Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,006)

Search Parameters:
Keywords = iron ion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6536 KB  
Review
Transmetalation in Cancer Pharmacology
by Mahendiran Dharmasivam and Busra Kaya
Int. J. Mol. Sci. 2025, 26(22), 11008; https://doi.org/10.3390/ijms262211008 (registering DOI) - 14 Nov 2025
Abstract
Transmetalation, the exchange of metal ions between coordination complexes and biomolecules, has emerged as a powerful design lever in cancer metallopharmacology. Using thiosemicarbazones (TSCs) as a unifying case study, we show how redox-inert carrier states such as zinc(II) or gallium(III) can convert in [...] Read more.
Transmetalation, the exchange of metal ions between coordination complexes and biomolecules, has emerged as a powerful design lever in cancer metallopharmacology. Using thiosemicarbazones (TSCs) as a unifying case study, we show how redox-inert carrier states such as zinc(II) or gallium(III) can convert in situ into redox-active copper(II) or iron(III/II) complexes within acidic, metal-rich lysosomes. This conditional activation localizes reactive oxygen species (ROS) generation and iron deprivation to tumor cells. We critically compare redox-active and redox-inert states, delineating how steric and electronic tuning, backbone rigidity, and sulfur-to-selenium substitution govern exchange hierarchies and kinetics. We further map downstream consequences for metal trafficking, lysosomal membrane permeabilization, apoptosis, and ferroptosis. Beyond TSCs, iron(III)-targeted transmetalation from titanium(IV)-chelator “chemical transferrin mimetics” illustrates a generalizable Trojan horse paradigm. We conclude with translational lessons, including mitigation of hemoprotein oxidation via steric shielding, stealth zinc(II) prodrugs, and dual-chelator architectures and outline biomarker, formulation, and imaging strategies that de-risk clinical development. Collectively, these insights establish transmetalation as a central therapeutic principle. We also highlight open challenges such as quantifying in-cell exchange kinetics, predicting speciation under non-equilibrium conditions, and rationally combining these agents with existing therapies. Full article
Show Figures

Graphical abstract

16 pages, 1757 KB  
Article
Synergistic Remediation of Cr(VI) and P-Nitrophenol Co-Contaminated Soil Using Metal-/Non-Metal-Doped nZVI Catalysts with High Dispersion in the Presence of Persulfate
by Yin Wang, Siqi Xu, Yixin Yang, Yule Gao, Linlang Lu, Hu Jiang and Xiaodong Zhang
Catalysts 2025, 15(11), 1077; https://doi.org/10.3390/catal15111077 (registering DOI) - 13 Nov 2025
Abstract
In this work, two novel nanoscale zero-valent iron (nZVI) composites (nanoscale zero-valent iron and copper-intercalated montmorillonite (MMT-nFe0/Cu0) and carbon microsphere-supported sulfurized nanoscale zero-valent iron (CMS@S-nFe0)) were used to treat soil contaminated with both Cr(VI) and p-nitrophenol (PNP), [...] Read more.
In this work, two novel nanoscale zero-valent iron (nZVI) composites (nanoscale zero-valent iron and copper-intercalated montmorillonite (MMT-nFe0/Cu0) and carbon microsphere-supported sulfurized nanoscale zero-valent iron (CMS@S-nFe0)) were used to treat soil contaminated with both Cr(VI) and p-nitrophenol (PNP), and added persulfate (PMS). Experiments found that the pollutant removal effect has a great relationship with the ratio of water to soil, the amount of catalyst, the amount of PMS, and the pH value. When the conditions are adjusted to the best (water–soil = 2:1, catalyst 30 g/kg, PMS 15 g/kg, pH 7–9), both materials fix Cr(VI) well and decompose PNP. The removal rates of Cr(VI) and PNP by the MMT-nFe0/Cu0 system are 90.4% and 72.6%, respectively, while the CMS@ S-nFe0 system is even more severe, reaching 94.8% and 81.3%. Soil column leaching experiments also proved that the fixation effect of Cr can last for a long time and PNP can be effectively decomposed. Through detection methods such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), we found that Cr(VI) was effectively reduced to Cr(III) by Fe0 and Fe2+ ions and subsequently transformed into stable FeCr2O4 spinel oxides, and the groups produced after the decomposition of PNP could also help fix the metal. This work provides a way to simultaneously treat Cr(VI) and PNP pollution, and also allows the use of multifunctional nZVI composites in complex soil environments. Full article
(This article belongs to the Special Issue Porous Catalytic Materials for Environmental Purification)
Show Figures

