laurence Audenaerd, William M. Viste and Hani S. Mahmassani
Appl. Sci. 2025, 15(22), 11901; https://doi.org/10.3390/app152211901 - 8 Nov 2025
Viewed by 188
Abstract
Advanced and Urban Air Mobility (AAM and UAM) represent emerging transportation concepts that involve the use of novel aircraft technologies to transport passengers and cargo within urban, regional, and intra-regional environments. These systems may include Electric Vertical Take-off and Landing (eVTOL) aircraft, Short [...] Read more.
Advanced and Urban Air Mobility (AAM and UAM) represent emerging transportation concepts that involve the use of novel aircraft technologies to transport passengers and cargo within urban, regional, and intra-regional environments. These systems may include Electric Vertical Take-off and Landing (eVTOL) aircraft, Short Take-off and Landing (STOL) aircraft, and unmanned aerial vehicles (UAVs), which are being considered for a range of applications including passenger transport, cargo delivery, and other specialized operations. This study introduced a state-specific analytical framework that integrates different methodologies and data to enable a more precise evaluation of AAM viability in the State of Illinois, compared to generic national or global assessments, capturing the state’s unique mobility patterns, infrastructure constraints, and demographic distributions. One of the main goals is to provide a comprehensive evaluation of the potential implications—both challenges and opportunities—associated with AAM and UAM operations. The analysis examines potential impacts on mobility, infrastructure, economic development, and public services, with particular emphasis on identifying key considerations for policy development. The research framework categorizes use cases into two broad types: AAM for the transportation of people and cargo, and AAM for functional applications such as emergency response, agriculture, and infrastructure monitoring. The study provides a detailed quantitative assessment of passenger air taxi services, including demand estimation, business model feasibility analysis, integration effects on existing transportation systems, and infrastructure requirements. For other AAM applications, the analysis identifies operational considerations, regulatory implications, and potential barriers to implementation, establishing a foundation for future detailed evaluation. Full article
(This article belongs to the Special Issue Autonomous Vehicles and Robotics—2nd Edition)
Show Figures

Figure 1

22 pages, 971 KB  
Article
Joint Path Planning and Energy Replenishment Optimization for Maritime USV–UAV Collaboration Under BeiDou High-Precision Navigation
by Jingfeng Yang, Lingling Zhao and Bo Peng
Drones 2025, 9(11), 746; https://doi.org/10.3390/drones9110746 - 28 Oct 2025
Viewed by 427
Abstract
With the rapid growth of demands in marine resource exploitation, environmental monitoring, and maritime safety, cooperative operations based on Unmanned Surface Vehicles (USVs) and Unmanned Aerial Vehicles (UAVs) have emerged as a promising paradigm for intelligent ocean missions. UAVs offer flexibility and high [...] Read more.
With the rapid growth of demands in marine resource exploitation, environmental monitoring, and maritime safety, cooperative operations based on Unmanned Surface Vehicles (USVs) and Unmanned Aerial Vehicles (UAVs) have emerged as a promising paradigm for intelligent ocean missions. UAVs offer flexibility and high coverage efficiency but suffer from limited endurance due to restricted battery capacity, making them unsuitable for large-scale tasks alone. In contrast, USVs provide long endurance and can serve as mobile motherships and energy-supply platforms, enabling UAVs to take off, land, recharge, or replace batteries. Therefore, how to achieve cooperative path planning and energy replenishment scheduling for USV–UAV systems in complex marine environments remains a crucial challenge. This study proposes a USV–UAV cooperative path planning and energy replenishment optimization method based on BeiDou high-precision positioning. First, a unified system model is established, incorporating task coverage, energy constraints, and replenishment scheduling, and formulating the problem as a multi-objective optimization model with the goals of minimizing total mission time, energy consumption, and waiting time, while maximizing task completion rate. Second, a bi-level optimization framework is designed: the upper layer optimizes the USV’s dynamic trajectory and docking positions, while the lower layer optimizes UAV path planning and battery replacement scheduling. A closed-loop interaction mechanism is introduced, enabling the system to adaptively adjust according to task execution status and UAV energy consumption, thus preventing task failures caused by battery depletion. Furthermore, an improved hybrid algorithm combining genetic optimization and multi-agent reinforcement learning is proposed, featuring adaptive task allocation and dynamic priority-based replenishment scheduling. A comprehensive reward function integrating task coverage, energy consumption, waiting time, and collision penalties is designed to enhance global optimization and intelligent coordination. Extensive simulations in representative marine scenarios demonstrate that the proposed method significantly outperforms baseline strategies. Specifically, it achieves around higher task completion rate, shorter mission time, lower total energy consumption, and shorter waiting time. Moreover, the variance of energy consumption across UAVs is notably reduced, indicating a more balanced workload distribution. These results confirm the effectiveness and robustness of the proposed framework in large-scale, long-duration maritime missions, providing valuable insights for future intelligent ocean operations and cooperative unmanned systems. Full article
(This article belongs to the Special Issue Advances in Intelligent Coordination Control for Autonomous UUVs)
Show Figures

