Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (408)

Search Parameters:
Keywords = karst areas of China

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 - 1 Aug 2025
Viewed by 208
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

20 pages, 5219 KiB  
Article
Utilizing a Transient Electromagnetic Inversion Method with Lateral Constraints in the Goaf of Xiaolong Coal Mine, Xinjiang
by Yingying Zhang, Bin Xie and Xinyu Wu
Appl. Sci. 2025, 15(15), 8571; https://doi.org/10.3390/app15158571 (registering DOI) - 1 Aug 2025
Viewed by 165
Abstract
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. [...] Read more.
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. In recent years, small-loop TEM has demonstrated high resolution and adaptability in challenging terrains with vegetation, such as coal mine ponding areas, karst regions, and reservoir seepage scenarios. By considering the sedimentary characteristics of coal seams and addressing the resistivity changes encountered in single-point inversion, a joint optimization inversion process incorporating lateral weighting factors and vertical roughness constraints has been developed to enhance the connectivity between adjacent survey points and improve the continuity of inversion outcomes. Through an OCCAM inversion approach, the regularization factor is dynamically determined by evaluating the norms of the data objective function and model objective function in each iteration, thereby reducing the reliance of inversion results on the initial model. Using the Xiaolong Coal Mine as a geological context, the impact of lateral and vertical weighting factors on the inversion outcomes of high- and low-resistivity structural models is examined through a control variable method. The analysis reveals that optimal inversion results are achieved with a combination of a lateral weighting factor of 0.5 and a vertical weighting factor of 0.1, ensuring both result continuity and accurate depiction of vertical and lateral electrical interfaces. The practical application of this approach validates its effectiveness, offering theoretical support and technical assurance for old goaf detection in coal mines, thereby holding significant engineering value. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 2713 KiB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 170
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

31 pages, 23687 KiB  
Article
Spatiotemporal Dynamics of Ecosystem Services and Human Well-Being in China’s Karst Regions: An Integrated Carbon Flow-Based Assessment
by Yinuo Zou, Yuefeng Lyu, Guan Li, Yanmei Ye and Cifang Wu
Land 2025, 14(8), 1506; https://doi.org/10.3390/land14081506 - 22 Jul 2025
Viewed by 299
Abstract
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still [...] Read more.
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still needs to be strengthened. As an element transferred in the natural–society coupling system, carbon can assist in characterizing the dynamic interactions within coupled human–natural systems. Carbon, as a fundamental element transferred across ecological and social spheres, offers a powerful lens to characterize these linkages. This study develops and applies a novel analytical framework that integrates carbon flow as a unifying metric to quantitatively assess the spatiotemporal dynamics of the land use and land cover change (LUCC)–ESs–HWB nexus in Guizhou Province, China, from 2000 to 2020. The results show that: (1) Ecosystem services in Guizhou showed distinct trends from 2000 to 2020: supporting and regulating services declined and then recovered, and provisioning services steadily increased, while cultural services remained stable but varied across cities. (2) Human well-being generally improved over time, with health remaining stable and the HSI rising across most cities, although security levels fluctuated and remained low in some areas. (3) The contribution of ecosystem services to human well-being peaked in 2010–2015, followed by declines in central and northern regions, while southern and western areas maintained or improved their levels. (4) Supporting and regulating services were positively correlated with HWB security, while cultural services showed mixed effects, with strong synergies between culture and health in cities like Liupanshui and Qiandongnan. Overall, this study quantified the coupled dynamics between ecosystem services and human well-being through a carbon flow framework, which not only offers a unified metric for cross-dimensional analysis but also reduces subjective bias in evaluation. This integrated approach provides critical insights for crafting spatially explicit land management policies in Guizhou and offers a replicable methodology for exploring sustainable development pathways in other ecologically fragile karst regions worldwide. Compared with conventional ecosystem service frameworks, the carbon flow approach provides a process-based, dynamic mediator that quantifies biogeochemical linkages in LUCC–ESs–HWB systems, which is particularly important in fragile karst regions. However, we acknowledge that further empirical comparison with traditional ESs metrics could strengthen the framework’s generalizability. Full article
(This article belongs to the Special Issue Advances in Land Consolidation and Land Ecology (Second Edition))
Show Figures