Figure 1

28 pages, 4285 KB  
Article
Closed-Loop Multimodal Framework for Early Warning and Emergency Response for Overcharge-Induced Thermal Runaway in LFP Batteries
by Jikai Tian, Weiwei Qi, Jiao Wang and Jun Shen
Fire 2025, 8(11), 437; https://doi.org/10.3390/fire8110437 - 7 Nov 2025
Viewed by 292
Abstract
The increasing prevalence of lithium-ion batteries in energy storage and electric transportation has led to a rise in overcharge-induced thermal runaway (TR) incidents. Particularly, the TR of Lithium Iron Phosphate (LFP) batteries demonstrates distinct evolutionary stages and multimodal hazard signals. This study investigated [...] Read more.
The increasing prevalence of lithium-ion batteries in energy storage and electric transportation has led to a rise in overcharge-induced thermal runaway (TR) incidents. Particularly, the TR of Lithium Iron Phosphate (LFP) batteries demonstrates distinct evolutionary stages and multimodal hazard signals. This study investigated the TR process of LFP batteries under various charging rates through five sets of gradient C-rate experiments, collecting multimodal data (temperature, voltage, gas, sound, and deformation). Drawing on the collected data, this study proposes a three-stage evolution model that systematically identifies key characteristic signals and tracks their progression pattern through each stage of TR. Subsequently, fusion-based models (for both single- and multi-rate scenarios) and a time-series-based LSTM model were developed to evaluate their classification accuracy and feature importance in the classification of TR stages. Results indicate that the fusion-based models offer greater generalization, while the LSTM model excels at modeling time-dependent dynamics. These models demonstrate complementary strengths, providing a comprehensive toolkit for risk assessment. Furthermore, for the severe TR stage, this study proposes an innovative three-dimensional dynamic emergency decision matrix comprising a toxicity index (TI), flammability index (FI), and visibility (V) to provide quantitative guidance for rescue operations in the post-accident phase. Ultimately, this study establishes a comprehensive, closed-loop framework for LFP battery safety, extending from multimodal signal acquisition and intelligent early warning to quantified emergency response. This framework provides both a robust theoretical basis and practical tools for managing TR risk throughout the entire battery lifecycle. Full article
Show Figures

Graphical abstract

18 pages, 2720 KB  
Article
Influence of Nanocrystallite Size on Magnetic Properties of Iron Nitride γ’-Fe4N
by Kamila Klimza, Grzegorz Leniec, Karol Synoradzki, Rafał Pelka, Urszula Nowosielecka, Izabela Moszyńska, Aleksander Guskos, Grzegorz Żołnierkiewicz and Nikos Guskos
Crystals 2025, 15(11), 956; https://doi.org/10.3390/cryst15110956 - 5 Nov 2025
Viewed by 207
Abstract
In this paper, samples of nanocrystalline iron nitride γ’-Fe4N, doped with small amounts of hardly reducible promoter oxides (Al2O3, CaO, and K2O), were subjected to electron magnetic resonance (EMR) measurements. The samples differed in the [...] Read more.
In this paper, samples of nanocrystalline iron nitride γ’-Fe4N, doped with small amounts of hardly reducible promoter oxides (Al2O3, CaO, and K2O), were subjected to electron magnetic resonance (EMR) measurements. The samples differed in the average nanocrystallite size of iron nitride (23–54 nm). The EMR analysis was performed to probe the magnetic characteristics of the nanoparticles. The spectra, fitted with a Voigt function, were deconvoluted into contributions from the γ’-Fe4N phase in the nanoparticle core and from surface-associated iron ions. The resulting magnetic responses were quantitatively correlated with nanoparticle size, elucidating finite-size effects governing the system’s magnetic behavior. Full article
(This article belongs to the Special Issue New Trends in Materials for Permanent Magnets)
Show Figures