Figure 1

24 pages, 7378 KB  
Article
Comparing Multiple Machine Learning Models to Investigate Thermal Drivers in an Arid-Oasis Urban Park and Its Surroundings Using Mobile Monitoring
by Yunyao Feng, Xuegang Chen and Siqi Xie
Appl. Sci. 2025, 15(21), 11417; https://doi.org/10.3390/app152111417 - 24 Oct 2025
Viewed by 285
Abstract
At present, the research on the microclimate of urban parks mainly focuses on the univariate or multivariate research contents of park design elements, and there are few analyses that can combine the park with the surrounding regional environment to jointly explore the cooling [...] Read more.
At present, the research on the microclimate of urban parks mainly focuses on the univariate or multivariate research contents of park design elements, and there are few analyses that can combine the park with the surrounding regional environment to jointly explore the cooling mechanism of park design elements. This study takes the People’s Park in Urumqi, a typical oasis city in an arid area, as the research object. Combined with different land use natures (park area/residential area), it analyzes the spatiotemporal variation law of temperature through mobile meteorological monitoring in different periods of summer and autumn and optimizes the buffer zone to further compare the performance of the multiple linear regression model and three machine learning models. The selection of the optimal model for collaborative analysis and comparison revealed the dominant variables and their threshold effects affecting the temperature of the park area and the residential area. The results show that: (1) In multi-scenario comparisons, a larger buffer has a better fitting effect. (2) The random forest model is the best model for temperature prediction in the study area. (3) The dominant factors of temperature in different seasons show significant differences, and only a few periods have cross-seasonal persistence. In the park area, the green coverage rate and road network density play a leading and influential role, while in the residential area, the influence of water cover ratio is more obvious. Furthermore, the influence direction of residential area indicators on temperature shows opposite trends in the morning and afternoon periods. (4) There are obvious limited-threshold effects on the influence of dominant factors on temperature in different regions. It is suggested that in the urban spatial layout, while considering the differences for different utilization Spaces, collaborative planning should be carried out. These findings offer new insights into temperature drivers and provide practical references for urban planners. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