Graphical abstract

24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 507
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 228
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

21 pages, 9917 KiB  
Article
Rock Exposure-Driven Ecological Evolution: Multidimensional Spatiotemporal Analysis and Driving Path Quantification in Karst Strategic Areas of Southwest China
by Yue Gong, Shuang Song and Xuanhe Zhang
Land 2025, 14(7), 1487; https://doi.org/10.3390/land14071487 - 18 Jul 2025
Viewed by 276
Abstract
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. [...] Read more.
Southwest China, with typical karst, is one of the 36 biodiversity hotspots in the world, facing extreme ecological fragility due to thin soils, limited water retention, and high bedrock exposure. This fragility intensifies under climate change and human pressures, threatening regional sustainable development. Ecological strategic areas (ESAs) are critical safeguards for ecosystem resilience, yet their spatiotemporal dynamics and driving mechanisms remain poorly quantified. To address this gap, this study constructed a multidimensional ecological health assessment framework (pattern integrity–process efficiency–function diversity). By integrating Sen’s slope, a correlated Mann–Kendall (CMK) test, the Hurst index, and fuzzy C-means clustering, we systematically evaluated ecological health trends and identified ESA differentiation patterns for 2000–2024. Orthogonal partial least squares structural equation modeling (OPLS-SEM) quantified driving factor intensities and pathways. The results revealed that ecological health improved overall but exhibited significant spatial disparity: persistently high in southern Guangdong and most of Yunnan, and persistently low in the Sichuan Basin and eastern Hubei, with 41.47% of counties showing declining/slightly declining trends. ESAs were concentrated in the southwest/southeast, whereas high-EHI ESAs increased while low-EHI ESAs declined. Additionally, the natural environmental and human interference impacts decreased, while unique geographic factors (notably the rock exposure rate, with persistently significant negative effects) increased. This long-term, multidimensional assessment provides a scientific foundation for targeted conservation and sustainable development strategies in fragile karst ecosystems. Full article
Show Figures

Figure 1

20 pages, 11158 KiB  
Article
Fine-Grained Land Use Remote Sensing Mapping in Karst Mountain Areas Using Deep Learning with Geographical Zoning and Stratified Object Extraction
by Bo Li, Zhongfa Zhou, Tianjun Wu and Jiancheng Luo
Remote Sens. 2025, 17(14), 2368; https://doi.org/10.3390/rs17142368 - 10 Jul 2025
Viewed by 369
Abstract
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological [...] Read more.
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological restoration projects, the ecological degradation of karst mountain areas in Southwest China has been significantly curbed. However, the research on the fine-grained land use mapping and quantitative characterization of spatial heterogeneity in karst mountain areas is still insufficient. This knowledge gap impedes scientific decision-making and precise policy formulation for regional ecological environment management. Hence, this paper proposes a novel methodology for land use mapping in karst mountain areas using very high resolution (VHR) remote sensing (RS) images. The innovation of this method lies in the introduction of strategies of geographical zoning and stratified object extraction. The former divides the complex mountain areas into manageable subregions to provide computational units and introduces a priori data for providing constraint boundaries, while the latter implements a processing mechanism with a deep learning (DL) of hierarchical semantic boundary-guided network (HBGNet) for different geographic objects of building, water, cropland, orchard, forest-grassland, and other land use features. Guanling and Zhenfeng counties in the Huajiang section of the Beipanjiang River Basin, China, are selected to conduct the experimental validation. The proposed method achieved notable accuracy metrics with an overall accuracy (OA) of 0.815 and a mean intersection over union (mIoU) of 0.688. Comparative analysis demonstrated the superior performance of advanced DL networks when augmented with priori knowledge in geographical zoning and stratified object extraction. The approach provides a robust mapping framework for generating fine-grained land use data in karst landscapes, which is beneficial for supporting academic research, governmental analysis, and related applications. Full article
Show Figures