Figure 1

19 pages, 3880 KB  
Article
Processing Water-Based Lithium Iron Phosphate (LiFePO4) Cathodes with CMC Binder: The Impact of Dispersing Methods
by Leah Jalowy, Henry Lehmann, Patrick Rassek, Olga Fromm, Marc Entenmann and Dominik Nemec
AppliedChem 2025, 5(4), 33; https://doi.org/10.3390/appliedchem5040033 - 5 Nov 2025
Viewed by 492
Abstract
Lithium-ion batteries (LIBs) are vital for modern energy storage applications. Lithium iron phosphate (LFP) is a promising cathode material due to its safety, low cost, and environmental friendliness compared to the widely used nickel manganese cobalt oxide (NMC), which contains hazardous nickel and [...] Read more.
Lithium-ion batteries (LIBs) are vital for modern energy storage applications. Lithium iron phosphate (LFP) is a promising cathode material due to its safety, low cost, and environmental friendliness compared to the widely used nickel manganese cobalt oxide (NMC), which contains hazardous nickel and cobalt compounds. However, challenges remain in enhancing the performance of LFP cathodes due to their low electronic and ionic conductivity. To improve both the safety and sustainability of the battery, this work presents a water-based LFP cathode utilizing the bio-based binder carboxymethyl cellulose (CMC), eliminating the need for polyvinylidene fluoride (PVDF) and the toxic solvent N-methyl-2-pyrrolidone (NMP). This study investigates the impact of different dispersing methods—dissolver mixing and wet jet milling—on slurry properties, electrode morphology, and battery performance. Slurries were characterized by rheology, particle size distribution, and sedimentation behavior, while coated and calendered electrodes were examined via thickness measurements and scanning electron microscopy (SEM). Electrochemical performance of the electrodes was evaluated by means of C-Rate testing. The results reveal that dispersing methods significantly influence slurry characteristics but marginally affect electrochemical performance. Compared to dissolver mixing, wet jet milling reduced the median particle size by 39% (ΔD50 = 3.1 µm) and lowered viscosity by 96% at 1 s−1, 80% at 105 s−1, and 64% at 1000 s−1. In contrast, the electrochemical performance of the resulting electrodes differed only slightly, with discharge capacity varying by approximately 12.8% at 1.0 C (Δcapacity = 10.7 mAh g−1). This research highlights the importance of optimizing not only material selection but also processing techniques to advance safer and more sustainable energy storage solutions. Full article
Show Figures

Figure 1

17 pages, 5562 KB  
Article
Obtaining Iron Chelates and Iron Oxide Nanoparticles via Multispark Discharge Treatment of EDTA Solutions in Argon Atmosphere
by Viktoriia V. Gudkova, Valentin D. Borzosekov, Maria A. Zimina, Igor V. Moryakov, Dmitry V. Malakhov, Namik Gusein-zade and Evgeny M. Konchekov
Plasma 2025, 8(4), 45; https://doi.org/10.3390/plasma8040045 - 3 Nov 2025
Viewed by 277
Abstract
This study investigates the physicochemical processes in aqueous solutions treated with a high-current (up to 300 A) pulsed multispark discharge. Pulse length was 2 μs at a 50 Hz repetition rate. The discharge occurred within bubbles of argon injected between the stainless-steel electrodes [...] Read more.
This study investigates the physicochemical processes in aqueous solutions treated with a high-current (up to 300 A) pulsed multispark discharge. Pulse length was 2 μs at a 50 Hz repetition rate. The discharge occurred within bubbles of argon injected between the stainless-steel electrodes at the constant flow rate. The erosion of electrode material during the discharge led to iron and other alloy components entering the liquid. Optical emission spectra confirmed the erosion of electrode material (Fe, Cr, Ni atoms and ions). EDTA and its disodium salt were used in order to study their effect on the metal particle formation process. Treatment with deionized water led to an increase in conductivity and the generation of hydrogen peroxide (up to 1200 µM). In contrast, the presence of EDTA and its disodium salt drastically altered the reaction pathways: the H2O2 yield decreased, and the solution conductivity dropped substantially for the acidic form of EDTA, while the decrease was minor for EDTA-Na2. This effect is attributed to the buffered chelation of eroded metal ions, forming stable Fe-EDTA complexes, as confirmed by a characteristic absorption band at 260 nm. The results demonstrate the critical role of complex-forming agents in modulating plasma–liquid interactions, shifting the process from direct erosion products to the formation of stable coordination compounds. Full article
Show Figures

