Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,164)

Search Parameters:
Keywords = ischemia reperfusion studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3172 KB  
Article
Differential Expression of Circular RNAs in Rat Brain Regions with Various Degrees of Damage After Ischemia–Reperfusion
by Ivan V. Mozgovoy, Ekaterina V. Tsareva, Alina E. Denisova, Vasily V. Stavchansky, Leonid V. Gubsky, Lyudmila V. Dergunova, Svetlana A. Limborska and Ivan B. Filippenkov
Int. J. Mol. Sci. 2025, 26(21), 10555; https://doi.org/10.3390/ijms262110555 - 30 Oct 2025
Viewed by 94
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that can significantly influence the regulation of gene expression in health and disease, including ischemic stroke. We identified 597 differentially expressed circRNAs (DECs) (fold change > 1.5; Padj < 0.05) in the striatum region encompassing the ischemic [...] Read more.
Circular RNAs (circRNAs) are non-coding RNAs that can significantly influence the regulation of gene expression in health and disease, including ischemic stroke. We identified 597 differentially expressed circRNAs (DECs) (fold change > 1.5; Padj < 0.05) in the striatum region encompassing the ischemic lesion and penumbra 24 h after ischemia–reperfusion injury (tMCAO) in rats, according to high-throughput RNA sequencing data (RNA-Seq). The DECs predominantly increased expression levels relative to those in sham-operated animals. In this study, we also compared these data with DECs we previously identified in the frontal cortex region containing the penumbra and healthy tissue. Furthermore, we bioinformatically constructed a network of competitive circRNA-microRNA-mRNA interactions characterizing the possible functions of DECs in brain areas with varying degrees of ischemic injury. We found that in both tissues, the identified DECs were involved in regulating the expression of genes associated with inflammation and neurotransmission. Moreover, in the striatum, most DECs decreased their expression, while in the frontal cortex, most DECs increased their expression. Thus, we demonstrated different circRNA activities in brain areas with varying degrees of injury. This result may indicate a role for these molecules in regulating brain cell responses, including those important for functional recovery after cerebral ischemia. Full article
Show Figures

Figure 1

22 pages, 4823 KB  
Article
Investigating the Cytoprotective Mechanisms of the Tardigrade Damage Suppressor (Dsup) Protein in Human Cells Under Hypoxic Stress
by Enxhi Shaba, Claudia Ricci, Lorenza Vantaggiato, Maria Francesca Paolocci, Tommaso Regoli, Kateryna Miedviedieva, Jlenia Brunetti, Valerio Ciccone, Claudia Cecchin, Sandra Donnini, Carlotta Marzocchi, Claudia Landi and Silvia Cantara
Int. J. Mol. Sci. 2025, 26(21), 10452; https://doi.org/10.3390/ijms262110452 - 28 Oct 2025
Viewed by 261
Abstract
Ischemia/reperfusion injury (IRI) is a common damage due to the restoration of blood flow following an ischemic injury. Its pathogenesis is mainly linked to the production of reactive oxygen species (ROS), which sustain cell damage and promote cell death. The tardigrade damage suppressor [...] Read more.
Ischemia/reperfusion injury (IRI) is a common damage due to the restoration of blood flow following an ischemic injury. Its pathogenesis is mainly linked to the production of reactive oxygen species (ROS), which sustain cell damage and promote cell death. The tardigrade damage suppressor protein (Dsup) is a DNA-binding protein that enables tardigrades to tolerate stress conditions, including oxidative stress. We investigated the ability of the Dsup to protect human cells from IRI, using an in vitro model of hypoxia and reoxygenation. We exposed HEK293TT cells transfected with the Dsup to hypoxic injury and analyzed cell viability, oxidative stress, expression of antioxidant proteins using functional assays, and a proteomic approach to dissect the molecular mechanisms modulated by the Dsup. Dsup expression significantly enhanced cell survival following hypoxia-reoxygenation and markedly reduced intracellular ROS levels. Proteomic and Western blot analyses revealed a significant upregulation of antioxidant enzymes in Dsup-expressing cells. Furthermore, the Dsup modulated autophagy and key stress-related pathways, including the MAPK cascade. This study demonstrates that the Dsup protects human cells from IRI by reducing oxidative stress and modulating key cytoprotective pathways. Our results establish the Dsup as a promising candidate for future therapeutic applications against IRI, meriting further exploration in in vivo models. Full article
(This article belongs to the Special Issue Programmed Cell Death and Oxidative Stress: 3rd Edition)
Show Figures

