Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = iron rim

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1274 KiB  
Review
The Role of MRI Lesions in Identifying Secondary Progressive Multiple Sclerosis: A Comprehensive Review
by Robert-Constantin Anicăi, Alin Ciubotaru, Cristina Grosu, Daniel Alexa, Roxana Covali, Ioana Păvăleanu, Andrei Ionuț Cucu, Amelian Mădălin Bobu, Cristina Mihaela Ghiciuc, Maria Magdalena Leon, Alexandra Maștaleru and Emilian Bogdan Ignat
J. Clin. Med. 2025, 14(12), 4114; https://doi.org/10.3390/jcm14124114 - 10 Jun 2025
Viewed by 781
Abstract
Secondary Progressive Multiple Sclerosis (SPMS) represents a challenging phase of multiple sclerosis, marked by gradual neurological decline and reduced inflammatory activity. In recent years, magnetic resonance imaging (MRI) has become essential for characterizing the neurodegenerative changes underlying SPMS, including white and gray matter [...] Read more.
Secondary Progressive Multiple Sclerosis (SPMS) represents a challenging phase of multiple sclerosis, marked by gradual neurological decline and reduced inflammatory activity. In recent years, magnetic resonance imaging (MRI) has become essential for characterizing the neurodegenerative changes underlying SPMS, including white and gray matter damage, brain atrophy, slowly expanding lesions, and iron rim lesions. This narrative review aims to synthesize the current knowledge on established and emerging MRI biomarkers relevant to SPMS, with a particular focus on their diagnostic, prognostic, and therapeutic implications. This review discusses key themes, such as the shift from inflammatory to neurodegenerative mechanisms, the role of advanced imaging techniques, and the limitations of conventional MRI in detecting smoldering disease. In doing so, it identifies current gaps in evidence, including the need for standardized imaging protocols and large-scale longitudinal studies. A clearer understanding and application of MRI biomarkers may facilitate earlier diagnosis, more tailored treatment strategies, and improved outcomes in patients with SPMS. Full article
(This article belongs to the Special Issue Multiple Sclerosis: Clinical Advances in Diagnosis and Treatment)
Show Figures

Figure 1

14 pages, 3609 KiB  
Article
Morphology and Composition of Brake Wear Particles Ameliorated by an Alumina Coating Approach
by Ran Cai, Jingzeng Zhang and Xueyuan Nie
Chemistry 2025, 7(2), 60; https://doi.org/10.3390/chemistry7020060 - 4 Apr 2025
Viewed by 801
Abstract
A plasma-assisted electrochemical deposition (PAECD) technology was introduced to coat a cast iron brake disc for the possible reduction of brake wear and brake wear particle (BWP) emission. The majority of the coating consisted of alumina (Al2O3), determined by [...] Read more.
A plasma-assisted electrochemical deposition (PAECD) technology was introduced to coat a cast iron brake disc for the possible reduction of brake wear and brake wear particle (BWP) emission. The majority of the coating consisted of alumina (Al2O3), determined by energy dispersive X-ray (EDX) analysis and X-ray diffraction (XRD) analysis. To validate the above strategy of the coating technology for automotive brake corners, one brake stock rotor was replaced by a PAECD-coated rotor for a vehicle road test. After the road test, weight loss of the brake components (rotors and pads) was measured, showing that the alumina coating can reduce the brake wear by more than 70%. BWPs were also collected from wheel barrels, spokes, and brake friction rings of the coated and uncoated rotors during the road test. A morphology and chemical composition analysis of the collected BWPs indicated that the coating could reduce BWP generation from the original sources and avoid a metal pick-up (MPU) issue, leading to less metallic content in BWPs. This alumina coating may provide the auto sector with a sustainable approach to overcome the brake dust emission problem, evidenced by less wear of the brake pads, minimal wear of the coated brake rotor, less MPUs, and a clean wheel rim on the coated brake corner. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Figure 1