Figure 1

27 pages, 10625 KB  
Article
Two-Stage Organic Acid Leaching of Industrially Sourced LFP- and NMC-Containing Black Mass
by Marc Simon Henderson, Chau Chun Beh, Elsayed A. Oraby and Jacques Eksteen
Batteries 2025, 11(11), 401; https://doi.org/10.3390/batteries11110401 - 31 Oct 2025
Viewed by 378
Abstract
Over the next 5–10 years, the feedstock to lithium-ion battery recycling facilities will shift from Co- and Ni-rich chemistries to lower-value battery chemistries, such as lithium iron phosphate (LFP). Traditional recycling processes use toxic and corrosive inorganic acids for leaching, generating toxic waste [...] Read more.
Over the next 5–10 years, the feedstock to lithium-ion battery recycling facilities will shift from Co- and Ni-rich chemistries to lower-value battery chemistries, such as lithium iron phosphate (LFP). Traditional recycling processes use toxic and corrosive inorganic acids for leaching, generating toxic waste streams. The low-value feedstocks will be LFP-rich with contamination from lithium cobalt oxide (LCO) and lithium–nickel–manganese–cobalt oxide (NMC) battery chemistries. Overall, the lower-value feedstock coupled with the need to reduce environmentally damaging waste streams requires the development of robust, green leaching processes capable of selectively targeting the LFP and LCO/NMC battery chemistries. This research concluded that a first-stage oxalic acid leach could selectively extract Al, Li, and P from the industrially sourced LFP-rich black mass. When operating at the optimal conditions (0.5 M oxalic acid, 5% solids, pH 0.8, and an agitation speed of 600 rpm), >99% of the Li and P and >97% of the Al were selectively extracted after 2 h, while Mn, Fe, Cu, Ni, and Co extractions were kept relatively low, namely, at 19%, <3%, <1%, 0%, and 0%. This research also explored a second-stage leach to treat the first-stage leach residue using ascorbic acid, citric acid, and glycine. It was concluded that when leaching with glycine (30 g/L glycine, a temperature of 40 °C, an agitation speed of 600 rpm, and 2% solids at pH 9.6), that >97% of the Co, >77% of the Ni, and 41% of the Mn were extracted, while the co-extraction percentages of Cu, Fe, and Al were <27%, <4%, and <2%. Full article
Show Figures

Graphical abstract

19 pages, 1936 KB  
Article
Domestication Cultivation and Nutritional Analysis of Hericium coralloides
by Yun Li, Jiarong Cai, Xiaomin Li, Xin Hu, Junli Zhang, Xiaoping Wu and Junsheng Fu
J. Fungi 2025, 11(11), 785; https://doi.org/10.3390/jof11110785 - 31 Oct 2025
Viewed by 520
Abstract
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was [...] Read more.
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was isolated and identified as a novel H. coralloides based on its morphological and molecular characteristics. The optimal growth conditions were found to be 30 °C, pH 7.0, fructose as the preferred carbon source, and yeast extract as the optimal nitrogen source. Nutritional analysis revealed that the fruiting bodies were rich in protein (15.4 g/100 g dry weight), dietary fiber (34.7 g/100 g dry weight), and minerals, while being low in fat (3.5 g/100 g dry weight). The most abundant amino acids were glutamic acid, followed by aspartic acid. The polysaccharides exhibited significant antioxidant activity, with ABTS+ scavenging comparable to that of Vitamin C (Vc), achieving a clearance rate of 96.95% at concentrations between 0.25–5.00 mg/mL. At a concentration of 5 mg/mL, the DPPH and OH radical scavenging activities reached their peak (83.77% and 67.31%, respectively), along with the highest iron ion reducing capacity (FRAP value: 4.43 mmol/L. Polysaccharides also exhibited notable anticancer activity, inhibiting HepG2 liver cancer cells and MDA-MB-468 breast cancer cells, with IC50 values of 3.896 mg/mL and 2.561 mg/mL, respectively. This study demonstrates that wild H. coralloides can be successfully cultivated in vitro. In conclusion, the fruiting bodies possess substantial nutritional value, and the polysaccharides extracted from them show promising antioxidant and anticancer activities, particularly against HepG2 liver cancer cells and MDA-MB-468 breast cancer cells. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