Figure 1

32 pages, 13821 KiB  
Article
Spatiotemporal Evolution and Driving Factors of Karst Rocky Desertification in Guangxi, China, Under Climate Change and Human Activities
by Jialei Su, Meiling Liu, Qin Yang, Xiangnan Liu, Zeyan Wu and Yanan Wen
Remote Sens. 2025, 17(13), 2294; https://doi.org/10.3390/rs17132294 - 4 Jul 2025
Cited by 1 | Viewed by 390
Abstract
Guangxi is among China’s regions most severely affected by karst rocky desertification (KRD). Over the past two decades, global climate change and human activities have jointly led to significant changes in the extent and intensity of KRD in Guangxi. Given this context, it [...] Read more.
Guangxi is among China’s regions most severely affected by karst rocky desertification (KRD). Over the past two decades, global climate change and human activities have jointly led to significant changes in the extent and intensity of KRD in Guangxi. Given this context, it is crucial to comprehensively analyze the spatiotemporal evolution of KRD in Guangxi and its driving forces. This study proposed a novel three-dimensional feature space model for monitoring KRD in Guangxi. We then applied transition matrices, dynamic degree indices, and landscape metrics to analyze the spatiotemporal evolution of KRD. We also proposed a Spatiotemporal Interaction Intensity Index (STII) to quantify mutual influences among KRD patches. Finally, we used GeoDetector to analyze the driving factors of KRD. The results indicate the following: (1) The three-dimensional model showed high applicability for large-scale KRD monitoring, with an overall accuracy of 92.86%. (2) KRD in Guangxi exhibited an overall recovery–deterioration–recovery trend from 2000 to 2023. The main recovery phases were 2005–2015 and 2020–2023. During these phases, both severe and moderate KRD showed strong signals of recovery, including significant declines in area, number of patches, and Landscape Shape Index, along with persistently low STII values. In contrast, from 2015 to 2020, KRD predominantly deteriorated, primarily characterized by transitions from no KRD to potential KRD and from potential KRD to light KRD. (3) For severe KRD patches, the intensity of interaction required from neighboring patches to promote recovery exceeded that which led to deterioration, indicating the difficulty of reversing severe KRD. (4) Slope, land use, and elevation were the main drivers of KRD in Guangxi from 2000 to 2023. Erosive rainfall exhibited a higher explanatory power for KRD than average precipitation. Two-factor interactions significantly enhanced the driving forces of KRD. These findings provide a scientific basis for KRD management. Full article
Show Figures

Figure 1

17 pages, 27567 KiB  
Article
MaxEnt-Based Evaluation of Cultivated Land Suitability in the Lijiang River Basin, China
by Yu Lin, Wei Li, Xiangwen Cai, Min Wang, Wencui Xie and Yinglan Lu
Sustainability 2025, 17(13), 5875; https://doi.org/10.3390/su17135875 - 26 Jun 2025
Viewed by 237
Abstract
The Lijiang River Basin (LRB) is a karst ecosystem that presents unique challenges for agricultural land planning. Evaluating cultivated land suitability based on natural factors is critical for ensuring food security in this region. This study was based on the cultivated land distribution [...] Read more.
The Lijiang River Basin (LRB) is a karst ecosystem that presents unique challenges for agricultural land planning. Evaluating cultivated land suitability based on natural factors is critical for ensuring food security in this region. This study was based on the cultivated land distribution data of the LRB in the China Land-Use and Land-Cover Chang dataset, selecting 22 restriction factors across five dimensions: climate, topography, soil, hydrology, and social conditions, and the suitability of cultivated land (paddy fields and drylands) in the LRB was evaluated using the MaxEnt model to further identify the main restricting factors affecting the spatial distribution. The research showed that (1) For paddy fields, high-suitability areas covered 2875.05 km2, medium-suitability 1670.58 km2, low-suitability 3187.25 km2, and non-suitable 9368.46 km2. The main restriction factors were distance to villages, slope, surface gravel content, soil thickness, soil pH, and total phosphorus content. (2) For drylands, high-suitability areas covered 3282.3 km2, medium-suitability 2260.93 km2, low-suitability 4536.27 km2, and non-suitable 6836.85 km2. The main restriction factors were soil thickness, distance to roads, surface gravel content, elevation, soil pH, and soil texture. This research can provide a scientific basis for the layout of food security and planning agricultural land use in the LRB. Full article
Show Figures

