Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = laminated bamboo sheet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 8078 KiB  
Article
Edgewise Compressive Properties of Ecological Sandwich Panels with Engineered Bamboo Face Sheets and Bamboo Culm Core
by Xiaoran Liu, Jingjing Deng, Mao Wang, Xinmiao Meng and Lu Xu
Materials 2025, 18(9), 2158; https://doi.org/10.3390/ma18092158 - 7 May 2025
Viewed by 353
Abstract
Bamboo is a green, renewable material with high strength and low cost, but raw bamboo has limited application in residential buildings due to its irregular shape and dry cracking. In this regard, this work proposed a novel ecological sandwich panel to explore the [...] Read more.
Bamboo is a green, renewable material with high strength and low cost, but raw bamboo has limited application in residential buildings due to its irregular shape and dry cracking. In this regard, this work proposed a novel ecological sandwich panel to explore the potential combination of engineered bamboo and raw bamboo culms. Face sheets made of glued laminated bamboo panels were bonded to the bamboo culm core via epoxy resin and mortise–tenon joints. Two groups of specimens with height-to-thickness ratios of 4.63 and 5.37 were tested through edgewise compression to investigate the failure modes, strength and rigidity. The results revealed that the specimens had no overall stability problem under axial loading, but exhibited delamination and local bulging to the face sheets. When the height-to-thickness ratio increased from 4.63 to 5.37, but still belonged to the short member range, the area of the adhesive interface increased by 16.13%, and the edgewise compressive strength and rigidity increased by 17.57% and 35.04%, respectively. This indicated that the capacity and rigidity were mainly determined by the connection strength, which was obviously affected by the manufacturing and assembly errors. Accordingly, increasing the connection strength could be helpful for improving the load-carrying capacity and ductility of such panels. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

23 pages, 5096 KiB  
Review
Engineered Bamboo Building Materials: Types, Production, and Applications
by Mahdi Hosseini, Milan Gaff, Yang Wei and Chaoyu Tu
Forests 2025, 16(4), 662; https://doi.org/10.3390/f16040662 - 10 Apr 2025
Cited by 2 | Viewed by 1966
Abstract
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from [...] Read more.
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from the extraction, transportation, production, and disposal of construction materials. As a result, developing renewable building materials is essential. In the past decade, bamboo has gained significant attention from researchers due to its strength, sustainability, high yield, and rapid growth. Bamboo in its original form has been used in construction for centuries, and recent innovations have led to the creation of engineered bamboo materials designed for more versatile applications. Researchers have been focused on understanding the physical and mechanical properties of engineered bamboo to assess its potential as a sustainable alternative to traditional building materials. However, modern practitioners are still unfamiliar with engineered bamboo materials, their types, and where they can be used. This article highlights the most widely researched engineered bamboo materials that have been used in the construction of small architectural forms and bigger structures. It provides an overview of common engineered bamboo building materials, namely laminated bamboo lumber, laminated bamboo sheets, parallel strand bamboo, bamboo mat boards, and bamboo particleboards, and their manufacturing processes and applications, offering valuable information for current practitioners and future research. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

14 pages, 3823 KiB  
Article
Experimental Study and Theoretical Analysis of Side-Pressure Laminated Bamboo Lumber Columns under Axial Compression
by Shuai Liu, Danping Gao, Yazi Xie and Bowang Chen
Sustainability 2022, 14(18), 11360; https://doi.org/10.3390/su141811360 - 10 Sep 2022
Cited by 2 | Viewed by 1798
Abstract
Side-pressure laminated bamboo lumber is made by gluing and pressing bamboo sheets together and can be used as a structural building material. The experiment and theoretical analysis are carried out for the side-pressure laminated bamboo lumber columns under axial compression in order to [...] Read more.
Side-pressure laminated bamboo lumber is made by gluing and pressing bamboo sheets together and can be used as a structural building material. The experiment and theoretical analysis are carried out for the side-pressure laminated bamboo lumber columns under axial compression in order to understand its performance under axial compression. In the experiment, the curve of load and lateral displacement in the middle of columns with different slenderness ratios is obtained under axial compression by considering the slenderness ratio (range: 23.1–92.4) of the specimen as a variable. Results show that the specimen undergoes an elastic stage, elastic-plastic stage, and failure stage when subjected to stress. The failure is characterized by a prominent ductility during this period. With an increase in the slenderness ratio, the elastic stage for the specimen is shortened, while the elastic-plastic stage is extended. Based on the geometric non-linear analysis, the pressure bar stability is analyzed for the specimen through the large deflection theory. A stable differential equation of the side-pressure laminated bamboo lumber column is established under axial compression. Based on the differential equation, the relationship between the bearing capacity of the axial center of the side-pressure laminated bamboo lumber column under axial compression and the lateral displacement in the middle of column can be derived as the reference for the application of side-pressure laminated bamboo lumber. Full article
(This article belongs to the Special Issue Sustainable Development of Timber Buildings)
Show Figures

Figure 1

Back to TopTop