Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (270)

Search Parameters:
Keywords = kolmogorov systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 4288 KB  
Article
Validating Express Rail Optimization with AFC and Backcasting: A Bi-Level Operations–Assignment Model to Improve Speed and Accessibility Along the Gyeongin Corridor
by Cheng-Xi Li and Cheol-Jae Yoon
Appl. Sci. 2025, 15(21), 11652; https://doi.org/10.3390/app152111652 (registering DOI) - 31 Oct 2025
Abstract
This study develops an integrated bi-level operations–assignment model to optimise express service on the Gyeongin Line, a core corridor connecting Seoul and Incheon. The upper level jointly selects express stops and time-of-day headways under coverage constraints—a minimum share of key stations and a [...] Read more.
This study develops an integrated bi-level operations–assignment model to optimise express service on the Gyeongin Line, a core corridor connecting Seoul and Incheon. The upper level jointly selects express stops and time-of-day headways under coverage constraints—a minimum share of key stations and a maximum inter-stop spacing—while the lower level assigns passengers under user equilibrium using a generalised time function that incorporates in-vehicle time, 0.5× headway wait, walking and transfers, and crowding-sensitive dwell times. Undergrounding and alignment straightening are incorporated into segment run-time functions, enabling the co-design of infrastructure and operations. Using automatic-fare-collection-calibrated origin–destination matrices, seat-occupancy records, and station-area population grids, we evaluate five rail scenarios and one intermodal extension. The results indicate substantial system-wide gains: peak average door-to-door times fall by approximately 44–46% in the AM (07:00–09:00) and 30–38% in the PM (17:30–19:30) for rail-only options, and by up to 55% with the intermodal extension. Kernel density estimation (KDE) and cumulative distribution function (CDF) analyses show a leftward shift and tail compression (median −8.7 min; 90th percentile (P90) −11.2 min; ≤45 min share: 0.0% → 47.2%; ≤60 min: 59.7% → 87.9%). The 45-min isochrone expands by ≈12% (an additional 0.21 million residents), while the 60-min reach newly covers Incheon Jung-gu and Songdo. Backcasting against observed express/local ratios yields deviations near the ±10% band (PM one comparator within and one slightly above), and the Kolmogorov–Smirnov (KS) statistic and Mann–Whitney (MW) test results confirm significant post-implementation shifts. The most cost-effective near-term package combines mixed stopping with modest alignment and capacity upgrades and time-differentiated headways; the intermodal express–transfer scheme offers a feasible long-term upper bound. The methodology is fully transparent through provision of pseudocode, explicit convergence criteria, and all hyperparameter settings. We also report SDG-aligned indicators—traction energy and CO2-equivalent (CO2-eq) per passenger-kilometre, and jobs reachable within 45- and 60-min isochrones—providing indicative yet robust evidence consistent with SDG 9, 11, and 13. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

24 pages, 1614 KB  
Article
Severity-Aware Drift Adaptation for Cost-Efficient Model Maintenance
by Khrystyna Shakhovska and Petro Pukach
AI 2025, 6(11), 279; https://doi.org/10.3390/ai6110279 - 23 Oct 2025
Viewed by 461
Abstract
Objectives: This paper introduces an adaptive learning framework for handling concept drift in data by dynamically adjusting model updates based on the severity of detected drift. Methods: The proposed method combines multiple statistical measures to quantify distributional changes between recent and historical data [...] Read more.
Objectives: This paper introduces an adaptive learning framework for handling concept drift in data by dynamically adjusting model updates based on the severity of detected drift. Methods: The proposed method combines multiple statistical measures to quantify distributional changes between recent and historical data windows. The resulting severity score drives a three-tier adaptation policy: minor drift is ignored, moderate drift triggers incremental model updates, and severe drift initiates full model retraining. Results: This approach balances stability and adaptability, reducing unnecessary computation while preserving model accuracy. The framework is applicable to both single-model and ensemble-based systems, offering a flexible and efficient solution for real-time drift management. Also, different transformation methods were reviewed, and quantile transformation was tested. By applying a quantile transformation, the Kolmogorov–Smirnov (KS) statistic decreased from 0.0559 to 0.0072, demonstrating effective drift adaptation. Full article
Show Figures