Figure 1

17 pages, 2190 KB  
Article
Lidocaine Attenuates miRNA Dysregulation and Kinase Signaling Activation in a Porcine Model of Lung Ischemia/Reperfusion Injury
by Alberto Alonso, Sergio D. Paredes, Agustín Turrero, Lisa Rancan, Ignacio Garutti, Carlos Simón and Elena Vara
Int. J. Mol. Sci. 2025, 26(21), 10385; https://doi.org/10.3390/ijms262110385 - 25 Oct 2025
Viewed by 164
Abstract
Ischemia/reperfusion (I/R) injury is a major complication in lung transplantation. Recent evidence suggests that mitogen-activated protein kinases (MAPKs) such as p-38 mitogen-activated protein kinase (p-38 MAPK) and extracellular signal-regulated kinase (ERK), along with functionally related kinases like phosphoinositide 3-kinase (PI3K) and protein kinase [...] Read more.
Ischemia/reperfusion (I/R) injury is a major complication in lung transplantation. Recent evidence suggests that mitogen-activated protein kinases (MAPKs) such as p-38 mitogen-activated protein kinase (p-38 MAPK) and extracellular signal-regulated kinase (ERK), along with functionally related kinases like phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT), contribute to I/R pathophysiology by mediating inflammatory and stress-response signaling. MicroRNAs (miRNAs) also play a regulatory role in these processes. Lidocaine has demonstrated anti-inflammatory activity in several tissues; however, its ability to modulate miRNA expression and kinase activation in the lung is not yet fully understood. This study investigated the involvement of these signaling molecules in lung I/R injury and evaluated the modulatory effect of intravenous lidocaine in a porcine lung auto-transplantation model. Eighteen large white pigs were assigned to sham-operated (n = 6), control (lung auto-transplantation, n = 6), or lidocaine-treated (n = 6) groups. Lidocaine was administered as a 1.5 mg/kg bolus followed by a continuous infusion (1.5 mg·kg−1·h−1). Lung biopsies were collected before ischemia, before reperfusion, and at 30- and 60-min post-reperfusion to assess total and phosphorylated levels of p-38 MAPK, ERK, PI3K, and AKT (Thr308, Ser473), along with miR-126, miR-142-5p, miR-152, and miR-155 expression. I/R increased p-38 MAPK and AKT, and enhanced phosphorylation of all four kinases. miRNA levels were also upregulated. Lidocaine partially or completely attenuated these changes. These findings support a role for these molecular pathways in lung I/R injury and suggest that lidocaine may offer protective effects through their modulation. Full article
(This article belongs to the Special Issue New Molecular Insights into Ischemia/Reperfusion: 2nd Edition)
Show Figures

Graphical abstract

36 pages, 15614 KB  
Article
Non-Competitive AMPA Receptor Antagonist Perampanel Inhibits Ischemia-Induced Neurodegeneration and Behavioral Deficits in Focal Cortical Pial Vessel Disruption Stroke Model
by Michael G. Zaki, Mohamed Taha Moutaoufik, Mahboubeh Pordeli, Mohan Babu, Changiz Taghibiglou and Francisco S. Cayabyab
Cells 2025, 14(20), 1628; https://doi.org/10.3390/cells14201628 - 19 Oct 2025
Viewed by 957
Abstract
Glutamate receptors represent a potential target for neuroprotection in neurodegenerative neurological conditions. Perampanel, a non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, is clinically approved for the management of epilepsy. Perampanel’s neuroprotective effects have been reported in global and focal cerebral ischemia models, but the [...] Read more.
Glutamate receptors represent a potential target for neuroprotection in neurodegenerative neurological conditions. Perampanel, a non-competitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor (AMPAR) antagonist, is clinically approved for the management of epilepsy. Perampanel’s neuroprotective effects have been reported in global and focal cerebral ischemia models, but the cellular mechanisms remain incompletely understood. Therefore, we studied the potential neuroprotective effects of perampanel in rats using the pial vessel disruption (PVD) stroke model, an established focal cortical non-reperfusion ischemic stroke model. Perampanel was given once intraperitoneally (3 mg/kg body weight) 1 h after PVD surgery and repeated on days 2–3 post-surgery. On the fourth day post PVD, animal behavioral assays and imaging, biochemical, and electrophysiological analyses were performed. Compared to vehicle control, perampanel in PVD-treated rats significantly inhibited hippocampal neurodegeneration and long-term potentiation deficits. Perampanel also attenuated PVD-induced motor deficits, depressive/anxiety-like behaviors, and hippocampal-dependent cognitive impairment. In addition, perampanel prevented the PVD-induced downregulation of surface-expressed GluA1 and GluA2 AMPARs and increased phosphorylation of GluA1 at S831 and S845. Molecular docking analysis revealed perampanel binding to transmembrane regions M1, M3 and M4 of GluA1 and GluA2 subunits. Together, our results show that perampanel attenuated PVD-induced neurodegeneration and behavioral deficits by blocking AMPARs and decreasing GluA1 and GluA2 internalization. In addition, this study shows the neuroprotective potential of perampanel through the inhibition of neuroinflammation mediated by activated microglia and astrocytes following cerebral ischemia. This study is the first to evaluate perampanel in the pial vessel disruption model of ischemia without reperfusion, a clinically relevant stroke paradigm that differs fundamentally from middle cerebral carotid artery occlusion and photothrombosis stroke models. Full article
Show Figures