17 pages, 3552 KiB  
Article
Formation of Core-Rim Magnetite with a Carbonaceous Core in Mid-Archean Banded Iron Formation from the Barberton Greenstone Belt, South Africa
by Tatsuro Manabe and Hiromi Konishi
Minerals 2025, 15(3), 218; https://doi.org/10.3390/min15030218 - 24 Feb 2025
Viewed by 765
Abstract
Through the analysis of core-rim magnetite, we demonstrate that the core contains carbonaceous materials (CMs) derived from a 3.2-billion-year-old banded iron formation within the Barberton Greenstone Belt in South Africa. Using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy, we establish a [...] Read more.
Through the analysis of core-rim magnetite, we demonstrate that the core contains carbonaceous materials (CMs) derived from a 3.2-billion-year-old banded iron formation within the Barberton Greenstone Belt in South Africa. Using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy, we establish a direct association between these CMs and the magnetite. Although the possibility that CMs formed from the hydrothermal decomposition of siderite cannot be ruled out, several lines of evidence indicate a likely microbial origin for the CMs. Firstly, Raman spectroscopy reveals that the CMs exhibit characteristics of low-maturity biogenic organic matter (OM) featuring aliphatic carbon chains, which supports the notion that organic carbon compounds mature during burial metamorphism at temperatures below approximately 200 °C. Secondly, phosphorus and sulfur detected in the CMs suggest a microbial origin. Lastly, the formation of the unique texture of core-rim magnetite can be conceptualized as follows: Fe2+ is oxidized through anoxygenic photosynthesis, leading to the precipitation of ferrihydrite. This ferrihydrite is then transformed into magnetite by iron-reducing microorganisms. Subsequently, the magnetite grows larger through oriented attachment, which also confines OM. Ultimately, smooth magnetite rims may have preserved the OM for up to 3.2 billion years. Full article
(This article belongs to the Special Issue Microbial Biomineralization and Organimineralization)
Show Figures

Figure 1

27 pages, 8131 KiB  
Article
Formation Conditions of Unusual Extremely Reduced High-Temperature Mineral Assemblages in Rocks of Combustion Metamorphic Complexes
by Igor S. Peretyazhko and Elena A. Savina
Crystals 2024, 14(12), 1052; https://doi.org/10.3390/cryst14121052 - 3 Dec 2024
Cited by 1 | Viewed by 1170
Abstract
New data, including Raman spectroscopy, characterize unusual mineral assemblages from rocks of the Naylga and Khamaryn–Khyral–Khiid combustion metamorphic complexes in Mongolia. Several samples of melilite–nepheline paralava and other thermally altered (metamorphosed) sedimentary rocks contain troilite (FeS), metallic iron Fe0, kamacite α-(Fe,Ni) [...] Read more.
New data, including Raman spectroscopy, characterize unusual mineral assemblages from rocks of the Naylga and Khamaryn–Khyral–Khiid combustion metamorphic complexes in Mongolia. Several samples of melilite–nepheline paralava and other thermally altered (metamorphosed) sedimentary rocks contain troilite (FeS), metallic iron Fe0, kamacite α-(Fe,Ni) or Ni-bearing Fe0, taenite γ-(Fe,Ni) or Ni-rich Fe0, barringerite or allabogdanite Fe2P, schreibersite Fe3P, steadite Fe4P = eutectic α-Fe + Fe3P, wüstite FeO, and cohenite Fe3C. The paralava matrix includes a fragment composed of magnesiowüstite–ferropericlase (FeO–MgO solid solution), as well as of spinel (Mg,Fe)Al2O4 and forsterite. The highest-temperature mineral assemblage belongs to a xenolithic remnant, possibly Fe-rich sinter, which is molten ash left after underground combustion of coal seams. The crystallization temperatures of the observed iron phases were estimated using phase diagrams for the respective systems: Fe–S for iron sulfides and Fe–P ± C for iron phosphides. Iron monosulfides (high-temperature pyrrhotite) with inclusions of Fe0 underwent solid-state conversion into troilite at 140 °C. Iron phosphides in inclusions from the early growth zone of anorthite–bytownite in melilite–nepheline paralava crystallized from <1370 to 1165 °C (Fe2P), 1165–1048 °C (Fe3P), and <1048 °C (Fe4P). Phase relations in zoned spherules consisting of troilite +Fe0 (or kamacite + taenite) +Fe3P ± (Fe3C, Fe4P) reveal the potential presence of a homogeneous Fe–S–P–C melt at T~1350 °C, which separated into two immiscible melts in the 1350–1250 °C range; namely, a dense Fe–P–C melt in the core and a less dense Fe–S melt in the rim. The melts evolved in accordance with cooling paths in the Fe–S and Fe–P–C phase diagrams. Cohenite and schreibersite in the spherules crystallized between 988 °C and 959 °C. The crystallization temperatures of minerals were used to reconstruct redox patterns with respect to the CCO, IW, IM, and MW buffer equilibria during melting of marly limestone and subsequent crystallization and cooling of melilite–nepheline paralava melts. The origin of the studied CM rocks was explained in a model implying thermal alteration of low-permeable overburden domains in reducing conditions during wild subsurface coal fires, while heating was transferred conductively from adjacent parts of ignited coal seams. The fluid (gas) regime in the zones of combustion was controlled by the CCO buffer at excess atomic carbon. Paralava melts exposed to high-temperature extremely reducing conditions contained droplets of immiscible Fe–S–P–C, Fe–S, Fe–P, and Fe–P–C melts, which then crystallized into reduced mineral assemblages. Full article
(This article belongs to the Collection Topic Collection: Mineralogical Crystallography)
Show Figures