31 pages, 6434 KB  
Article
Research on the Impact of Landscape Pattern in Haikou City on Urban Water Body Quality
by Yingping Zhong, Yunxia Du, Ya Huang, Shusong Huang and Jing Pu
Water 2025, 17(20), 2922; https://doi.org/10.3390/w17202922 - 10 Oct 2025
Viewed by 373
Abstract
In the rapid development process of cities, as important ecological corridors and landscape carriers, the water quality conditions of urban water bodies are not only related to the health of the ecological environment, but also closely linked to the quality of life of [...] Read more.
In the rapid development process of cities, as important ecological corridors and landscape carriers, the water quality conditions of urban water bodies are not only related to the health of the ecological environment, but also closely linked to the quality of life of residents. The landscape pattern, as an important component of the urban ecosystem, has a potential impact on water quality. As a tropical coastal city, the unique water network pattern of Haikou City is facing the dual challenges of landscape fragmentation and water quality pollution in its rapid urban expansion. In order to study the impact of the landscape pattern of Haikou City on urban water bodies, this study takes the urban water bodies of Haikou City as the research object. By comprehensively applying landscape ecology methods and water quality monitoring techniques, and using landscape pattern indices (such as the number of patches, fragmentation degree, spread degree, etc.) and on-site investigation of water quality parameter data (such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), etc.), and by using correlation analysis and redundancy analysis, we explore the mechanism by which landscape patterns affect water quality. The results show that: (1) There are significant differences in water quality among water bodies. The concentrations of COD and TN in Hongcheng Lake are relatively high. The average values reached 86.603 mg/L and 13.368 mg/L, respectively, mainly affected by the high-intensity construction land around. Jinniu Lake has a high degree of landscape fragmentation and relatively high concentrations of NH3-N and TP. The average values are 2.086 mg/L and 0.154 mg/L, respectively. The Meishe River has a strong water purification capacity due to its good vegetation coverage. (2) The influence of landscape pattern on water quality has a scale effect. Hongcheng Lake, Jinniu Lake, and Meishe River all have the best interpretation rate of water quality in the 2000 m buffer zone landscape pattern. (3) The expansion of construction land has significantly exacerbated water pollution, while natural vegetation landscapes with high connectivity and low fragmentation can effectively improve water quality. The research reveals the correlation between urban landscape planning and water quality protection. It is suggested that by enhancing ecological connectivity, controlling non-point source pollution, and implementing differentiated seasonal management, the self-purification capacity of water bodies can be improved, providing a scientific basis for ecological restoration and sustainable development in Haikou City. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

25 pages, 957 KB  
Article
The Role of Traditional Fire Management Practices in Mitigating Wildfire Risk: A Case Study of Greece
by Dimitrios Kalfas, Stavros Kalogiannidis, Konstantinos Spinthiropoulos, Fotios Chatzitheodoridis and Maria Georgitsi
Fire 2025, 8(10), 389; https://doi.org/10.3390/fire8100389 - 1 Oct 2025
Cited by 1 | Viewed by 1245
Abstract
The purpose of this study was to examine the role of traditional fire management practices in the general mitigation of wildfire risk in Greece. Major emphasis was placed on assessing people’s opinions about the perceived effectiveness of traditional fire management strategies that were [...] Read more.
The purpose of this study was to examine the role of traditional fire management practices in the general mitigation of wildfire risk in Greece. Major emphasis was placed on assessing people’s opinions about the perceived effectiveness of traditional fire management strategies that were historically and culturally employed by local communities—such as weather condition monitoring, prescribed burning, proper land use planning, and mosaic burning—in the general mitigation of wildfire risks. An online questionnaire was used to collect data from 397 environmental experts in Greece. The study shows that traditional fire control methods reduce wildfire risk. First, weather monitoring was found to be crucial to wildfire forecasting and prevention. The results showed that early warning, successful firefighting, and fire prevention depend on meteorological data. Additionally, prescribed burning was revealed to have reduced wildfire risk. Respondents accepted that they could reduce unprescribed fires, protect natural ecosystems, remove wildfire-prone areas, and regulate flame intensity. This suggests that scheduled burning in Greece may reduce wildfire damage. The study underlines the importance of including conventional fire management in the wildfire mitigation strategy of Greece. The aforementioned activities may help the environment and civilization progress by safeguarding ecosystems and reducing wildfire damage. These techniques, combined with community engagement and improved early warning systems, may help manage climate change-induced wildfires. Overall, the study contributes to wildfire management in Greece and other Mediterranean countries. The study emphasizes the need to incorporate traditional fire practices into Greece’s wildfire risk reduction strategies. Taking into account the success rates of these practices in other areas, as well as Greece’s old tradition of conducting fire, this paper stresses that further studies and policy developments be made in order to reinstate these practices in today’s wildfire management. Full article
(This article belongs to the Section Fire Social Science)
Show Figures