11 pages, 1159 KB  
Article
Rapid Oxidation of Adsorbed Organic Impurities on Stainless Steel by Treatment with Diluted Peroxynitric Acid
by Jernej Ekar, Miran Mozetič, Janez Kovač, Nina Recek, Satoshi Ikawa and Katsuhisa Kitano
Materials 2025, 18(21), 4984; https://doi.org/10.3390/ma18214984 - 31 Oct 2025
Viewed by 246
Abstract
Stainless steel forms a native film of mixed metal oxides, and organic impurities are likely to adsorb on the surface upon exposure to ambient conditions. For many applications, oxides and impurities should be removed, and several techniques have been used for decades. An [...] Read more.
Stainless steel forms a native film of mixed metal oxides, and organic impurities are likely to adsorb on the surface upon exposure to ambient conditions. For many applications, oxides and impurities should be removed, and several techniques have been used for decades. An innovative method is presented in this paper. The organic impurities were oxidized using a water solution of 1 M peroxynitric acid (PNA). Stainless steel samples were immersed in the solution, and the oxidation of organic impurities was evaluated by the ultra-thin depth profiling using secondary ion mass spectrometry (SIMS). A minute of treatment with PNA caused oxidation of organic impurities and a decrease in the SIMS CN signal over an order of magnitude. Prolonged treatment caused the selective removal of the native iron oxide film, leaving a protective film of chromium oxide. Removal of the iron oxide film was also observed when stainless steel was treated with 1 M HNO3. The PNA method is useful for routine cleaning of stainless steel to remove the organic contaminants from the surface and keep the passive chromium oxide film intact. It is ecologically friendly and enables rapid decomposition of the traces of organic impurities likely to be adsorbed on the metallic surfaces. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Figure 1

21 pages, 4390 KB  
Article
Experimental Investigation of CO2–Mineral Interactions in Tight Clastic Rock Reservoirs: Implications for Geological Carbon Sequestration
by Ziyi Wang, Liehui Zhang, Shu Liu, Meng Wang, Hongming Tang, Dongyu Peng, Xinan Yu and Xingming Duan
Minerals 2025, 15(11), 1142; https://doi.org/10.3390/min15111142 - 30 Oct 2025
Viewed by 340
Abstract
Geological Carbon Sequestration (GCS) plays a crucial role in addressing climate change, particularly in oil and gas development. Understanding the reaction of supercritical CO2 under in situ conditions and its effects on minerals is essential for advancing GCS technology. This study investigates [...] Read more.
Geological Carbon Sequestration (GCS) plays a crucial role in addressing climate change, particularly in oil and gas development. Understanding the reaction of supercritical CO2 under in situ conditions and its effects on minerals is essential for advancing GCS technology. This study investigates the reaction mechanisms of feldspar (potassium and sodium feldspar) and clay minerals (chlorite, illite, montmorillonite, kaolinite) in CO2 environments. The impacts on mineral crystal structures, morphologies, and elemental compositions were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and ion concentration measurements (ICP-OES and ICP-MS). The results show that feldspar minerals exhibit lower reaction rates, with sodium feldspar dissolving faster than potassium feldspar, due to the higher solubility of sodium ions in acidic conditions. Chlorite showed significant crystal structure damage after 30 days, while montmorillonite underwent both dissolution and precipitation, influenced by interlayer cation dissociation. Kaolinite exhibited minimal reaction, primarily showing localized dissolution. Additionally, the formation of siderite (FeCO3) was observed as Fe2+ substituted for Ca2+ in CaCO3, highlighting the role of iron-bearing carbonates in CO2 interactions. The study provides insights into the factors influencing mineral reactivity, including mineral structure, ion exchange capacity, and solubility, and suggests that chlorite, montmorillonite, and illite are more reactive under reservoir conditions, while kaolinite shows higher resistance to CO2-induced reactions. These findings offer valuable data for optimizing GCS technologies and predicting long-term sequestration outcomes. Full article
(This article belongs to the Special Issue Advances in Mineral-Based Carbon Capture and Storage)
Show Figures