Figure 1

23 pages, 5207 KiB  
Review
Central Vein Sign and Paramagnetic Rim Lesions: Susceptibility Changes in Brain Tissues and Their Implications for the Study of Multiple Sclerosis Pathology
by Carolina de Medeiros Rimkus, Fábio Seiji Otsuka, Douglas Mendes Nunes, Khallil Taverna Chaim and Maria Concepción Garcia Otaduy
Diagnostics 2024, 14(13), 1362; https://doi.org/10.3390/diagnostics14131362 - 27 Jun 2024
Cited by 6 | Viewed by 4695
Abstract
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging [...] Read more.
Multiple sclerosis (MS) is the most common acquired inflammatory and demyelinating disease in adults. The conventional diagnostic of MS and the follow-up of inflammatory activity is based on the detection of hyperintense foci in T2 and fluid-attenuated inversion recovery (FLAIR) magnetic resonance imaging (MRI) and lesions with brain–blood barrier (BBB) disruption in the central nervous system (CNS) parenchyma. However, T2/FLAIR hyperintense lesions are not specific to MS and the MS pathology and inflammatory processes go far beyond focal lesions and can be independent of BBB disruption. MRI techniques based on the magnetic susceptibility properties of the tissue, such as T2*, susceptibility-weighted images (SWI), and quantitative susceptibility mapping (QSM) offer tools for advanced MS diagnostic, follow-up, and the assessment of more detailed features of MS dynamic pathology. Susceptibility-weighted techniques are sensitive to the paramagnetic components of biological tissues, such as deoxyhemoglobin. This capability enables the visualization of brain parenchymal veins. Consequently, it presents an opportunity to identify veins within the core of multiple sclerosis (MS) lesions, thereby affirming their venocentric characteristics. This advancement significantly enhances the accuracy of the differential diagnostic process. Another important paramagnetic component in biological tissues is iron. In MS, the dynamic trafficking of iron between different cells, such as oligodendrocytes, astrocytes, and microglia, enables the study of different stages of demyelination and remyelination. Furthermore, the accumulation of iron in activated microglia serves as an indicator of latent inflammatory activity in chronic MS lesions, termed paramagnetic rim lesions (PRLs). PRLs have been correlated with disease progression and degenerative processes, underscoring their significance in MS pathology. This review will elucidate the underlying physical principles of magnetic susceptibility and their implications for the formation and interpretation of T2*, SWI, and QSM sequences. Additionally, it will explore their applications in multiple sclerosis (MS), particularly in detecting the central vein sign (CVS) and PRLs, and assessing iron metabolism. Furthermore, the review will discuss their role in advancing early and precise MS diagnosis and prognostic evaluation, as well as their utility in studying chronic active inflammation and degenerative processes. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Nervous System Diseases—2nd Edition)
Show Figures