Figure 1

17 pages, 680 KB  
Article
Stochastic SO(3) Lie Method for Correlation Flow
by Yasemen Ucan and Melike Bildirici
Symmetry 2025, 17(10), 1778; https://doi.org/10.3390/sym17101778 - 21 Oct 2025
Viewed by 239
Abstract
It is very important to create mathematical models for real world problems and to propose new solution methods. Today, symmetry groups and algebras are very popular in mathematical physics as well as in many fields from engineering to economics to solve mathematical models. [...] Read more.
It is very important to create mathematical models for real world problems and to propose new solution methods. Today, symmetry groups and algebras are very popular in mathematical physics as well as in many fields from engineering to economics to solve mathematical models. This paper introduces a novel methodological framework based on the SO(3) Lie method to estimate time-dependent correlation matrices (correlation flows) among three variables that have chaotic, entropy, and fractal characteristics, from 11 April 2011 to 31 December 2024 for daily data; from 10 April 2011 to 29 December 2024 for weekly data; and from April 2011 to December 2024 for monthly data. So, it develops the stochastic SO(2) Lie method into the SO(3) Lie method that aims to obtain the correlation flow for three variables with chaotic, entropy, and fractal structure. The results were obtained at three stages. Firstly, we applied entropy (Shannon, Rényi, Tsallis, Higuchi) measures, Kolmogorov–Sinai complexity, Hurst exponents, rescaled range tests, and Lyapunov exponent methods. The results of the Lyapunov exponents (Wolf, Rosenstein’s Method, Kantz’s Method) and entropy methods, and KSC found evidence of chaos, entropy, and complexity. Secondly, the stochastic differential equations which depend on S2 (SO(3) Lie group) and Lie algebra to obtain the correlation flows are explained. The resulting equation was numerically solved. The correlation flows were obtained by using the defined covariance flow transformation. Finally, we ran the robustness check. Accordingly, our robustness check results showed the SO(3) Lie method produced more effective results than the standard and Spearman correlation and covariance matrix. And, this method found lower RMSE and MAPE values, greater stability, and better forecast accuracy. For daily data, the Lie method found RMSE = 0.63, MAE = 0.43, and MAPE = 5.04, RMSE = 0.78, MAE = 0.56, and MAPE = 70.28 for weekly data, and RMSE = 0.081, MAE = 0.06, and MAPE = 7.39 for monthly data. These findings indicate that the SO(3) framework provides greater robustness, lower errors, and improved forecasting performance, as well as higher sensitivity to nonlinear transitions compared to standard correlation measures. By embedding time-dependent correlation matrix into a Lie group framework inspired by physics, this paper highlights the deep structural parallels between financial markets and complex physical systems. Full article
Show Figures