Figure 1

21 pages, 10980 KB  
Article
Assessing Spatiotemporal Dynamics of Poplar Plantation in Northern China’s Farming-Pastoral Ecotone (1989–2022)
by Jiale Song, Shun Hu, Ziyong Sun, Yunquan Wang, Xun Liang, Zhuzhang Yang and Zilong Liao
Forests 2025, 16(10), 1502; https://doi.org/10.3390/f16101502 - 23 Sep 2025
Viewed by 418
Abstract
The farming-pastoral ecotone (FPE) of northern China serves as a critical ecological transition zone, in which poplar plantations significantly contribute to afforestation for large-scale ecological restoration projects. Due to concerns about sustainability, precise monitoring of the spatiotemporal dynamics of poplar plantations is needed, [...] Read more.
The farming-pastoral ecotone (FPE) of northern China serves as a critical ecological transition zone, in which poplar plantations significantly contribute to afforestation for large-scale ecological restoration projects. Due to concerns about sustainability, precise monitoring of the spatiotemporal dynamics of poplar plantations is needed, but systematic research is lacking. This study investigated the spatiotemporal dynamics of poplar plantation area and growth status from 1989 to 2022, taking the Anguli Nao watershed, a typical region in the FPE of northern China, as an example. Firstly, by utilizing satellite images and the random forest classification algorithm, the poplar plantation areas were well extracted, with a high accuracy over 93% and extremely strong consistency as demonstrated by a Kappa coefficient larger than 0.88. Significant changes in poplar plantation areas existed from 1989 to 2022, with an overall increasing trend (1989: 130.3 km2, 2002: 275.9 km2, 2013: 256.0 km2, and 2022: 289.2 km2). Furthermore, the accuracy of our extraction method significantly outperformed six widely used global land cover products, all of which failed to capture the distribution of poplar plantations (producer’s accuracy < 0.21; Kappa coefficient < 0.18). In addition, the analysis of vegetation growth status revealed large-scale degradation from 2002 to 2013, with a degradation ratio of 24.4% that further increased to 31.1% by 2022, satisfying the significance test via Theisl–Sen trend analysis and the Mann–Kendall test. This study points out the uncertainty of existing land cover products and risk of poplar plantations in the FPE of northern China and provides instructive reference for similar research. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

15 pages, 2743 KB  
Article
Fiber Bragg Grating Based Load Monitoring for Carrier-Based Aircraft Main Landing Gear
by Weijun Xue, Heng Huang, Xiwen Pang and Guang Yan
Sensors 2025, 25(17), 5559; https://doi.org/10.3390/s25175559 - 5 Sep 2025
Cited by 1 | Viewed by 4081
Abstract
A three-dimensional load regression system based on fiber Bragg grating strain sensor is proposed to meet the load monitoring requirements of the main landing gear of an aircraft during take-off and landing. The FBG sensors, featuring a strain resolution of 1 με and [...] Read more.
A three-dimensional load regression system based on fiber Bragg grating strain sensor is proposed to meet the load monitoring requirements of the main landing gear of an aircraft during take-off and landing. The FBG sensors, featuring a strain resolution of 1 με and a strain sensitivity of 1.18 pm/με, were selected to ensure precise strain acquisition. Through three-dimensional modeling and static simulation of the main landing gear, the strain response trend of the structure under this load state is obtained as a reference for sensor placement. On this basis, the sensor networking scheme is designed, and the ground static load of the main landing gear is calibrated. The strain–load regression matrix model for the measured main landing gear is constructed through the collected strain data, and the reliability of its prediction is verified. The results show that the system can effectively monitor the structural load, and the error between the back-calculated regression load and the applied load is within 4%. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