Figure 1

21 pages, 10469 KiB  
Article
Textures and Chemical Compositions of Magnetite from Zhibo Submarine Volcanic Iron Oxide Deposit, Xinjiang, China: Implications for Re-Equilibration Processes
by Yang Wu, Ping Shen, Haoxuan Feng, Changhao Li, Jiayu Zhao, Yaoqing Luo and Wenguang Li
Minerals 2024, 14(6), 548; https://doi.org/10.3390/min14060548 - 26 May 2024
Viewed by 1422
Abstract
The Awulale Iron Metallogenic Belt (AIMB) has developed many medium–large iron deposits, of which the Zhibo iron deposit is selected as the research object in this paper. The Zhibo deposit’s ore primarily consists of magnetite as the main mineral, accompanied by extensive epidotization. [...] Read more.
The Awulale Iron Metallogenic Belt (AIMB) has developed many medium–large iron deposits, of which the Zhibo iron deposit is selected as the research object in this paper. The Zhibo deposit’s ore primarily consists of magnetite as the main mineral, accompanied by extensive epidotization. The mineral assemblage includes diopside, albite, actinolite, epidote, chlorite, K-feldspar, quartz, calcite, chalcopyrite, and pyrite. Magnetite is classified into two groups based on sulfide content and mineral assemblage (MagI for sulfide-free and MagII for sulfide-rich ores). Two-stage mineralization of magnetite has been identified based on mineral assemblages and paragenesis, including the magmatic stage MagI and hydrothermal stage MagII. Mag I shows inhomogeneous backscattered electron (BSE) textures and consists of BSE-light and -dark domains (Mag I-L and MagI-D). Seven subtypes of magnetite have been recognized in this deposit. MagI-L and MagI-D have formed in the magmatic stage and show BSE images in light and dark colors, respectively. MagI-L is anhedral to subhedral and is inclusion-free. MagI-D has mainly replaced MagI-L along fractures and contains inclusions and pores. MagII has formed in the hydrothermal stage and is characterized by coupled dissolution–reprecipitation (DRP) textures. It can be divided into five sub-generations, that is, MagII-1, MagII-2, MagII-3, MagII-L, and MagII-D. MagII-1, MagII-2, and MagII-3 comprise the core–mantle–rim texture, while MagII-L and MagII-D comprise the core–rim texture. MagII-1 is BSE-light and is enriched with inclusions and pores. MagII-2 has partly replaced MagII-1 and exhibits oscillatory zoning under BSE imaging. It also contains inclusions. BSE-light MagII-3 occurs as overgrowth along MagII-2 margins and is inclusion-free. MagI magnetite is enriched with V, Cr, and Ni, whereas MagII is enriched with W, Ta, Nb, Sr, Sb, Sn, Y, Zr, Mg, Al, and Ti, indicating a decreased temperature of magnetite formation. MagI-L crystallizes from the original magma, while MagI-D is formed from the residual magma enriched with incompatible elements. MagII crystallizes from later multiple hydrothermal activities through the dissolution of early magnetite and the re-precipitation of later magnetite or from MagI-D which has later undergone a hydrothermal overprinting process. According to the texture and chemical composition of magnetite from the Zhibo deposit, we suggest that the Zhibo iron deposit was formed from the initial magmatic origin and then underwent a hydrothermal overprinting process. Full article
Show Figures