Figure 1

35 pages, 14047 KB  
Article
Wildfire Susceptibility Mapping Using Deep Learning and Machine Learning Models Based on Multi-Sensor Satellite Data Fusion: A Case Study of Serbia
by Uroš Durlević, Velibor Ilić and Aleksandar Valjarević
Fire 2025, 8(10), 407; https://doi.org/10.3390/fire8100407 - 20 Oct 2025
Viewed by 962
Abstract
To prevent or mitigate the negative impact of fires, spatial prediction maps of wildfires are created to identify susceptible locations and key factors that influence the occurrence of fires. This study uses artificial intelligence models, specifically machine learning (XGBoost) and deep learning (Kolmogorov-Arnold [...] Read more.
To prevent or mitigate the negative impact of fires, spatial prediction maps of wildfires are created to identify susceptible locations and key factors that influence the occurrence of fires. This study uses artificial intelligence models, specifically machine learning (XGBoost) and deep learning (Kolmogorov-Arnold networks—KANs, and deep neural network—DNN), with data obtained from multi-sensor satellite imagery (MODIS, VIIRS, Sentinel-2, Landsat 8/9) for spatial modeling wildfires in Serbia (88,361 km2). Based on geographic information systems (GIS) and 199,598 wildfire samples, 16 quantitative variables (geomorphological, climatological, hydrological, vegetational, and anthropogenic) are presented, together with 3 synthesis maps and an integrated susceptibility map of the 3 applied models. The results show a varying percentage of Serbia’s very high vulnerability to wildfires (XGBoost = 11.5%; KAN = 14.8%; DNN = 15.2%; Ensemble = 12.7%). Among the applied models, the DNN achieved the highest predictive performance (Accuracy = 83.4%, ROC-AUC = 92.3%), followed by XGBoost and KANs, both of which also demonstrated strong predictive accuracy (ROC-AUC > 90%). These results confirm the robustness of deep and machine learning approaches for wildfire susceptibility mapping in Serbia. SHAP analysis determined that the most influential factors are elevation, air temperature, and humidity regime (precipitation, aridity, and series of consecutive dry/wet days). Full article
Show Figures

Graphical abstract

17 pages, 2023 KB  
Article
DARTS Meets Ants: A Hybrid Search Strategy for Optimizing KAN-Based 3D CNNs for Violence Recognition in Video
by Zholdas Buribayev, Mukhtar Zhassuzak, Maria Aouani, Zhansaya Zhangabay, Zemfira Abdirazak and Ainur Yerkos
Appl. Sci. 2025, 15(20), 11035; https://doi.org/10.3390/app152011035 - 14 Oct 2025
Viewed by 248
Abstract
The optimization capabilities of Kolmogorov–Arnold Networks (KANs) remain largely unexplored, which has limited their practical use in video anomaly recognition compared to conventional 3D-CNNs. To address this gap, we introduce a novel hybrid optimization framework that combines a Minimax Ant System (MMAS) for [...] Read more.
The optimization capabilities of Kolmogorov–Arnold Networks (KANs) remain largely unexplored, which has limited their practical use in video anomaly recognition compared to conventional 3D-CNNs. To address this gap, we introduce a novel hybrid optimization framework that combines a Minimax Ant System (MMAS) for hyperparameter selection with a modified DARTS strategy for adaptive tuning of the 3D KAN architecture. Unlike existing approaches, our method simultaneously optimizes both learning dynamics and architectural configurations, enabling KANs to better exploit their expressive power in spatiotemporal feature extraction. Applied to a three-class video dataset, the proposed approach improved model accuracy to 87%, surpassing the performance of a standard 3D-CNN by 6%. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

24 pages, 3661 KB  
Article
Real-Time Occluded Target Detection and Collaborative Tracking Method for UAVs
by Yandi Ai, Ruolong Li, Chaoqian Xiang and Xin Liang
Electronics 2025, 14(20), 4034; https://doi.org/10.3390/electronics14204034 - 14 Oct 2025
Viewed by 587
Abstract
To address the failure of unmanned aerial vehicle (UAV) target tracking caused by occlusion and limited field of view in dense low-altitude obstacle environments, this paper proposes a novel framework integrating occlusion-aware modeling and multi-UAV collaboration. A lightweight tracking model based on the [...] Read more.
To address the failure of unmanned aerial vehicle (UAV) target tracking caused by occlusion and limited field of view in dense low-altitude obstacle environments, this paper proposes a novel framework integrating occlusion-aware modeling and multi-UAV collaboration. A lightweight tracking model based on the Mamba backbone is developed, incorporating a Dilated Wavelet Receptive Field Enhancement Module (DWRFEM) to fuse multi-scale contextual features, significantly mitigating contour fragmentation and feature degradation under severe occlusion. A dual-branch feature optimization architecture is designed, combining the Distilled Tanh Activation with Context (DiTAC) activation function and Kolmogorov–Arnold Network (KAN) bottleneck layers to enhance discriminative feature representation. To overcome the limitations of single-UAV perception, a multi-UAV cooperative system is established. Ray intersection is employed to reduce localization uncertainty, while spherical sampling viewpoints are dynamically generated based on obstacle density. Safe trajectory planning is achieved using a Crested Porcupine Optimizer (CPO). Experiments on the Multi-Drone Multi-Target Tracking (MDMT) dataset demonstrate that the model achieves 84.1% average precision (AP) at 95 Frames Per Second (FPS), striking a favorable balance between speed and accuracy, making it suitable for edge deployment. Field tests with three collaborative UAVs show sustained target coverage in complex environments, outperforming traditional single-UAV approaches. This study provides a systematic solution for robust tracking in challenging low-altitude scenarios. Full article
(This article belongs to the Special Issue Digital Intelligence Technology and Applications, 2nd Edition)
Show Figures