23 pages, 26514 KB  
Article
LEO Navigation Augmentation Signal-Based Passive Radar: System Model and Performance Analysis
by Mingxu Zhang, Bin Sun and Qilei Zhang
Remote Sens. 2025, 17(17), 3021; https://doi.org/10.3390/rs17173021 - 31 Aug 2025
Viewed by 1379
Abstract
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator [...] Read more.
As the next generation of time–space infrastructure, low-earth-orbit navigation augmentation (LEO-NA) technology has become a hot research topic, since it can overcome the vulnerabilities and limitations of global navigation satellite systems (GNSSs). Meanwhile, a LEO-NA signal can serve as a better cooperative illuminator to build more powerful passive radar (PR). This paper proposes and investigates a new and promising PR system, LEO-NA signal-based PR (LNAS-PR), which utilizes LEO-NA signals as the illuminator and utilizes an unmanned aerial vehicle (UAV) to carry the receiver. Taking advantage of higher landing power and global coverage, LNAS-PR can be used to detect maritime targets with benefits of low cost and high efficiency. However, new technical challenges of information capture and processing need to be dealt with. Therefore, this paper presents the system model, signal model, and performance analyses within a maritime monitoring scenario, providing a foundation for future in-depth research. Full article
Show Figures

Figure 1

23 pages, 3667 KB  
Article
Multispectral Remote Sensing Monitoring Methods for Soil Fertility Assessment and Spatiotemporal Variation Characteristics in Arid and Semi-Arid Mining Areas
by Quanzhi Li, Zhenqi Hu, Yanwen Guo and Yulong Geng
Land 2025, 14(8), 1694; https://doi.org/10.3390/land14081694 - 21 Aug 2025
Viewed by 828
Abstract
Soil fertility is the essential attribute of soil quality. Large-scale coal mining has led to the continuous deterioration of the fragile ecosystems in arid and semi-arid mining areas. As one of the key indicators for land ecological restoration in these coal mining regions, [...] Read more.
Soil fertility is the essential attribute of soil quality. Large-scale coal mining has led to the continuous deterioration of the fragile ecosystems in arid and semi-arid mining areas. As one of the key indicators for land ecological restoration in these coal mining regions, rapidly and accurately monitoring topsoil fertility and its spatial variation information holds significant importance for ecological restoration evaluation. This study takes Wuhai City in the Inner Mongolia Autonomous Region of China as a case study. It establishes and evaluates various soil indicator inversion models using multi-temporal Landsat8 OLI multispectral imagery and measured soil sample nutrient content data. The research constructs a comprehensive evaluation method for surface soil fertility based on multispectral remote sensing monitoring and achieves spatiotemporal variation analysis of soil fertility characteristics. The results show that: (1) The 6SV (Second Simulation of the Satellite Signal in the Solar Spectrum Vector version)-SVM (Support Vector Machine) prediction model for surface soil indicators based on Landsat8 OLI imagery achieved prediction accuracy with R2 values above 0.85 for all six soil nutrient contents in the study area, thereby establishing for the first time a rapid assessment method for comprehensive topsoil fertility using multispectral remote sensing monitoring. (2) Long-term spatiotemporal evaluation of soil indicators was achieved: From 2015 to 2025, the spatial distribution of soil indicators showed certain variability, with soil organic matter, total phosphorus, available phosphorus, and available potassium contents demonstrating varying degrees of increase within different ranges, though the increases were generally modest. (3) Long-term spatiotemporal evaluation of comprehensive soil fertility was accomplished: Over the 10 years, Grade IV remained the dominant soil fertility level in the study area, accounting for about 32% of the total area. While the overall soil fertility level showed an increasing trend, the differences in soil fertility levels decreased, indicating a trend toward homogenization. Full article
Show Figures