Figure 1

27 pages, 17693 KiB  
Article
Nb-Ta-Sn Oxides from Lithium-Beryllium-Tantalum Pegmatite Deposits of the Kolmozero–Voronja Belt, NW Russia: Implications for Tracing Ore-Forming Processes and Mineralization Signatures
by Dmitry Zozulya, Lyudmila N. Morozova, Kåre Kullerud and Ayya Bazai
Geosciences 2024, 14(1), 9; https://doi.org/10.3390/geosciences14010009 - 24 Dec 2023
Cited by 2 | Viewed by 2573
Abstract
In this paper we present textural and compositional data for columbite group minerals (CGMs) and associated Nb-Ta-Sn oxides from lithium-beryllium-tantalum pegmatite deposits of the Kolmozero–Voronja belt, NW Russia, with the aim of deciphering these characteristics for minerals from deposits with different mineral signatures [...] Read more.
In this paper we present textural and compositional data for columbite group minerals (CGMs) and associated Nb-Ta-Sn oxides from lithium-beryllium-tantalum pegmatite deposits of the Kolmozero–Voronja belt, NW Russia, with the aim of deciphering these characteristics for minerals from deposits with different mineral signatures and lithium ore grade. Minerals from four deposits, including two of world-class (Kolmozero and Polmostundra), are examined. The main controlling factors for CGM compositional ranges are the diversity and rate of magmatic fractionation, hydrothermal overprint and mineral paragenesis, following the specific geochemical signature of the different pegmatite deposits. CGM from Kolmozero include several mineral species (columbite-(Fe), columbite-(Mn), tantalite-(Fe), and tantalite-(Mn)), showing large compositional variations, mainly controlled by Nb-Ta fractionation (Ta/(Ta + Nb) = 0.16–0.70; Mn/(Mn + Fe) = 0.45–0.63). Textural patterns are various (oscillatory, homogeneous, and patchy); spongy domains and overgrowing Ta-rich rims are also observed somewhere. This indicates the involvement of numerous magmatic and hydrothermal processes. The Polmostundra CGMs are represented by columbite-(Fe) with Ta/(Ta + Nb), ranging from 0.05 to 0.39; some crystals are homogenous, and others present normal, oscillatory, mottled and reverse-zoning patterns. The Okhmylk CGMs are irregular normal, patchy and homogeneous columbite-(Fe) and columbite-(Mn), with Ta/(Ta + Nb) = 0.09–0.24 and Mn/(Mn + Fe) = 0.29–0.92, indicating the suppressed magmatic fractionation and iron drop due to precipitation of Fe minerals. Columbite-(Fe) and columbite-(Mn) from the Be-Ta Shongui deposit are less evolved, with Ta/(Ta + Nb) = 0.07–0.23 and Mn/(Mn + Fe) = 0.31–0.55. The minerals are characterized by progressive normal, oscillatory, homogeneous and irregular reverse patterns. Associated pyrochlore minerals occur both as early magmatic (Kolmozero) and late hydrothermal (Polmostundra, Okhmylk). Cassiterite is found only in the Okhmylk dykes, and is apparently of hydrothermal origin. CGM from Li pegmatites have impurities of Ti (0.01–0.05 apfu) and W (up to 0.02 apfu), whereas CGM from Be pegmatites contains elevated Ti (up to 0.09 apfu). The mineral system analysis presented here is relevant for exploration. Full article
Show Figures

Figure 1

11 pages, 902 KiB  
Article
Iron Rim Lesions as a Specific and Prognostic Biomarker of Multiple Sclerosis: 3T-Based Susceptibility-Weighted Imaging
by Sooyoung Kim, Eun Kyoung Lee, Chang June Song and Eunhee Sohn
Diagnostics 2023, 13(11), 1866; https://doi.org/10.3390/diagnostics13111866 - 26 May 2023
Cited by 9 | Viewed by 2528
Abstract
This study aimed to identify the clinical significance of iron rim lesions (IRLs) in distinguishing multiple sclerosis (MS) from other central nervous system (CNS) demyelinating diseases, determine the relationship between IRLs and disease severity, and understand the long-term dynamic changes in IRLs in [...] Read more.
This study aimed to identify the clinical significance of iron rim lesions (IRLs) in distinguishing multiple sclerosis (MS) from other central nervous system (CNS) demyelinating diseases, determine the relationship between IRLs and disease severity, and understand the long-term dynamic changes in IRLs in MS. We retrospectively evaluated 76 patients with CNS demyelinating diseases. CNS demyelinating diseases were classified into three groups: MS (n = 30), neuromyelitis optica spectrum disorder (n = 23), and other CNS demyelinating diseases (n = 23). MRI images were obtained using conventional 3T MRI including susceptibility-weighted imaging. Sixteen of 76 patients (21.1%) had IRLs. Of the 16 patients with IRLs, 14 were in the MS group (87.5%), indicating that IRLs were significantly specific for MS. In the MS group, patients with IRLs had a significantly higher number of total WMLs, experienced more frequent recurrence, and were treated more with second-line immunosuppressive agents than were patients without IRLs. In addition to IRLs, T1-blackhole lesions were observed more frequently in the MS group than in the other groups. IRLs are specific for MS and could represent a reliable imaging biomarker to improve the diagnosis of MS. Additionally, the presence of IRLs seems to reflect more severe disease progression in MS. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