Figure 1

22 pages, 6554 KB  
Article
Mechanical Properties of Novel 3D-Printed Restorative Materials for Definitive Dental Applications
by Moritz Hoffmann, Andrea Coldea and Bogna Stawarczyk
Materials 2025, 18(20), 4662; https://doi.org/10.3390/ma18204662 - 10 Oct 2025
Viewed by 606
Abstract
The aim of this study is to evaluate the mechanical properties and long-term stability of 3D-printable resins for permanent fixed dental prostheses (FDPs), focusing on whether material performance is influenced by 3D-printer type or by differences in resin formulations. Specimens (N = 621) [...] Read more.
The aim of this study is to evaluate the mechanical properties and long-term stability of 3D-printable resins for permanent fixed dental prostheses (FDPs), focusing on whether material performance is influenced by 3D-printer type or by differences in resin formulations. Specimens (N = 621) were printed. CAD/CAM blocks (BRILLIANT Crios) served as control. Flexural strength (FS) with elastic modulus (E_calc), Weibull modulus (m), Martens’ hardness (HM), indentation modulus (EIT), elastic modulus (E_RFDA), shear modulus (G_RFDA), and Poisson’s Ratio (ν) were measured initially, after water storage (24 h, 37 °C), and after thermocycling (5–55 °C, 10,000×). SEM analysis assessed microstructure. Data were analyzed using Kolmogorov–Smirnov, ANOVA with Scheffe post hoc, Kruskal–Wallis with Mann–Whitney U, and Weibull statistics with maximum likelihood (α = 0.05). A ceramic crown printed with Midas showed higher FS, HM, and EIT values after thermocycling than with Pro55s, and higher E_calc scores across all aging regimes. A Varseo Smile Crown Plus printed with VarseoXS and AsigaMax showed a higher FS value than TrixPrint2, while AsigaMax achieved the highest initial E_calc and E_RFDA values, and VarseoXS did so after thermocycling. HM, EIT, and G_RFDA were higher for TrixPrint2 and AsigaMax printed specimens, while ν varied by system and aging. 3Delta Crown, printed with AsigaMax, showed the highest FS, E_calc, HM, EIT, and m values after aging. VarseoSmile triniQ and Bridgetec showed the highest E_RFDA and G_RFDA values depending on aging, and Varseo Smile Crown Plus exhibited higher ν initially and post-aging. Printer system and resin formulation significantly influence the mechanical and aging behaviors of 3D-printed FDP materials, underscoring the importance of informed material and printer selection to ensure long-term clinical success. Full article
(This article belongs to the Special Issue Dental Biomaterials: Synthesis, Characterization, and Applications)
Show Figures