Figure 1

21 pages, 3463 KB  
Article
Soil Sealing, Land Take, and Demographics: A Case Study of Estonia, Latvia, and Lithuania
by Kärt Metsoja, Kätlin Põdra, Armands Auziņš and Evelin Jürgenson
Land 2025, 14(8), 1586; https://doi.org/10.3390/land14081586 - 3 Aug 2025
Viewed by 1522
Abstract
Soil sealing and land take are increasingly recognised as critical environmental and land use planning challenges across Europe. Although these issues have received limited attention in Baltic policymaking and the academic literature to date, available data indicate ongoing land consumption despite population decline. [...] Read more.
Soil sealing and land take are increasingly recognised as critical environmental and land use planning challenges across Europe. Although these issues have received limited attention in Baltic policymaking and the academic literature to date, available data indicate ongoing land consumption despite population decline. This study aims to analyse soil sealing patterns in Estonia, Latvia, and Lithuania between 2018 and 2021 using CLC+ Backbone data, linking them to demographic shifts and local planning frameworks. Results reveal that soil sealing increased in nearly all municipalities across the Baltic states, regardless of population trends. The analysis highlights that shrinking municipalities, constrained by limited resources and declining populations, are structurally disadvantaged in terms of land use efficiency, particularly when measured by sealed area per capita. Moreover, this study discusses emerging policy tensions, including the narrowing conceptual gap between land take and soil sealing in the proposed EU Soil Monitoring and Resilience Directive, as well as the risk of overlooking broader land artificialisation. The findings underscore the need for context-sensitive, multi-scalar approaches to land use monitoring and governance, particularly in sparsely populated and demographically imbalanced regions, such as the Baltic states. Full article
(This article belongs to the Special Issue Efficient Land Use and Sustainable Development in European Countries)
Show Figures

Figure 1

20 pages, 1703 KB  
Article
A GIS-Based Approach to Land Take Monitoring and Actual Land Use Analysis
by Peter Lamovec, Katarina Kuk, Barbara Černič, Tomaž Černe and Ines Lupše
Land 2025, 14(7), 1322; https://doi.org/10.3390/land14071322 - 21 Jun 2025
Viewed by 1405
Abstract
In September 2023, the European Commission approved a proposal for a Directive on Soil Monitoring and Resilience, representing a significant step forward in the EU’s efforts toward more sustainable land use management. The proposal mandates the monitoring of land take and soil sealing [...] Read more.
In September 2023, the European Commission approved a proposal for a Directive on Soil Monitoring and Resilience, representing a significant step forward in the EU’s efforts toward more sustainable land use management. The proposal mandates the monitoring of land take and soil sealing indicators but does not specify the method for determining their values. Instead, it allows for the use of scientific literature or other publicly available methods. This study presents a methodology based on GIS analyses for monitoring artificial land and the land take indicator. A quantitative analysis of two municipalities in the Podravska region in Slovenia is complemented by a qualitative assessment of detailed actual land use in these municipalities. The results show that the annual land take rate in the period 2019–2022 amounted to 881.96 m2/year·km2 in the municipality of Maribor and 731.31 m2/year·km2 in the municipality of Kungota. If current trends continue, the extent of (semi-)natural land will continue to decline, which is considered unsustainable. Further analysis reveals that the expansion of artificial land in these areas is mainly due to the development of new residential land, accounting for 60.8% of newly converted land in the municipality of Maribor and 50.2% in the municipality of Kungota during the period under review. As the results point to unsustainable land management, the study is aimed at policymakers and public authorities, highlighting the urgent need to limit the conversion of (semi-)natural land and to initiate land restoration measures as compensation for new land take. It may also be of interest to scientists and researchers developing methodologies for monitoring artificial land and refining land take indicators. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