10 pages, 1047 KiB  
Article
Essentiality of the Escherichia coli YgfZ Protein for the In Vivo Thiomethylation of Ribosomal Protein S12 by the RimO Enzyme
by Torben Lund, Maria Yohanna Kulkova, Rosa Jersie-Christensen and Tove Atlung
Int. J. Mol. Sci. 2023, 24(5), 4728; https://doi.org/10.3390/ijms24054728 - 1 Mar 2023
Cited by 1 | Viewed by 2687
Abstract
Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 [...] Read more.
Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 but its precise role in Fe-S cluster metabolism is uncharacterized. YgfZ is needed for activity of the radical S-adenosyl methionine [4Fe-4S] cluster enzyme MiaB which thiomethylates some tRNAs. The growth of cells lacking YgfZ is compromised especially at low temperature. The RimO enzyme is homologous to MiaB and thiomethylates a conserved aspartic acid in ribosomal protein S12. To quantitate thiomethylation by RimO, we developed a bottom-up LC-MS2 analysis of total cell extracts. We show here that the in vivo activity of RimO is very low in the absence of YgfZ and independent of growth temperature. We discuss these results in relation to the hypotheses relating to the role of the auxiliary 4Fe-4S cluster in the Radical SAM enzymes that make Carbon-Sulfur bonds. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Graphical abstract

12 pages, 2759 KiB  
Article
An Interpretable Machine Learning Model to Predict Cortical Atrophy in Multiple Sclerosis
by Allegra Conti, Constantina Andrada Treaba, Ambica Mehndiratta, Valeria Teresa Barletta, Caterina Mainero and Nicola Toschi
Brain Sci. 2023, 13(2), 198; https://doi.org/10.3390/brainsci13020198 - 24 Jan 2023
Cited by 8 | Viewed by 2433
Abstract
To date, the relationship between central hallmarks of multiple sclerosis (MS), such as white matter (WM)/cortical demyelinated lesions and cortical gray matter atrophy, remains unclear. We investigated the interplay between cortical atrophy and individual lesion-type patterns that have recently emerged as new radiological [...] Read more.
To date, the relationship between central hallmarks of multiple sclerosis (MS), such as white matter (WM)/cortical demyelinated lesions and cortical gray matter atrophy, remains unclear. We investigated the interplay between cortical atrophy and individual lesion-type patterns that have recently emerged as new radiological markers of MS disease progression. We employed a machine learning model to predict mean cortical thinning in whole-brain and single hemispheres in 150 cortical regions using demographic and lesion-related characteristics, evaluated via an ultrahigh field (7 Tesla) MRI. We found that (i) volume and rimless (i.e., without a “rim” of iron-laden immune cells) WM lesions, patient age, and volume of intracortical lesions have the most predictive power; (ii) WM lesions are more important for prediction when their load is small, while cortical lesion load becomes more important as it increases; (iii) WM lesions play a greater role in the progression of atrophy during the latest stages of the disease. Our results highlight the intricacy of MS pathology across the whole brain. In turn, this calls for multivariate statistical analyses and mechanistic modeling techniques to understand the etiopathogenesis of lesions. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Graphical abstract

17 pages, 13254 KiB  
Article
Form of the Occurrence of Aluminium in Municipal Solid Waste Incineration Residue—Even Hydrogen Is Lost
by Marek Michalik, Monika Kasina, Bartłomiej Kajdas and Piotr Kowalski
Energies 2022, 15(21), 8186; https://doi.org/10.3390/en15218186 - 2 Nov 2022
Cited by 5 | Viewed by 1884
Abstract
In the bottom ash (BA) of municipal solid waste incineration, the content of iron and aluminum is relatively high. The efficiency of eddy current extraction of non-ferrous metals (including aluminium) routinely used in incineration plants is limited. The determination of the form of [...] Read more.
In the bottom ash (BA) of municipal solid waste incineration, the content of iron and aluminum is relatively high. The efficiency of eddy current extraction of non-ferrous metals (including aluminium) routinely used in incineration plants is limited. The determination of the form of occurrence of aluminium or aluminium-rich components in BA is important in terms of its recovery or utilisation. BA from a newly built incineration plant in Poland was analysed using chemical analysis, X-ray diffraction, optical microscopy, and scanning electron microscopy with chemical microanalysis. Samples of water-quenched BA were analysed. For comparison, a non-quenched sample (collected above a water tank) was analysed. The obtained results indicate that aluminium-rich components in BA are present in both the melt phase and quench phase. In the melt phase (glassy material), the content of aluminium is low (usually below 2 wt%). Aluminium-rich components present in glass, inherited after aluminium products are usually oxidised, and occur as platy or irregular forms. Aluminium components in the quench phase are significantly transformed with the common presence of Cl and SO42− phases formed during reaction with the quench water. Secondary phases form simple or complex rims around metallic or slightly oxidised cores, of which the size is significantly reduced during transformations. The variety in the forms of aluminium occurrence in BA makes its recovery challenging and inefficient. The reduced content of metallic aluminium indicates that the potential for hydrogen generation of BA is low. Full article
(This article belongs to the Special Issue Sustainable Bioenergy Feedstock Production)
Show Figures