Figure 1

19 pages, 1035 KB  
Article
Spectral Bounds and Exit Times for a Stochastic Model of Corruption
by José Villa-Morales
Math. Comput. Appl. 2025, 30(5), 111; https://doi.org/10.3390/mca30050111 - 8 Oct 2025
Viewed by 196
Abstract
We study a stochastic differential model for the dynamics of institutional corruption, extending a deterministic three-variable system—corruption perception, proportion of sanctioned acts, and policy laxity—by incorporating Gaussian perturbations into key parameters. We prove global existence and uniqueness of solutions in the physically relevant [...] Read more.
We study a stochastic differential model for the dynamics of institutional corruption, extending a deterministic three-variable system—corruption perception, proportion of sanctioned acts, and policy laxity—by incorporating Gaussian perturbations into key parameters. We prove global existence and uniqueness of solutions in the physically relevant domain, and we analyze the linearization around the asymptotically stable equilibrium of the deterministic system. Explicit mean square bounds for the linearized process are derived in terms of the spectral properties of a symmetric matrix, providing insight into the temporal validity of the linear approximation. To investigate global behavior, we relate the first exit time from the domain of interest to backward Kolmogorov equations and numerically solve the associated elliptic and parabolic PDEs with FreeFEM, obtaining estimates of expectations and survival probabilities. An application to the case of Mexico highlights nontrivial effects: while the spectral structure governs local stability, institutional volatility can non-monotonically accelerate global exit, showing that highly reactive interventions without effective sanctions increase uncertainty. Policy implications and possible extensions are discussed. Full article
(This article belongs to the Section Social Sciences)
Show Figures

Figure 1

15 pages, 2373 KB  
Article
LLM-Empowered Kolmogorov-Arnold Frequency Learning for Time Series Forecasting in Power Systems
by Zheng Yang, Yang Yu, Shanshan Lin and Yue Zhang
Mathematics 2025, 13(19), 3149; https://doi.org/10.3390/math13193149 - 2 Oct 2025
Viewed by 393
Abstract
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current [...] Read more.
With the rapid evolution of artificial intelligence technologies in power systems, data-driven time-series forecasting has become instrumental in enhancing the stability and reliability of power systems, allowing operators to anticipate demand fluctuations and optimize energy distribution. Despite the notable progress made by current methods, they are still hindered by two major limitations: most existing models are relatively small in architecture, failing to fully leverage the potential of large-scale models, and they are based on fixed nonlinear mapping functions that cannot adequately capture complex patterns, leading to information loss. To this end, an LLM-Empowered Kolmogorov–Arnold frequency learning (LKFL) is proposed for time series forecasting in power systems, which consists of LLM-based prompt representation learning, KAN-based frequency representation learning, and entropy-oriented cross-modal fusion. Specifically, LKFL first transforms multivariable time-series data into text prompts and leverages a pre-trained LLM to extract semantic-rich prompt representations. It then applies Fast Fourier Transform to convert the time-series data into the frequency domain and employs Kolmogorov–Arnold networks (KAN) to capture multi-scale periodic structures and complex frequency characteristics. Finally, LKFL integrates the prompt and frequency representations through an entropy-oriented cross-modal fusion strategy, which minimizes the semantic gap between different modalities and ensures full integration of complementary information. This comprehensive approach enables LKFL to achieve superior forecasting performance in power systems. Extensive evaluations on five benchmarks verify that LKFL sets a new standard for time-series forecasting in power systems compared with baseline methods. Full article
(This article belongs to the Special Issue Artificial Intelligence and Data Science, 2nd Edition)
Show Figures

Figure 1

26 pages, 6893 KB  
Article
Exploring Overall and Component Complexities via Relative Complexity Change and Interacting Complexity Amplitudes in the Kolmogorov Plane: A Case Study of U.S. Rivers
by Dragutin T. Mihailović and Slavica Malinović-Milićević
Entropy 2025, 27(10), 1006; https://doi.org/10.3390/e27101006 - 26 Sep 2025
Viewed by 248
Abstract
One of the most challenging tasks in studying streamflow is quantifying how the complexities of environmental and dynamic parameters contribute to the overall system complexity. To address this, we employed Kolmogorov complexity (KC) metrics, specifically the Kolmogorov complexity spectrum (KC spectrum) and the [...] Read more.
One of the most challenging tasks in studying streamflow is quantifying how the complexities of environmental and dynamic parameters contribute to the overall system complexity. To address this, we employed Kolmogorov complexity (KC) metrics, specifically the Kolmogorov complexity spectrum (KC spectrum) and the Kolmogorov complexity plane (KC plane). These measures were applied to monthly streamflow time series averaged across 1879 gauge stations on U.S. rivers over the period 1950–2015. The variables analyzed included streamflow as a complex physical system, along with its key components: temperature, precipitation, and the Lyapunov exponent (LEX), which represents river dynamics. Using these metrics, we calculated normalized KC spectra for each position within the KC plane, visualizing interactive master amplitudes alongside individual amplitudes on overlapping two-dimensional planes. We further computed the relative change in complexities (RCC) of the normalized master and individual components within the KC plane, ranging from 0 to 1 in defined intervals. Based on these results, we analyzed and discussed the complexity patterns of U.S. rivers corresponding to each interval of normalized amplitudes. Full article
Show Figures