19 pages, 2666 KB  
Article
Conceptual Design and Analysis of a Trans-Domain Aircraft Based on the Camber Morphing Wing
by Mingzhen Wang, Mingxuan Xu, Xing Shen, Zhenyang Lai, Yan Zhao, Chen Wang and Qi Hu
Machines 2025, 13(5), 428; https://doi.org/10.3390/machines13050428 - 19 May 2025
Cited by 1 | Viewed by 834
Abstract
Multi-functionality and high mission adaptability are important trends in the development of future aircrafts. Trans-domain aircraft, with their unique take-off and landing capabilities and cross-medium capability, have significant potential in the field of emergency rescue, marine monitoring and tourism. Trans-domain aircraft will meet [...] Read more.
Multi-functionality and high mission adaptability are important trends in the development of future aircrafts. Trans-domain aircraft, with their unique take-off and landing capabilities and cross-medium capability, have significant potential in the field of emergency rescue, marine monitoring and tourism. Trans-domain aircraft will meet various flight conditions in different domains. Therefore, the design of wing structures must consider the mechanical effects of different media on the aircraft. In the current study, a fishbone variable camber wing is proposed based on the concept of a camber morphing wing. The relationship between the actuation force and the trailing edge deflection is analyzed using the fluid–structure interaction. The flight performance of the flight conditions including cruise or climb underneath and cruise above the water can also be evaluated in the design iteration since the load-carrying capability can be satisfied and the structural deformation of the fluid loads and the actuators is taken into account. Finite element analysis is also employed for the structural verification. Finally, a structural model is manufactured, which is tested above and under water by measuring the trailing edge deflection using the digital image correlation technology. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

14 pages, 4036 KB  
Article
Inadequate Governance of Urban Ecosystems in Lahore, Pakistan: Insights from Changes in Land Use
by Arsla Khalid, Momina Anwar and Usman Mazhar
Urban Sci. 2025, 9(5), 162; https://doi.org/10.3390/urbansci9050162 - 9 May 2025
Viewed by 2105
Abstract
It is known that bio-physical alterations in ecosystems change the relationships between people and their environments. The urban ecosystems cannot be managed without considering the role of green spaces. In Pakistan, many such eco-systems exist, regulated and monitored by well-established authorities. However, they [...] Read more.
It is known that bio-physical alterations in ecosystems change the relationships between people and their environments. The urban ecosystems cannot be managed without considering the role of green spaces. In Pakistan, many such eco-systems exist, regulated and monitored by well-established authorities. However, they do not have practical frameworks to manage them. In this context, this research examines the decline of the natural ecosystems of Lahore and the roles and responsibilities of the authorities towards this decline. This research employs both qualitative and quantitative methods to gather data: questionnaires, interviews and satellite observations. Questionnaires administered by the researchers gathered information from the people taking care of these places and interviews with the people responsible for planning and managing the city ascertained the issues related to monitoring and maintenance of the green spaces. Satellite data provided information related to the changes in land use from 2010–2018, which indicated diminishing green spaces. The findings reveal extensive transformations in land use and a significant increase in built-up land, resulting from irregular and unmonitored expansion of the city. These indicate that the decline of the natural ecosystems of Lahore is a result of two failures of the authorities: ineffective implementation of policies and poor coordination among stakeholders. Weaknesses in the maintenance of the eco-systems and negligence in the monitoring systems have also contributed. This research therefore concludes that the poor monitoring system has led to the decline of the natural ecosystems and an increase in random and synthetic growth of the city of Lahore despite it having a well-established network and laws. Full article
Show Figures