Figure 1

27 pages, 2710 KB  
Review
Hepatoprotective Effect of Silymarin Herb in Prevention of Liver Dysfunction Using Pig as Animal Model
by Prarthana Sharma, Varun Asediya, Garima Kalra, Sharmin Sultana, Nihal Purohit, Kamila Kibitlewska, Wojciech Kozera, Urszula Czarnik, Krzysztof Karpiesiuk, Marek Lecewicz, Paweł Wysocki, Adam Lepczyński, Małgorzata Ożgo, Marta Marynowska, Agnieszka Herosimczyk, Elżbieta Redlarska, Brygida Ślaska, Krzysztof Kowal, Angelika Tkaczyk-Wlizło, Paweł Grychnik, Athul P. Kurian, Kaja Ziółkowska-Twarowska, Katarzyna Chałaśkiewicz, Katarzyna Kępka-Borkowska, Ewa Poławska, Magdalena Ogłuszka, Rafał R. Starzyński, Hiroaki Taniguchi, Chandra Shekhar Pareek and Mariusz Pierzchałaadd Show full author list remove Hide full author list
Nutrients 2025, 17(20), 3278; https://doi.org/10.3390/nu17203278 - 18 Oct 2025
Viewed by 733
Abstract
Silymarin, a flavonolignan-rich extract of Silybum marianum, is widely recognized for its hepatoprotective potential. While rodent studies predominate, pigs (Sus scrofa) offer a more translationally relevant model due to their hepatic architecture, bile acid composition, and transporter expression, which closely [...] Read more.
Silymarin, a flavonolignan-rich extract of Silybum marianum, is widely recognized for its hepatoprotective potential. While rodent studies predominate, pigs (Sus scrofa) offer a more translationally relevant model due to their hepatic architecture, bile acid composition, and transporter expression, which closely resemble those of humans. This narrative review synthesises current evidence on the chemistry, pharmacokinetics, biodistribution, and hepatoprotective activity of silymarin in porcine models. Available studies demonstrate that when adequate intrahepatic exposure is achieved, particularly through optimised formulations, silymarin can attenuate oxidative stress, suppress inflammatory signalling, stabilise mitochondria, and modulate fibrogenic pathways. Protective effects have been reported across diverse porcine injury paradigms, including toxin-induced necrosis, ethanol- and diet-associated steatosis, metabolic dysfunction, ischemia–reperfusion injury, and partial hepatectomy. However, the evidence base remains limited, with few long-term studies addressing fibrosis or regeneration, and methodological heterogeneity complicates the comparison of data across studies. Current knowledge gaps in silymarin research include inconsistent chemotype characterization among plant sources, limited reporting of unbound pharmacokinetic parameters, and variability in histological scoring criteria across studies, which collectively hinder cross-study comparability and mechanistic interpretation. Advances in analytical chemistry, transporter biology, and formulation design are beginning to refine the interpretation of exposure–response relationships. Advances in analytical chemistry, transporter biology, and formulation design are beginning to refine the interpretation of exposure–response relationships. In parallel, emerging computational approaches, including machine-learning-assisted chemotype fingerprinting, automated histology scoring, and Bayesian exposure modeling, are being explored as supportive tools to enhance reproducibility and translational relevance; however, these frameworks remain exploratory and require empirical validation, particularly in modeling enterohepatic recirculation. Collectively, current porcine evidence supports silymarin as a context-dependent yet credible hepatoprotective agent, highlighting priorities for future research to better define its therapeutic potential in clinical nutrition and veterinary practice. Full article
Show Figures