Figure 1

17 pages, 5954 KB  
Article
A Hybrid RUL Prediction Framework for Lithium-Ion Batteries Based on EEMD and KAN-LSTM
by Zhao Zhang, Xin Liu, Xinyu Dong, Pengyu Jiang, Runrun Zhang, Chaolong Zhang, Jiajia Shao, Yong Xie, Yan Zhang, Xuming Liu, Kaixin Cheng, Shi Chen, Zining Wang and Jieqi Wei
Batteries 2025, 11(10), 348; https://doi.org/10.3390/batteries11100348 - 23 Sep 2025
Viewed by 480
Abstract
Accurately estimating the remaining useful life (RUL) of lithium-ion batteries in energy storage systems is critical for ensuring both the safety and reliability of the power grid. To address the complex nonlinear degradation behavior associated with battery aging, this study proposes a novel [...] Read more.
Accurately estimating the remaining useful life (RUL) of lithium-ion batteries in energy storage systems is critical for ensuring both the safety and reliability of the power grid. To address the complex nonlinear degradation behavior associated with battery aging, this study proposes a novel RUL prediction framework that integrates ensemble empirical mode decomposition (EEMD) with an ensemble learning algorithm. The approach first applies EEMD to decompose aging data into a residual component and several intrinsic mode functions (IMFs). The residual component is then modeled using a long short-term memory (LSTM) network, while the Kolmogorov–Arnold network (KAN) focuses on learning from the IMF components. These individual predictions are subsequently combined to reconstruct the overall capacity degradation trajectory. Experimental validation on real lithium-ion battery aging datasets demonstrates that the proposed method provides highly accurate RUL predictions, exhibits strong robustness, and effectively captures nonlinear characteristics under varying operating conditions. Specifically, the method achieves R2 above 0.96 with absolute RUL errors within 2–3 cycles on NASA datasets, and maintains R2 values above 0.91 with errors within 7–15 cycles on CALCE datasets. Furthermore, the optimal KAN hyperparameters for different IMF components are identified, offering valuable insights for multi-scale modeling and future model optimization. Full article
(This article belongs to the Special Issue 10th Anniversary of Batteries: Battery Diagnostics and Prognostics)
Show Figures