Figure 1

14 pages, 1186 KB  
Article
Optimizing Iron Dosage in Photo-Fenton Treatment of 2,6-Dichlorobenzoquinone for Sustainable Wastewater Remediation
by Unai Duoandicoechea and Natalia Villota
Separations 2025, 12(11), 297; https://doi.org/10.3390/separations12110297 - 29 Oct 2025
Viewed by 179
Abstract
Chlorinated benzoquinones, such as 2,6-dichlorobenzoquinone (DCBQ), are toxic disinfection byproducts of growing concern in aquatic environments. Advanced oxidation processes, particularly photo-Fenton treatment, provide sustainable alternatives for their degradation. However, optimization is required to ensure not only the removal of the parent compound but [...] Read more.
Chlorinated benzoquinones, such as 2,6-dichlorobenzoquinone (DCBQ), are toxic disinfection byproducts of growing concern in aquatic environments. Advanced oxidation processes, particularly photo-Fenton treatment, provide sustainable alternatives for their degradation. However, optimization is required to ensure not only the removal of the parent compound but also the reduction in harmful intermediates. This study evaluated the degradation of DCBQ (1.0 mM H2O2, 150 W UV, pH 3.0, 25 °C) with ferrous ion between 0 and 1.0 mg/L. DCBQ removal followed a second-order kinetic model, reaching complete degradation. Aromaticity-loss and water color degradation adjusted to kinetics of second-order, reflecting the sequential reduction in chlorinated hydroquinones and chlorophenols type intermediates, with marked decreases after 120 min at 0.8 mg/L. Results showed that increasing iron dosage enhanced both the rate of DCBQ disappearance and the removal of aromaticity, with complete pollutant degradation. Importantly, optimal ferrous ion dosages (20 mol DCBQ: 70 mol H2O2: 1 mol Fe2+) effectively limited the persistence of intermediates, as evidenced by significant decreases in color and aromaticity, while avoiding excessive turbidity. These findings demonstrate that fine-tuning iron dosage in photo-Fenton systems can maximize contaminant elimination and minimize secondary byproducts, reinforcing their role as sustainable solutions for wastewater remediation. Full article
Show Figures