Figure 1

33 pages, 8503 KB  
Article
Multi-Scenario Land Use and Carbon Storage Assessment in the Yellow River Delta Under Climate Change and Resource Development
by Zekun Wang, Xiaolei Liu, Shaopeng Zhang, Xiangshuai Meng, Hongjun Zhang and Xingsen Guo
Remote Sens. 2025, 17(9), 1603; https://doi.org/10.3390/rs17091603 - 30 Apr 2025
Cited by 3 | Viewed by 1170
Abstract
Land use and land cover change (LULCC) is a key driver of carbon storage changes, especially in complex coastal ecosystems such as the Yellow River Delta (YRD), which is jointly influenced by climate change and resource development. The compounded effects of sea-level rise [...] Read more.
Land use and land cover change (LULCC) is a key driver of carbon storage changes, especially in complex coastal ecosystems such as the Yellow River Delta (YRD), which is jointly influenced by climate change and resource development. The compounded effects of sea-level rise (SLR) and land subsidence (LS) are particularly prominent. This study is the first to integrate the dual impacts of SLR and LS into a unified framework, using three climate scenarios (SSP1–26, SSP2–45, SSP5–85) provided in the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6), along with LS monitoring data, to comprehensively assess future inundation risks. Building on this, and taking into account land use and ecological protection policies in the YRD, three strategic scenarios—Ecological Protection Scenario (EPS), Natural Development Scenario (NDS), and Economic Growth Scenario (EGS)—are established. The PLUS and InVEST models are used to jointly simulate LULCC and carbon storage changes across these scenarios. Unlike previous studies focusing on single driving factors, this research innovatively develops a dynamic simulation system for LULCC and carbon storage driven by the SLR-LS compound effects, providing scientific guidance for land space development and coastal zone planning in vulnerable coastal areas, while enhancing carbon sink potential. The results of the study show the following: (1) Over the past 30 years, the land use pattern of the YRD has generally extended toward the sea, with land use transitions mainly from grasslands (the largest reduction: 1096.20 km2), wetlands, reservoirs and ponds, and paddy fields to drylands, culture areas, construction lands, salt pans, and tidal flats. (2) Carbon storage in the YRD exhibits significant spatial heterogeneity. Low-carbon storage areas are primarily concentrated in the coastal regions, while high-carbon storage areas are mainly found in grasslands, paddy fields, and woodlands. LULCC, especially the conversion of high carbon storage ecosystems to low carbon storage uses, has resulted in an overall net regional carbon loss of 2.22 × 106 t since 1990. (3) The risk of seawater inundation in the YRD is closely related to LS, particularly under low sea-level scenarios, with LS playing a dominant role in exacerbating this risk. Under the EGS, the region is projected to face severe seawater inundation and carbon storage losses by 2030 and 2060. Full article
(This article belongs to the Special Issue Carbon Sink Pattern and Land Spatial Optimization in Coastal Areas)
Show Figures

Figure 1

23 pages, 8984 KB  
Article
Spatial Patterns of Land Take in a Mediterranean City: An Assessment of the SDG Indicator 11.3.1 in the Peri-Urban Area of Thessaloniki
by Athena Yiannakou and George Zografos
Land 2025, 14(5), 965; https://doi.org/10.3390/land14050965 - 30 Apr 2025
Cited by 3 | Viewed by 1569
Abstract
Urban sprawl, characterized by continuous or discontinuous spatial patterns of artificial surface expansion, has been a common trend in most cities, even in those with longstanding compact features, such as cities in the northern Mediterranean region. This paper assesses the land take patterns [...] Read more.
Urban sprawl, characterized by continuous or discontinuous spatial patterns of artificial surface expansion, has been a common trend in most cities, even in those with longstanding compact features, such as cities in the northern Mediterranean region. This paper assesses the land take patterns in the peri-urban area of a typical compact city that experienced significant sprawl trends after the mid-1990s, which are closely linked to the specificities of planning regulations regarding the development in peri-urban settlements as well as outside planned areas. Using the rapidly suburbanized southern peri-urban area of Thessaloniki, Greece, as a case study, the paper analyzes the factors influencing the land cover change in the middle-class-led peri-urbanization during the period 2000–2018 and provides an estimate of the SDG indicator 11.3.1 “ratio of land consumption rate to population growth rate”, a suitable indicator for monitoring spatial changes. The main conclusions of the study indicate that, during the period examined, the peri-urban zone investigated in the case study exhibited a higher rate of population growth compared to that of artificial surfaces, with the latter showing a higher change during 2006–2012. However, the spatial pattern of urban expansion displays a fragmented yet linear form, creating fragmented enclaves of agricultural land. Full article
Show Figures

Figure 1

Back to TopTop