Figure 1

18 pages, 3602 KB  
Article
Information Dynamics of the Mother–Fetus System Using Kolmogorov–Sinai Entropy Derived from Heart Sounds: A Longitudinal Study from Early Pregnancy to Postpartum
by Sayuri Ishiyama, Takashi Tahara, Hiroaki Iwanaga and Kazutomo Ohashi
Entropy 2025, 27(9), 969; https://doi.org/10.3390/e27090969 - 17 Sep 2025
Viewed by 459
Abstract
Kolmogorov–Sinai (KS) entropy is an indicator of the chaotic behavior of entire systems from an information-theoretic viewpoint. Here, we used KS entropy values derived from the heart sounds of four fetus–mother pairs to identify the changes in fetal and maternal informational patterns during [...] Read more.
Kolmogorov–Sinai (KS) entropy is an indicator of the chaotic behavior of entire systems from an information-theoretic viewpoint. Here, we used KS entropy values derived from the heart sounds of four fetus–mother pairs to identify the changes in fetal and maternal informational patterns during the four phases of pregnancy (early, mid, late, and postnatal). Time-series data of the heart sounds were reconstructed in a five-dimensional phase space to obtain the Lyapunov spectrum, and KS entropy was calculated. Statistical analyses were then conducted separately for the fetus and mother for the four phases of pregnancy. The fetal KS entropy significantly increased from early pregnancy to the postnatal period (0.054 ± 0.007 vs. 0.097 ± 0.007; p < 0.001), whereas the maternal KS entropy decreased in late pregnancy and then significantly increased after birth (0.098 ± 0.002 vs. 0.133 ± 0.003; p < 0.001). The increase in KS entropy with the course of fetal gestation reflects an increase in information generation and adaptive capacity during the developmental process. Thus, changes in maternal KS entropy play a dual role, temporarily enhancing physiological stability to support fetal development and helping to rebuild the mother’s own adaptive capacity in the postpartum period. Full article
(This article belongs to the Special Issue Synchronization and Information Patterns in Human Dynamics)
Show Figures

Figure 1

14 pages, 1411 KB  
Article
Comparative Analysis of the Chelating Capacity of Two Solutions Activated with Sonic and Ultrasonic Systems: HEBP Versus EDTA
by Chloé Lefevre, Julia Mena-Gómez, Andrea Martin-Vacas, Vicente Vera-Gónzalez and Jesús Mena-Álvarez
Appl. Sci. 2025, 15(18), 9993; https://doi.org/10.3390/app15189993 - 12 Sep 2025
Viewed by 487
Abstract
The success of root canal treatment depends on the proper execution of each phase. However, the instrumentation and irrigation phase is especially important. During this phase, the interior of the root canal system must be removed to facilitate the next phase, obturation, achieving [...] Read more.
The success of root canal treatment depends on the proper execution of each phase. However, the instrumentation and irrigation phase is especially important. During this phase, the interior of the root canal system must be removed to facilitate the next phase, obturation, achieving the most airtight seal possible, resulting in the success of the endodontic treatment. This study aimed to compare the chelating capacity and smear layer removal effectiveness of two irrigants—17% ethylenediaminetetraacetic acid (EDTA) and 9% hydroxyethylidene bisphosphonate (HEBP)—when activated using two different irrigant activation systems: sonic and ultrasonic. Additionally, the study assessed the relationship between these variables and the average diameter of dentinal tubules in the coronal, middle, and apical thirds of the root canal. A total of 105 single-rooted human teeth were decoronated and instrumented using a rotary system. Teeth were randomly assigned to four experimental groups based on the irrigant (EDTA or HEBP) and the activation method (sonic or ultrasonic). Final irrigation was performed with the corresponding protocol. Samples were analyzed using scanning electron microscopy (SEM). Smear layer removal was quantified using the Carvalho method, and dentinal tubule diameter was measured with image analysis software. Data were statistically analyzed using Kolmogorov–Smirnov and non-parametric tests, with a significance level set at α = 0.05. EDTA showed superior smear layer removal in the coronal and middle thirds, particularly when activated ultrasonically. In contrast, HEBP was more effective in the apical third, especially when used with sonic activation. There were no statistically significant differences in the overall tubule diameter between the two chelating agents; however, HEBP resulted in significantly larger tubule openings in the apical third. Activation systems played a critical role, with ultrasonic irrigation being more effective for EDTA and sonic irrigation favoring HEBP in specific canal regions. The combination of chelating agent and activation system influences both smear layer removal and dentinal tubule morphology. HEBP demonstrated promising results in the apical third with minimal structural damage, supporting its use as a viable alternative to EDTA in continuous chelation protocols. Full article
Show Figures