Figure 1

17 pages, 2955 KB  
Article
Chromium Species and Fractions in Agricultural and Urban Mediterranean Soils: Effects of Aging and Soil Properties on Soil Cr (III) and Cr (VI) Availability
by Evangelia E. Golia, Fotis Bilias, Eleni Gouliou, Sotiria G. Papadimou, Ioannis Papadopoulos, Dimitrios Alexiadis and Stella Girousi
Land 2025, 14(11), 2157; https://doi.org/10.3390/land14112157 - 29 Oct 2025
Viewed by 384
Abstract
In this study, both trivalent and hexavalent forms of chromium were examined in urban and agricultural Mediterranean soils. Chromium partitioning in different soil fractions was studied. Pot experiments included contamination of soil samples using Cr solutions, as well as a further study regarding [...] Read more.
In this study, both trivalent and hexavalent forms of chromium were examined in urban and agricultural Mediterranean soils. Chromium partitioning in different soil fractions was studied. Pot experiments included contamination of soil samples using Cr solutions, as well as a further study regarding Cr distribution in naturally contaminated soils. The soils were subjected to quantitative determination of both the available and total Cr concentration, as well as Cu and Zn, which were naturally present in the soil samples. Metal concentrations in the soil fractions were quantified after the application of the BCR fractional extraction method. The numbers of both trivalent and hexavalent Cr ions in each extract were determined. Considerable discrepancies were noticed regarding the Cr content of each soil fraction in both municipal and cultivated soils, indicating the possible origin of the pollution. The increasing impact of pollution is a significant parameter for the availability of chromium ions in both agricultural and urban soils. Increased pollution durations resulted in a significant increase in the non-available fraction of toxic Cr (VI), mainly in urban soil. Variations were also observed in the chromium species, as changes in soil parameters and in the conditions of the experiment seem to affect the conversion of the less harmful trivalent chromium to the toxic hexavalent chromium. In urban soils, the amount of toxic Cr (VI) bound to iron and manganese oxides exceeds 37.8%, while in agricultural soils, the amount of Cr (VI) associated with soil organic matter reaches 35%. Knowing the mechanisms and variables influencing Cr availability in agricultural and urban Mediterranean soils is desirable, as safe living in ecologically acceptable fields and producing safe goods in healthy soil systems are paramount goals. Full article
(This article belongs to the Special Issue Feature Papers for "Land, Soil and Water" Section)
Show Figures

Figure 1

10 pages, 1468 KB  
Article
Research on Synchronous Synthesis of Schwertmannite for Removal of Pb2+ from Acidic Wastewater
by Huijie Zhu, Shuai Fu, Huiyong Zhang, Xi Wu, Jinyi Han, Xiaolin Ma, Jingtao Rong, Sixu Chen, Guang Chen, Yuxiang Li, Jianchao Man and Zhiqun Ma
Crystals 2025, 15(11), 929; https://doi.org/10.3390/cryst15110929 - 29 Oct 2025
Viewed by 216
Abstract
Schwertmannite (Fe8O8(OH)8−2x(SO4)x), an iron oxyhydroxysulfate mineral prevalent in acidic mining environments, demonstrates exceptional heavy metal adsorption capacity owing to its high surface area and abundant functional groups. This study developed a novel one-step [...] Read more.
Schwertmannite (Fe8O8(OH)8−2x(SO4)x), an iron oxyhydroxysulfate mineral prevalent in acidic mining environments, demonstrates exceptional heavy metal adsorption capacity owing to its high surface area and abundant functional groups. This study developed a novel one-step synthesis method that simultaneously generates schwertmannite and removes Pb2+ from aqueous solutions, contrasting with conventional two-step approaches. Systematic investigation of operational parameters revealed that Pb2+ removal efficiency exceeded 98% across concentrations of 0~300 mg·L−1, with optimal performance at nSch:nPb ratios ≥ 2, pH 3.0~6.0, and 35 °C. Characterization studies identified four primary removal mechanisms: electrostatic adsorption, ion exchange, coordination complexation, and coprecipitation. The in situ method demonstrated significant advantages in processing efficiency, removal stability, and environmental sustainability compared to traditional approaches. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 2275 KB  
Article
Surface Charge and Size Evolution of Silica–Iron Colloidal Particles in Simulated Late-Archaean Seawater
by Weiming Jiang, Xiao Wu, Hongmei Yang, Juan Fu, Qirui Zeng, Sizhe Li, Ruiyao Luo, Yiping Yang, Xiaoju Lin and Jianxi Zhu
Minerals 2025, 15(11), 1123; https://doi.org/10.3390/min15111123 - 28 Oct 2025
Viewed by 295
Abstract
Late-Archean seawater functioned as a vast, redox-tuned colloidal system for which its kinetics were largely governed by the surface chemistry of silica–iron nanoparticles. By reproducing Archean seawater (≈0.7 M ionic strength, 25 °C) in laboratory anoxic-to-mildly oxic reactors, the ζ potential (zeta-potential(ζ)) of [...] Read more.
Late-Archean seawater functioned as a vast, redox-tuned colloidal system for which its kinetics were largely governed by the surface chemistry of silica–iron nanoparticles. By reproducing Archean seawater (≈0.7 M ionic strength, 25 °C) in laboratory anoxic-to-mildly oxic reactors, the ζ potential (zeta-potential(ζ)) of silica–iron nanoparticles was investigated, and we tracked how transient O2 pulses (≤9 mg L−1) regulated it. The zeta (ζ) potential was applied as the key diagnostic parameter to quantify both the sign of the ζ potential and the colloidal stability of simulated silica–iron particles in dispersion. Under strictly anoxic conditions, silica colloids (SiO2(aq)) exhibit a persistently negative ζ potential (ζ ≈ −25 mV) in the simulated seawater (pH 6.5), arising from deprotonated silanol groups (≡Si–O). Upon the addition of Fe2+, the inner-sphere complexation of ferrous ions on SiO2 colloids partially replaces ≡Si–O with ≡Si–O–Fe+/≡Si–O–Fe–OH sites; the net negative charge density at the outer Stern plane nevertheless increases, and the ζ potential shifts from −25 mV to −30 mV. As the simulated seawater was oxygenated, the dissolved and surface-bound Fe2+ ions were oxidized to Fe3+, causing the ζ potential to exceed −30 mV. This study demonstrates that Fe2+–silica interactions generate electrostatic destabilization, suspending micron-scale aggregates and thus modulating the solubility and speciation of SiO2 in early oceans. Also, transient micro-oxic pulses are shown to shift silica–iron colloids between metastable aggregation and dispersion by modulating their ζ potential. Subsequently, AFM and TEM were used to characterize the morphological changes in the colloidal particles from the liquid state to the dry state. Furthermore, infrared and XPS analyses were conducted on the colloidal samples. These findings provide certain reference significance for reconstructing the chemical evolution process of seawater in the Late-Archean period and for understanding the factors influencing the silicon–iron cycle of seawater in the Late-Archean era. Full article
Show Figures