Graphical abstract

14 pages, 14328 KB  
Article
Evaluation of Emerging Technologies to Aid in the Detection and Diagnosis of Acute Extremity Compartment Syndrome
by Catharina Gaeth, Daniel J. Cognetti, Stefanie M. Shiels, Kinton Armmer, Amber M. Powers, Robert V. Hainline, Thomas J. Walters and Robert J. Moritz
Diagnostics 2025, 15(20), 2607; https://doi.org/10.3390/diagnostics15202607 - 16 Oct 2025
Viewed by 351
Abstract
Background/Objectives: The diagnosis of acute compartment syndrome (ACS) of the extremities is typically based on subjective clinical signs and symptoms, highlighting the need for user-friendly diagnostic tools to improve accuracy and reliability. This study evaluates the performance of two commercial devices, the [...] Read more.
Background/Objectives: The diagnosis of acute compartment syndrome (ACS) of the extremities is typically based on subjective clinical signs and symptoms, highlighting the need for user-friendly diagnostic tools to improve accuracy and reliability. This study evaluates the performance of two commercial devices, the MY01® continuous pressure monitoring system and the Moxy Monitor near-infrared spectroscopy-based system, against a reference standard of continuous intracompartmental pressure (ICP) monitoring in a preclinical ACS model. Methods: ACS was induced in the anterior compartment of the distal hind limb in eight Yorkshire pigs using a balloon displacement model. ICP was incrementally elevated and maintained for four hours at >30 mmHg above mean arterial pressure. This was followed by balloon deflation and reperfusion. Final assessments were performed at 24 h post-injury. ICP measurements from the MY01® and muscle oxygen saturation (SmO2) data from the Moxy Monitor were compared to reference ICP measurements. Histologic analysis of muscle tissue was performed to assess the severity of necrosis. Results: The MY01® provided accurate ICP measurements, with a mean bias of 2.21 ± 18.77 mmHg during pre-ischemia, 4.86 ± 10.43 mmHg during reperfusion, and 4.69 ± 3.28 mmHg 24 h post-injury, compared to reference probes. Correlation at 24 h post-injury was (r = 0.86, R2 = 0.73, p < 0.0001). In contrast, the Moxy Monitor failed to detect significant differences in SmO2 between injured and control limbs at 24 h post-injury, despite pronounced ICP differences. Our volumetric displacement ACS model demonstrated its efficacy as a testing platform by allowing for controlled, incremental elevation in ICP and sustaining elevated ICP levels after 24 h. Histologic evaluation confirmed extensive muscle damage, including edema and necrosis. Conclusions: The MY01® provides accurate, continuous ICP monitoring, supporting its clinical utility in ACS diagnosis. However, the use of near-infrared spectroscopy-based systems such as the Moxy Monitor for ACS diagnosis and management should continue to be critically scrutinized. Full article
(This article belongs to the Section Point-of-Care Diagnostics and Devices)
Show Figures

Figure 1

25 pages, 6473 KB  
Article
Intestinal Ischemia/Reperfusion Injury Influences Hyaluronan Homeostasis in the Rat Brain
by Annalisa Bosi, Nicolò Baranzini, Alessandra Ponti, Paola Moretto, Elisabetta Moro, Francesca Crema, Rossella Cianci, Evgenia Karousou, Manuela Viola, Alberto Passi, Davide Vigetti, Andreina Baj, Annalisa Grimaldi, Paolo Severgnini and Cristina Giaroni
Int. J. Mol. Sci. 2025, 26(20), 10064; https://doi.org/10.3390/ijms262010064 - 16 Oct 2025
Viewed by 249
Abstract
Intestinal ischemia and reperfusion injury (IRI) can lead to multiple organ dysfunction, including the central nervous system (CNS), where a neuroinflammatory response may develop. Hyaluronan, a glycosaminoglycan component of the extracellular matrix, has been shown to modulate enteric neuronal and immune function during [...] Read more.
Intestinal ischemia and reperfusion injury (IRI) can lead to multiple organ dysfunction, including the central nervous system (CNS), where a neuroinflammatory response may develop. Hyaluronan, a glycosaminoglycan component of the extracellular matrix, has been shown to modulate enteric neuronal and immune function during in vivo IRI in the rat small intestine. The aim of this study was to investigate the potential involvement of hyaluronan in the alterations induced by in vivo intestinal IRI in the rat hippocampus and striatum. Mesenteric ischemia was induced in anesthetized adult male rats for 60 min, followed by 24 h of reperfusion. Injured (IRI group), sham-operated (SHAM group), and non-injured (CTR group) animals were treated with the hyaluronan synthesis inhibitor 4-methylumbelliferone (4-MU; 25 mg/kg). In the hippocampus and striatum of the IRI group, levels of both hyaluronan and neurocan, a proteoglycan primarily found in the central nervous system extracellular matrix, as well as the hyaluronan synthesizing enzyme Has2, were significantly downregulated compared to the CTR and SHAM groups. These changes were associated with alterations in the TLR4-NFκB-pIκB pathway, with the effects being more prominent in the hippocampus than in the striatum. Increased levels of IL6, co-localizing with the microglial marker S100β, were observed in both regions and were attenuated by 4-MU only in the hippocampus. Overall, these findings suggest that intestinal IRI may disrupt extracellular matrix homeostasis and induce hyaluronan-mediated enhancement of local proinflammatory signaling, primarily involving IL6 and microglial cells, mainly in the hippocampus. Such changes may contribute to the development of cognitive deficits and memory dysfunction associated with intestinal IRI. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 1059 KB  
Review
Non-Protein-Coding RNA and Acute Kidney Injury: New Developments from Pathogenesis to Potential Biomarker
by Grazia Maria Virzì, Anna Clementi, Monica Zanella and Claudio Ronco
Genes 2025, 16(10), 1194; https://doi.org/10.3390/genes16101194 - 13 Oct 2025
Viewed by 403
Abstract
Acute Kidney Injury (AKI) is a critical medical condition characterized by a sudden and significant decline in renal function over a short timeframe. Commonly triggered by factors such as sepsis, ischemia–reperfusion injury, or nephrotoxic agents, AKI is linked to substantial rates of morbidity [...] Read more.
Acute Kidney Injury (AKI) is a critical medical condition characterized by a sudden and significant decline in renal function over a short timeframe. Commonly triggered by factors such as sepsis, ischemia–reperfusion injury, or nephrotoxic agents, AKI is linked to substantial rates of morbidity and mortality. In recent years, small non-coding RNAs have gained attention as promising biomarkers for the early diagnosis and potential treatment of AKI. Among them, microRNAs (miRNAs)—short RNA sequences of 21–25 nucleotides that regulate gene expression via sequence-specific binding—stand out due to their remarkable stability in biological fluids such as plasma and urine. Notably, certain miRNAs, including miR-21, miR-30, miR-494, and miR-29, have shown the ability to detect AKI earlier than traditional biomarkers like serum creatinine, offering the potential to enhance clinical decision-making. This narrative review aims to provide a comprehensive overview of the recent findings regarding the involvement of non-coding RNA, in particular microRNAs, in both the early diagnosis and therapeutic strategies for AKI. By highlighting their potential as sensitive biomarkers and novel treatment targets, this review seeks to contribute to advancing clinical approaches that improve patient outcomes. Ultimately, a deeper understanding and utilization of microRNAs could lead to the development of new diagnostic tools and targeted therapies for AKI, helping to prevent progression to chronic kidney disease and reduce associated mortality rates. However, further clinical studies and translational applications are still needed to validate these findings and implement them in patient care. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