Figure 1

25 pages, 12803 KiB  
Article
Spatiotemporal Decoupling of Vegetation Productivity and Sustainable Carbon Sequestration in Karst Ecosystems: A Deep-Learning Synthesis of Climatic and Anthropogenic Drivers
by Runping Ma, Maofa Wang, Chengcheng Wang, Yibo Zhang, Xiang Zhou and Li Jiang
Sustainability 2025, 17(13), 5840; https://doi.org/10.3390/su17135840 - 25 Jun 2025
Viewed by 375
Abstract
Understanding the spatiotemporal dynamics of vegetation net primary productivity (NPP) and its drivers is critical to sustainable land -carbon management, carbon-neutral development, and ecological restoration in fragile karst landscapes. This study proposes a Pearson Correlation—Deep Transformer (PCADT) model that integrates attention mechanisms and [...] Read more.
Understanding the spatiotemporal dynamics of vegetation net primary productivity (NPP) and its drivers is critical to sustainable land -carbon management, carbon-neutral development, and ecological restoration in fragile karst landscapes. This study proposes a Pearson Correlation—Deep Transformer (PCADT) model that integrates attention mechanisms and geospatial covariates to enhance NPP estimation accuracy in Guangxi, China—a global karst hotspot. Leveraging multisource remote sensing data (2015–2020), PCADT achieves 10.7% higher predictive accuracy (R2 = 0.83 vs. conventional models) at 500 m resolution, thereby capturing the fine-scale heterogeneity essential for sustainability planning. The results reveal a significant annual NPP increase (4.14 gC·m−2·a−1, p < 0.05), with eastern areas exhibiting higher baseline productivity (1129 gC·m−2 in Wuzhou) but western regions showing steeper growth rates (5.2% vs. 2.1%). Vegetation carbon sequestration capacity, validated against MOD17A3HGF data (R2 = 0.998), demonstrates spatial consistency (east > west), with forest-dominated Wuzhou contributing 6.5 TgC annually. Mechanistic analyses identify precipitation as the dominant climatic driver (partial r = 0.62, p < 0.01), surpassing temperature sensitivity, while bimodal NPP-altitude peaks (300 m and 900 m) and land -use transitions (e.g., forest-to-cropland conversions) explain 18.5% of NPP variability and reduce regional carbon stocks by 4593 tC. The PCADT framework offers a scalable solution for precision carbon management by emphasizing the role of anthropogenic interventions—such as afforestation—in alleviating climatic constraints. It advocates for spatially adaptive strategies to optimize water resource utilization, enhance forest conservation, and promote sustainable land -use transitions. By identifying areas where water -scarcity relief and targeted afforestation would yield the highest carbon returns, the PCADT framework directly supports SDG 13 (Climate Action) and SDG 15 (Life on Land), providing a strategic blueprint for sustainable development in water-limited karst regions globally. Full article
Show Figures