Figure 1

20 pages, 6013 KB  
Article
A GRU-KAN Surrogate Model with Genetic Algorithm Uniform Sampling for Active Magnetic Bearings–Rotor Critical Speed Prediction
by Jiahang Cui, Jianghong Li, Feichao Cai, Zhenmin Zhao and Yuxi Liu
Sensors 2025, 25(18), 5680; https://doi.org/10.3390/s25185680 - 11 Sep 2025
Viewed by 514
Abstract
With the development of active magnetic bearings (AMBs) toward higher speeds, understanding high-speed rotor dynamics has become a crucial focus in AMB research. Traditional finite element modeling (FEM) methods, however, are unable to rapidly and comprehensively uncover the complex interplay between controller parameters [...] Read more.
With the development of active magnetic bearings (AMBs) toward higher speeds, understanding high-speed rotor dynamics has become a crucial focus in AMB research. Traditional finite element modeling (FEM) methods, however, are unable to rapidly and comprehensively uncover the complex interplay between controller parameters and dynamic behavior. To address this limitation, a surrogate modeling approach based on a hybrid gated recurrent unit–Kolmogorov–Arnold network (GRU-KAN) is introduced to mathematically capture the effects of coupled control gains on rotor dynamics. To enhance model generalization, a genetic algorithm-driven uniform design sampling strategy is also implemented. Comparative studies against support vector regression and Kriging surrogates indicate a higher coefficient of determination (R2=0.9887) and lower residuals for the proposed approach. Experimental validation across multiple controller parameter combinations shows that the resulting machine learning surrogate predicts the critical speed with a mean absolute error of only 38.51 rpm and a mean absolute percentage error of 1.56×101%, while requiring merely 1.14×104 s per evaluation—compared to 201 s for traditional FEM. These findings demonstrate the surrogate’s efficiency, accuracy, and comprehensive predictive capabilities, offering an effective method for rapid critical speed estimation in AMB–rotor systems. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

25 pages, 6752 KB  
Article
Hybrid Deep Learning Combining Mode Decomposition and Intelligent Optimization for Discharge Forecasting: A Case Study of the Baiquan Karst Spring
by Yanling Li, Tianxing Dong, Yingying Shao and Xiaoming Mao
Sustainability 2025, 17(18), 8101; https://doi.org/10.3390/su17188101 - 9 Sep 2025
Viewed by 581
Abstract
Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture for daily spring flow prediction that integrates [...] Read more.
Karst springs play a critical strategic role in regional economic and ecological sustainability, yet their spatiotemporal heterogeneity and hydrological complexity pose substantial challenges for flow prediction. This study proposes FMD-mGTO-BiGRU-KAN, a four-stage hybrid deep learning architecture for daily spring flow prediction that integrates multi-feature signal decomposition, meta-heuristic optimization, and interpretable neural network design: constructing an Feature Mode Decomposition (FMD) decomposition layer to mitigate modal aliasing in meteorological signals; employing the improved Gorilla Troops Optimizer (mGTO) optimization algorithm to enable autonomous hyperparameter evolution, overcoming the limitations of traditional grid search; designing a Bidirectional Gated Recurrent Unit (BiGRU) network to capture long-term historical dependencies in spring flow sequences through bidirectional recurrent mechanisms; introducing Kolmogorov–Arnold Networks (KAN) to replace the fully connected layer, and improving the model interpretability through differentiable symbolic operations; Additionally, residual modules and dropout blocks are incorporated to enhance generalization capability, reduce overfitting risks. By integrating multiple deep learning algorithms, this hybrid model leverages their respective strengths to adeptly accommodate intricate meteorological conditions, thereby enhancing its capacity to discern the underlying patterns within complex and dynamic input features. Comparative results against benchmark models (LSTM, GRU, and Transformer) show that the proposed framework achieves 82.47% and 50.15% reductions in MSE and RMSE, respectively, with the NSE increasing by 8.01% to 0.9862. The prediction errors are more tightly distributed, and the proposed model surpasses the benchmark model in overall performance, validating its superiority. The model’s exceptional prediction ability offers a novel high-precision solution for spring flow prediction in complex hydrological systems. Full article
Show Figures

Figure 1

Back to TopTop