18 pages, 3817 KB  
Article
Melatonin Protects Intact Rat Ovarian Transplantation via the MT1/Nrf2/ARE Pathway
by Lingyun Xie, Shanshan Wang, Yuling Wu, Xuyin Zhang and Yan Ding
Cells 2025, 14(20), 1588; https://doi.org/10.3390/cells14201588 - 13 Oct 2025
Viewed by 438
Abstract
Cryopreservation and transplantation of intact ovaries offer a promising approach to fertility restoration in cancer patients. However, ischemia–reperfusion injury following transplantation significantly impairs graft function. This study aimed to evaluate the protective effects of melatonin and elucidate its underlying mechanisms of action, including [...] Read more.
Cryopreservation and transplantation of intact ovaries offer a promising approach to fertility restoration in cancer patients. However, ischemia–reperfusion injury following transplantation significantly impairs graft function. This study aimed to evaluate the protective effects of melatonin and elucidate its underlying mechanisms of action, including antioxidant and anti-inflammatory properties. Intact ovaries from 8 to 12-week-old LEWIS rats were cryopreserved and subsequently transplanted. Melatonin (25 mg/kg and 50 mg/kg) was administered daily from day 1 to day 4 postoperatively. Estrous cycle recovery and ovarian histology were examined, along with measurements of hormone concentrations, antioxidant activity, and inflammatory mediators. The oxidative stress response, particularly the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway—including Nrf2, Kelch-like ECH-associated protein 1 (Keap1), and sMafg—was investigated to elucidate melatonin’s protective mechanisms. The roles of melatonin receptors and Nrf2 were investigated using specific receptor antagonists (Luzindole, 4P-PDOT) and an inhibitor (ML385) to confirm the involvement of the MT1/Nrf2/ARE pathway. As a result, rats treated with high-dose melatonin (50 mg/kg) exhibited accelerated estrous cycle recovery, reduced follicular loss, improved serum hormone levels, enhanced antioxidant capacity in serum and ovarian tissue, and decreased levels of inflammatory cytokines. Furthermore, melatonin exerted its antioxidant and anti-inflammatory effects through activation of the Nrf2/ARE signaling pathway via the MT1 receptor. These protective effects were abolished by the inhibition of either Nrf2 or MT1 receptor. In conclusion, these findings demonstrate that melatonin mitigates oxidative stress and inflammatory damage in intact transplanted ovaries through the MT1/Nrf2/ARE signaling axis, thereby preserving ovarian function post-transplantation. Full article
Show Figures