Figure 1

14 pages, 1851 KiB  
Article
Leaf–Soil Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry and Adaptation in Karst Plant Communities
by Yang Wang, Zuhong Fan, Tian Tian, Ying Deng and Hong Zhao
Sustainability 2025, 17(13), 5790; https://doi.org/10.3390/su17135790 - 24 Jun 2025
Viewed by 346
Abstract
In order to elucidate the factors regulating nutrient dynamics in plant–soil interactions across various latitudes within the karst climax community, this study focused on the karst forest climax community in Guizhou Province, Southwest China. We analyzed and compared the differences in carbon, nitrogen, [...] Read more.
In order to elucidate the factors regulating nutrient dynamics in plant–soil interactions across various latitudes within the karst climax community, this study focused on the karst forest climax community in Guizhou Province, Southwest China. We analyzed and compared the differences in carbon, nitrogen, and phosphorus content, as well as stoichiometry, in plant leaves and soils under various growing conditions. Additionally, redundancy analyses were conducted to investigate the stoichiometric correlations between plants and soil. The research findings indicate the following: (1) Leaf carbon content (LCC) and the carbon-to-nitrogen ratio (LCN) exhibit significant differences across various latitudes, with the lowest values observed in high-latitude regions. (2) Soil organic carbon (SOC) and the carbon-to-nitrogen ratio (SCN) also show significant variations across latitudes, with the lowest concentrations found in high-latitude regions and the highest in low-latitude regions. (3) The variability in leaf nutrient element ratios among karst region climax communities is greatest in low-latitude areas. This study found that the carbon content (LCC), nitrogen content (LNC), and carbon-to-nitrogen ratio (LCN) of leaves in karst climax community plants decrease as latitude increases. This suggests that plants regulate the nutrient utilization efficiency of carbon content (LCC), nitrogen content (LNC), and phosphorus content (LPC) in their leaves to maintain the nutrients necessary for their growth and development along the latitudinal gradient. The sensitivity of soil organic carbon (SOC), carbon-to-nitrogen (SCN), and carbon-to-phosphorus (SCP) ratios to latitudinal changes were particularly pronounced in the karst climax community. Additionally, plant leaf stoichiometry was significantly influenced by soil phosphorus content (SPC) in mid- and high-latitude regions, while factors other than soil nitrogen content (SNC) had a more substantial impact on plant leaf stoichiometry in low-latitude areas. The findings of this study are highly significant for guiding nutrient management in karst forest ecosystems and for the restoration of degraded karst forest vegetation. Full article
Show Figures

Figure 1

26 pages, 5097 KiB  
Article
Groundwater Vulnerability and Environmental Impact Assessment of Urban Underground Rail Transportation in Karst Region: Case Study of Modified COPK Method
by Qiuyu Zhu, Ying Wang, Yi Li, Hanxiang Xiong, Chuanming Ma, Weiquan Zhao, Yang Cao and Xiaoqing Song
Water 2025, 17(13), 1843; https://doi.org/10.3390/w17131843 - 20 Jun 2025
Viewed by 484
Abstract
Urbanization always leads to increasing challenges to the groundwater resources in karst regions due to intensive land use, infrastructure development, and the rapid transmission potential of pollutants. This study proposed an improved groundwater vulnerability assessment (GVA) framework by modifying the widely used COP [...] Read more.
Urbanization always leads to increasing challenges to the groundwater resources in karst regions due to intensive land use, infrastructure development, and the rapid transmission potential of pollutants. This study proposed an improved groundwater vulnerability assessment (GVA) framework by modifying the widely used COP (Concentration of flow, Overlying layers, and Precipitation) model, through the integration of three additional indicators: urban underground rail transportation (UURT), land use and cover (LULC), and karst development (K). Guiyang, a typical urbanized karst city in southwest China, was selected as the case study. The improved COP model, namely the COPK model, showed stronger spatial differentiation and a higher Pearson correlation coefficient (r) with nitrate concentrations (r = 0.4388) compared to the original COP model (R = 0.3689), which validates the effectiveness of the newly introduced indicators. However, both R values remained below 0.5, even after model modification, suggesting that intensive human activities play a role in influencing nitrate distribution. The pollution load index (PI) was developed based on seven types of pollution sources, and it was integrated with the COPK vulnerability index using a risk matrix approach, producing a groundwater risk map classified into five levels. Global Moran’s I analysis (0.9171 for COP model and 0.8739 for COPK model) confirmed strong and significant spatial clustering patterns for the two models. The inclusion of UURT and LULC improved the model’s sensitivity to urban-related pressures and enhanced its capacity to detect local risk zones. It is a scalable tool for groundwater risk assessment in urbanized karst areas and offers practical insights for land use planning and sustainable groundwater management. Full article
Show Figures