Figure 1

12 pages, 2059 KiB  
Article
Pulse Reverse Plating of Copper Micro-Structures in Magnetic Gradient Fields
by Mengyuan Huang, Margitta Uhlemann, Kerstin Eckert and Gerd Mutschke
Magnetochemistry 2022, 8(7), 66; https://doi.org/10.3390/magnetochemistry8070066 - 22 Jun 2022
Cited by 7 | Viewed by 2535
Abstract
Micro-structured copper layers are obtained from pulse-reverse electrodeposition on a planar gold electrode that is magnetically patterned by magnetized iron wires underneath. 3D numerical simulations of the electrodeposition based on an adapted reaction kinetics are able to nicely reproduce the micro-structure of the [...] Read more.
Micro-structured copper layers are obtained from pulse-reverse electrodeposition on a planar gold electrode that is magnetically patterned by magnetized iron wires underneath. 3D numerical simulations of the electrodeposition based on an adapted reaction kinetics are able to nicely reproduce the micro-structure of the deposit layer, despite the height values still remain underestimated. It is shown that the structuring is enabled by the magnetic gradient force, which generates a local flow that supports deposition and hinders dissolution in the regions of high magnetic gradients. The Lorentz force originating from radial magnetic field components near the rim of the electrode causes a circumferential cell flow. The resulting secondary flow, however, is superseded by the local flow driven by the magnetic gradient force in the vicinity of the wires. Finally, the role of solutal buoyancy effects is discussed to better understand the limitations of structured growth in different modes of deposition and cell geometries. Full article
Show Figures

Figure 1

8 pages, 1602 KiB  
Article
Magnetic Susceptibility Source Separation Solely from Gradient Echo Data: Histological Validation
by Alexey V. Dimov, Kelly M. Gillen, Thanh D. Nguyen, Jerry Kang, Ria Sharma, David Pitt, Susan A. Gauthier and Yi Wang
Tomography 2022, 8(3), 1544-1551; https://doi.org/10.3390/tomography8030127 - 14 Jun 2022
Cited by 21 | Viewed by 3222
Abstract
Quantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data ( [...] Read more.
Quantitative susceptibility mapping (QSM) facilitates mapping of the bulk magnetic susceptibility of tissue from the phase of complex gradient echo (GRE) MRI data. QSM phase processing combined with an R2* model of magnitude of multiecho gradient echo data (R2*QSM) allows separation of dia- and para-magnetic components (e.g., myelin and iron) that contribute constructively to R2* value but destructively to the QSM value of a voxel. This R2*QSM technique is validated against quantitative histology—optical density of myelin basic protein and Perls’ iron histological stains of rim and core of 10 ex vivo multiple sclerosis lesions, as well as neighboring normal appearing white matter. We found that R2*QSM source maps are in good qualitative agreement with histology, e.g., showing increased iron concentration at the edge of the rim+ lesions and myelin loss in the lesions’ core. Furthermore, our results indicate statistically significant correlation between paramagnetic and diamagnetic tissue components estimated with R2*QSM and optical densities of Perls’ and MPB stains. These findings provide direct support for the use of R2*QSM magnetic source separation based solely on GRE complex data to characterize MS lesion composition. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Figure 1