Figure 1

20 pages, 632 KB  
Review
Cardioprotective Mechanisms of Beta-Blockers in Myocardial Ischemia and Reperfusion: From Molecular Targets to Clinical Implications
by Athina Nasoufidou, Marios G. Bantidos, Barbara Fyntanidou, Christos Kofos, Panagiotis Stachteas, Alexandra Arvanitaki, Paschalis Karakasis, Marios Sagris, George Kassimis, Nikolaos Fragakis and Efstratios Karagiannidis
Int. J. Mol. Sci. 2025, 26(20), 9843; https://doi.org/10.3390/ijms26209843 - 10 Oct 2025
Viewed by 605
Abstract
Ischemic heart disease remains the leading cause of death despite substantial advances in diagnosis, revascularization therapies, and risk-factor control. Beta-adrenergic receptor blockers (Beta-Blockers, BBs), long used to control heart rate, blood pressure, and reduce arrhythmic risk, may also confer cardioprotection through mechanisms beyond [...] Read more.
Ischemic heart disease remains the leading cause of death despite substantial advances in diagnosis, revascularization therapies, and risk-factor control. Beta-adrenergic receptor blockers (Beta-Blockers, BBs), long used to control heart rate, blood pressure, and reduce arrhythmic risk, may also confer cardioprotection through mechanisms beyond hemodynamic unloading. This review integrates an extensive range of preclinical, translational, and clinical studies to present a comprehensive overview of the cardioprotective effects of BBs in the context of myocardial ischemia and reperfusion injury. Mechanistic domains include modulation of redox homeostasis, attenuation of inflammation and neutrophil activation, preservation of mitochondrial integrity and anti-apoptotic signaling, improvement of endothelial function, and stabilization of calcium handling. Third-generation compounds, carvedilol and nebivolol, demonstrate additional antioxidant and vasodilatory benefits compared with first- and second-generation agents; however, no consistent class-wide effect exists across most pathways. The evidence base remains fragmented, often derived from agent- or context-specific studies in heterogeneous populations, with uncertainty surrounding optimal timing of intervention. By bridging mechanistic understanding with clinical outcomes, this review highlights the importance of standardized assessment of BB effects, the development of personalized treatment approaches, and the pursuit of future research to address ongoing translational gaps. Full article
Show Figures

Figure 1

22 pages, 5859 KB  
Article
miR-21-5p Alleviates Retinal Ischemia–Reperfusion Injury by Inhibiting M1 Polarization of Microglia via Suppression of STAT3 Signaling
by Liangshi Qin, Junle Liao, Cheng Tan, Can Liu, Wenjia Shi and Dan Chen
Biomedicines 2025, 13(10), 2456; https://doi.org/10.3390/biomedicines13102456 - 9 Oct 2025
Viewed by 393
Abstract
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator [...] Read more.
Background/Objectives: Retinal ischemia–reperfusion (I/R) injury is a common mechanism in glaucoma, diabetic retinopathy, and retinal vein occlusion, leading to progressive loss of retinal ganglion cells (RGCs). This study investigates the regulatory role of miR-21-5p and its interaction with Signal Transducer and Activator of Transcription 3 (STAT3) in retinal I/R injury. Methods: An acute intraocular hypertension (AIH) rat model was used to induce retinal I/R. The interaction between miR-21-5p and STAT3 was examined by dual-luciferase reporter assays. miR-21-5p and STAT3 expression were quantified by qRT-PCR and Western blotting. Retinal morphology, microglial polarization, and RGC survival were assessed by H&E staining and immunofluorescence. In vitro, microglia and RGCs were subjected to oxygen–glucose deprivation/reperfusion (OGD/R), and microglial-conditioned media (MCM) were applied to RGCs. Results: (1) miR-21-5p ameliorated AIH-induced retinal damage in vivo. (2) Overexpression of miR-21-5p inhibits M1 polarization of RM cultured in vitro. (3) MCM from miR-21-5p-overexpressing microglia attenuated OGD/R-induced RGC death. (4) miR-21-5p downregulates STAT3 expression to inhibit RM M1 polarization. (5) miR-21-5p down-regulation of STAT3 levels inhibits M1 polarization and reduces apoptosis of RGCs in retinal microglia of AIH rats. Conclusions: miR-21-5p alleviates retinal I/R injury by restraining microglial M1 polarization through direct repression of STAT3, thereby promoting RGC survival. These findings identify the miR-21-5p/STAT3 axis as a potential therapeutic target for ischemic retinal diseases. Full article
Show Figures