Graphical abstract

22 pages, 4115 KB  
Article
Novel Chitosan-Based Materials to Promote Water Disinfection and Degradation of Contaminants
by Giulio Farinelli, Héloïse Baldo, Laurence Soussan, Flora Lefèbvre, Katell Sénéchal-David, Jean-Noël Rebilly, Frédéric Banse and Damien Quemener
Water 2025, 17(21), 3077; https://doi.org/10.3390/w17213077 - 28 Oct 2025
Viewed by 439
Abstract
This study explores chitosan (CS)-based materials for water purification, assessing their disinfection and contaminant degradation capabilities. A reproducible protocol was developed to fabricate homogeneous, stable CS films, validated through permeability testing and characterized using thermal (TGA), mechanical (tensile strength, elongation), and physico-chemical (FTIR-ATR, [...] Read more.
This study explores chitosan (CS)-based materials for water purification, assessing their disinfection and contaminant degradation capabilities. A reproducible protocol was developed to fabricate homogeneous, stable CS films, validated through permeability testing and characterized using thermal (TGA), mechanical (tensile strength, elongation), and physico-chemical (FTIR-ATR, water contact angle, SEM-EDX) analyses. A catalyst was employed to complex iron ions and crosslink CS chains via acrylamide functions, stabilizing the CS structure and reducing washout in water. Disinfection tests showed that pure CS exhibited strong antimicrobial activity under varying contamination levels, attributed to direct contact and slight dissolution. Functionalized CS materials acted as catalytic surfaces, requiring hydrogen peroxide (H2O2) to generate reactive oxygen species (ROS). This ROS-mediated process effectively disinfected high bacteria loads and degraded phenol. Electron paramagnetic resonance (EPR) confirmed hydroxyl radicals as the primary active species when H2O2 was present. Under lower contamination levels, residual CS within the functionalized material contributed to direct antimicrobial effects, demonstrating a synergistic action between CS and ROS. These findings highlight CS as a reliable disinfectant and functionalized CS as a versatile material for ROS-driven antimicrobial action and contaminant degradation. The results suggest potential for scalable, sustainable water treatment applications. Future work will focus on optimizing the catalyst structure to enhance ROS production and improve contaminant removal efficiency. Full article
Show Figures

Graphical abstract

Back to TopTop