14 pages, 5035 KiB  
Article
Effect of the Biodegradable Component Addition to the Molding Sand on the Microstructure and Properties of Ductile Iron Castings
by Katarzyna Major-Gabryś, Małgorzata Hosadyna-Kondracka, Adelajda Polkowska and Małgorzata Warmuzek
Materials 2022, 15(4), 1552; https://doi.org/10.3390/ma15041552 - 18 Feb 2022
Cited by 2 | Viewed by 2407
Abstract
In this work, the results of the examinations of the effect of the mold material and mold technology on the microstructure and properties of the casts parts of ductile cast iron have been presented. Four different self-hardening molding sands based on fresh silica [...] Read more.
In this work, the results of the examinations of the effect of the mold material and mold technology on the microstructure and properties of the casts parts of ductile cast iron have been presented. Four different self-hardening molding sands based on fresh silica sand from Grudzen Las, with organic binders (no-bake process), were used to prepare molds for tested castings. A novelty is the use of molding sand with a two-component binder: furfuryl resin-polycaprolactone PCL biomaterial. The molds were poured with ductile iron according to standard PN-EN 1563:2018-10. The microstructure of the experimental castings was examined on metallographic cross-sections with PN-EN ISO 945-1:2019-09 standard. Observations were made in the area at the casting/mold boundary and in a zone approximately 10 mm from the surface of the casting with a light microscope. The tensile test at room temperature was conducted according to standard PN-EN ISO 6892-1:2016-09. Circular cross-section test pieces, machined from samples taken from castings, were used. In the present experiment, it was stated that interactions between the mold material of different compositions and liquid cast iron at the stage of casting solidification led to some evolution of casting’s microstructure in the superficial layer, such as a pearlite rim observed for acidic mold sand, a ferritic rim for alkaline sand, and graphite spheroids degeneration, especially spectacular for the acidic mold with polycaprolactone (PCL) addition. These microstructural effects may point to the interference of the direct chemical interactions between liquid alloy and the components released from the mold sand, such as sulfur and oxygen. Particularly noteworthy is the observation that the use of molding sand with furfuryl resin with the addition of biodegradable PCL material does not lead to an unfavorable modification of the mechanical properties in the casting. The samples taken from Casting No. 2, made on the acidic molding sand with the participation of biodegradable material, had an average strength of 672 MPa, the highest average strength UTS-among all tested molding sands. However, the elongation after fracture was 48% lower compared to the reference samples from Casting No. 1 from the sand without the addition of PCL. Full article
(This article belongs to the Topic Metallurgical and Materials Engineering)
Show Figures

Figure 1

13 pages, 4214 KiB  
Article
Multi-Element Imaging of a 1.4 Ga Authigenic Siderite Crystal
by Huajian Wang, Yuntao Ye, Yan Deng, Yuke Liu, Yitong Lyu, Fenglian Zhang, Xiaomei Wang and Shuichang Zhang
Minerals 2021, 11(12), 1395; https://doi.org/10.3390/min11121395 - 9 Dec 2021
Cited by 5 | Viewed by 3873
Abstract
Iron formations (IFs) are traditionally considered to be limited during 1.8−0.8 Ga. However, there are recent reports of siderite-dominated IFs within this time interval, such as the 1.40 Ga Xiamaling IF in North China and the 1.33 Ga Jingtieshan IF in Qilian. To [...] Read more.
Iron formations (IFs) are traditionally considered to be limited during 1.8−0.8 Ga. However, there are recent reports of siderite-dominated IFs within this time interval, such as the 1.40 Ga Xiamaling IF in North China and the 1.33 Ga Jingtieshan IF in Qilian. To further explore the crystallization and formation mechanisms of siderite, an authigenic siderite crystal from the Xiamaling IF was fully scanned using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Multi-element imaging with a spatial resolution of 5 μm revealed an obvious rim structure of the siderite crystal, which might record the crystallization and growth processes. The Al- and Fe-enriched zone in the core of siderite crystal might be an iron-bearing nucleus, and the formation of rim structure was related to the transition from a closed crystallization environment to a semi-closed growth environment. These results, combined with carbon isotope evidence from the siderites and surrounding shales, suggest that vigorous dissimilatory iron reduction that can provide Fe2+ and HCO3 to the pore water is a key factor to form the siderite-dominated Xiamaling IF. Full article
(This article belongs to the Topic Iron Concentrate Particles)
Show Figures

Figure 1

Back to TopTop