Figure 1

21 pages, 12223 KB  
Article
Long Non-Coding RNA 1810026B05Rik Mediates Cerebral Ischemia/Reperfusion-Induced Neuronal Injury Through NF-κB Pathway Activation
by Hao Zhang, Meng Li, Jiayu Yao, Xuan Jiang, Junxiao Feng, Xingjuan Shi and Xiaoou Sun
Int. J. Mol. Sci. 2025, 26(19), 9756; https://doi.org/10.3390/ijms26199756 - 7 Oct 2025
Viewed by 435
Abstract
Cerebral ischemia/reperfusion (I/R) injury remains a significant contributor to adult neurological morbidity, primarily due to exacerbated neuroinflammation and cell apoptosis. These processes amplify brain damage through the release of various pro-inflammatory cytokines and pro-apoptotic mediators. Although long non-coding RNAs (lncRNAs) are increasingly recognized [...] Read more.
Cerebral ischemia/reperfusion (I/R) injury remains a significant contributor to adult neurological morbidity, primarily due to exacerbated neuroinflammation and cell apoptosis. These processes amplify brain damage through the release of various pro-inflammatory cytokines and pro-apoptotic mediators. Although long non-coding RNAs (lncRNAs) are increasingly recognized for their involvement in regulating diverse biological pathways, their precise role in cerebral I/R injury has not been fully elucidated. In the current study, transcriptomic profiling was conducted using a rat model of focal cerebral I/R, leading to the identification of lncRNA-1810026B05Rik—also referred to as CHASERR—as a novel lncRNA responsive to ischemic conditions. The elevated expression of this lncRNA was observed in mouse brain tissues subjected to middle cerebral artery occlusion followed by reperfusion (MCAO/R), as well as in primary cortical neurons derived from rats exposed to oxygen-glucose deprivation and subsequent reoxygenation (OGD/R). The results suggested that lncRNA-1810026B05RiK mediates the activation of the nuclear factor-kappaB (NF-κB) signaling pathway by physically binding to NF-kappa-B inhibitor alpha (IκBα) and promoting its phosphorylation, thus leading to neuroinflammation and neuronal apoptosis during cerebral ischemia/reperfusion. In addition, lncRNA-1810026B05Rik knockdown acts as an NF-κB inhibitor in the OGD/R and MCAO/R pathological processes, suggesting that lncRNA-1810026B05Rik downregulation exerts a protective effect on cerebral I/R injury. In summary, the lncRNA-1810026B05Rik has been identified as a critical regulator of neuronal apoptosis and inflammation through the activation of the NF-κB signaling cascade. This discovery uncovers a previously unrecognized role of 1810026B05Rik in the molecular mechanisms underlying ischemic stroke, offering valuable insights into disease pathology. Moreover, its involvement highlights its potential as a novel therapeutic target, paving the way for innovative treatment strategies for stroke patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