Figure 1

11 pages, 4064 KiB  
Article
Morphological and Molecular Evidence for a New Species Within Styrax (Styracaceae) from a Karst Area in Southwest Guangxi, China
by Guoxing Peng, Tongjun Liang, Jipeng Liang, Yitian Wang, Liaocheng Zhao, Rui Zhang, Yusong Huang, Zhi Li, Weibin Xu and Ming Tang
Plants 2025, 14(12), 1789; https://doi.org/10.3390/plants14121789 - 11 Jun 2025
Viewed by 407
Abstract
Styrax chongzuoensis, a novel endemic species with a narrow distribution in limestone regions of Chongzuo, Guangxi, China, is described herein. This new species seems somewhat similar to Styrax fortunei, but significantly differs from it by having long ovate or long lanceolate [...] Read more.
Styrax chongzuoensis, a novel endemic species with a narrow distribution in limestone regions of Chongzuo, Guangxi, China, is described herein. This new species seems somewhat similar to Styrax fortunei, but significantly differs from it by having long ovate or long lanceolate leaves, often with an asymmetrical base (vs. obovate-elliptic to elliptic, often with a symmetrical base) and fertile shoots with fewer flowers (1, or rarely 2 or 3, vs. many, always more than 10). Phylogenetic analyses based on the chloroplast coding sequences indicated that S. chongzuoensis and Styrax japonicus are sister taxa to each other, both clustered in the series Cyrta within Styrax. Overall, the integration of morphological and phylogenetic evidence indicates that S. chongzuoensis actually represents a new species. Color plates of S. chongzuoensis are illustrated, and a distribution map and conservation assessment of this species are also provided. Full article
Show Figures

Figure 1

27 pages, 14654 KiB  
Article
Agroforestry in the Soil and Water Conservation of Karst Can Improve Rural Eco-Revitalization: Evidence from the Core Area of the South China Karst
by Yuwen Fu, Min Zhang, Zuju Li, Kangning Xiong, Qi Fang, Wanmei Hu, Liheng You and Zhifu Luo
Forests 2025, 16(6), 955; https://doi.org/10.3390/f16060955 - 5 Jun 2025
Viewed by 595
Abstract
Agroforestry (AF) effectively enhances ecological restoration and soil–water conservation (SWC), yet the relationship among soil and water conservation agroforestry (SWCAF) in karst soil, water loss (SWL) and rural eco-revitalization (RER) remains unclear, which may hinder the ecological restoration process around the world. This [...] Read more.
Agroforestry (AF) effectively enhances ecological restoration and soil–water conservation (SWC), yet the relationship among soil and water conservation agroforestry (SWCAF) in karst soil, water loss (SWL) and rural eco-revitalization (RER) remains unclear, which may hinder the ecological restoration process around the world. This study aims to reveal whether SWCAF in karst areas improves RER through SWC benefits, ecosystem service (ES) enhancement and rural ecological environment quality (REEQ) improvement. We take Guizhou Province, the core area of the South China Karst (SCK), as the study area and 2010–2020 as the study period. By using the equivalent factor method, the remote sensing ecological index (RSEI) model, bivariate spatial autocorrelation and the panel vector autoregressive (PVAR) model, the study reveals SWCAF’s ecological benefits and its interaction mechanism with RER. Key findings reveal the following: (1) SWCAF reduced the area of SWL by 14.93% by converting cropland into forests. (2) The AF ecosystem service value (AFESV) increased by CNY 9.181 billion, and the forest-related AFESV increases represented 184% of the total AFESV, while REEQ showed an overall positive trend in the western SWC area. (3) The AFESV has an obvious synergistic effect with REEQ (r = 0.60) and obvious positive synergy with SWL (r = 0.69), and its spatial correlation increases over time. (4) The PVAR model verified that there is a bidirectional Granger causal relationship between the AFESV and RER, showing dynamic positive and negative alternating influences. This research study reveals that SWCAF drives RER through the dual path of SWL control and value-added ecological services, among which the forest ecosystem plays a core role. In the future, it is necessary to optimize the diversity of AF structures to avoid ecological service trade-offs. This research study provides a scientific basis for decision making and the ecological management of SWC in karst soils globally. Full article
Show Figures

Figure 1

Back to TopTop