26 pages, 2711 KB  
Review
Organ-Specific Extracellular Vesicles in the Treatment of Ischemic Acute Organ Injury: Mechanisms, Successes, and Prospects
by Irina B. Pevzner, Nadezda V. Andrianova, Anna K. Lomakina, Kseniia S. Cherkesova, Elizaveta D. Semenchenko and Egor Y. Plotnikov
Int. J. Mol. Sci. 2025, 26(19), 9709; https://doi.org/10.3390/ijms26199709 - 6 Oct 2025
Viewed by 770
Abstract
Ischemia–reperfusion (I/R) injury is a complex pathological process underlying numerous acute organ failures and is a significant cause of morbidity and mortality in diseases such as myocardial infarction, stroke, thrombosis, and organ transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have demonstrated considerable [...] Read more.
Ischemia–reperfusion (I/R) injury is a complex pathological process underlying numerous acute organ failures and is a significant cause of morbidity and mortality in diseases such as myocardial infarction, stroke, thrombosis, and organ transplantation. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have demonstrated considerable therapeutic potential, but their broad tropism and general repair signaling may limit their efficacy. This review addresses the emerging paradigm of using organ-specific EVs for the treatment of I/R injury in the respective organs. We summarize the existing studies performed on experimental animals showing that these native EVs could possess tissue tropism and carry a specialized cargo of proteins, miRNAs, and lipids tailored to the unique regenerative needs of their organ of origin, enabling them to precisely modulate key processes, including inflammation, apoptosis, oxidative stress, and angiogenesis. However, their clinical translation faces challenges related to scalable production, standardization, and the dualistic nature of their effects, which can be either protective or detrimental, depending on the cellular source and pathophysiological context. Future developments need to focus on overcoming these obstacles through rigorous isolation protocols, engineering strategies such as cargo enrichment and hybrid vesicle creation, and validation in large-animal models. Overall, organ-specific EVs offer a novel, cell-free therapeutic strategy with the potential to significantly improve outcomes in I/R injury. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1926 KB  
Review
Cardiovascular Effects of Cannabidiol: From Molecular Mechanisms to Clinical Implementation
by Hrvoje Urlić, Marko Kumrić, Nikola Pavlović, Goran Dujić, Željko Dujić and Joško Božić
Int. J. Mol. Sci. 2025, 26(19), 9610; https://doi.org/10.3390/ijms26199610 - 1 Oct 2025
Viewed by 852
Abstract
Cannabidiol (CBD) and other phytocannabinoids are gaining attention for their therapeutic potential in cardiovascular disease (CVD), the world’s leading cause of death. This review highlights advances in understanding the endocannabinoid system, including CB1 and CB2 receptors, and the mechanisms by which CBD exerts [...] Read more.
Cannabidiol (CBD) and other phytocannabinoids are gaining attention for their therapeutic potential in cardiovascular disease (CVD), the world’s leading cause of death. This review highlights advances in understanding the endocannabinoid system, including CB1 and CB2 receptors, and the mechanisms by which CBD exerts anti-inflammatory, antioxidative, vasoprotective, and immunomodulatory effects. Preclinical and translational studies indicate that selective activation of CB2 receptors may attenuate atherogenesis, limit infarct size in ischemia–reperfusion injury, decrease oxidative stress, and lessen chronic inflammation, while avoiding the psychotropic effects linked to CB1. CBD also acts on multiple molecular targets beyond the CB receptors, affecting redox-sensitive transcription factors, vascular tone, immune function, and endothelial integrity. Early clinical trials and observational studies suggest that CBD may lower blood pressure, improve endothelial function, and reduce sympatho-excitatory peptides such as catestatin, with a favorable safety profile. However, limited bioavailability, small sample sizes, short study durations, and uncertainty about long-term safety present challenges to its clinical use. Further research is needed to standardize dosing, refine receptor targeting, and clarify the role of the endocannabinoid system in cardiovascular health. Overall, current evidence supports CBD’s promise as an adjunct in CVD treatment, but broader clinical use requires more rigorous, large-scale studies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 2416 KB  
Article
Reduced Expression of Selected Exosomal MicroRNAs Is Associated with Poor Outcomes in Patients with Acute Stroke Receiving Reperfusion Therapy—Preliminary Study
by Daria Gendosz de Carrillo, Olga Kocikowska, Aleksandra Krzan, Sebastian Student, Małgorzata Rak, Magdalena Nowak-Andraka, Junqiao Mi, Małgorzata Burek, Anetta Lasek-Bal and Halina Jędrzejowska-Szypułka
Int. J. Mol. Sci. 2025, 26(19), 9533; https://doi.org/10.3390/ijms26199533 - 29 Sep 2025
Viewed by 635
Abstract
Reperfusion therapy uses thrombolysis and clot removal to restore blood flow in the brain after stroke; however, three months after reperfusion therapy, roughly 46% of stroke patients become independent again. MiRNAs (micro RNA) regulate cerebral ischemia/reperfusion injury, and their transfer between cells via [...] Read more.
Reperfusion therapy uses thrombolysis and clot removal to restore blood flow in the brain after stroke; however, three months after reperfusion therapy, roughly 46% of stroke patients become independent again. MiRNAs (micro RNA) regulate cerebral ischemia/reperfusion injury, and their transfer between cells via exosomes may differentially affect recipient cells. We examined serum exosomal miRNA levels, stroke treatments, and functional outcomes in stroke patients, and we explored the potential role of estimated differentially expressed miRNA (DEmiRNA) target genes in the brain’s reaction to reperfusion after ischemia. The patients in the study received aspirin or reperfusion therapy with either intravenous thrombolysis (rt-PA), mechanical thrombectomy (MT), or a combination of both (rt-PA/MT). Serum samples were collected from stroke patients on days 1 and 10 post-stroke. Serum exosomes’ miRNA was analyzed using qRT-PCR. We identified DEmiRNAs, estimated their targets, and performed enrichment analysis. Functional outcomes were assessed using the modified Rankin Scale (mRS) on days 10 and 90 post-stroke. Among studied treatments, only rt-PA/MT lowered DEmiRNA by day 10 vs. other groups. Specifically, patients with unfavorable mRS score exhibited decreased levels of miR-17, miR-20, miR-186 and miR-222 after combined stroke therapy. Functional analysis identified target genes and pathways associated with cytoskeleton remodeling, cell death, autophagy, inflammation, and dementia. In conclusion, unfavorable stroke outcomes following poor rt-PA/MT response could result from lower miRNA expression levels, thus activating cell death and neurodegenerative processes in brain. Full article
Show Figures

Figure 1

Back to TopTop