Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = ion irradiation simulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8936 KB  
Article
Grain Boundary Engineering of an Additively Manufactured AlSi10Mg Alloy for Advanced Energy Systems: Grain Size Effects on He Bubbles Distribution and Evolution
by Przemysław Snopiński, Marek Barlak, Jerzy Zagórski and Marek Pagač
Energies 2025, 18(20), 5445; https://doi.org/10.3390/en18205445 - 15 Oct 2025
Viewed by 291
Abstract
The development of advanced energy materials is critical for the safety and efficiency of next-generation nuclear energy systems. Aluminum alloys present a compelling option due to their excellent neutronic properties, notably a low thermal neutron absorption cross-section. However, their historically poor high-temperature performance [...] Read more.
The development of advanced energy materials is critical for the safety and efficiency of next-generation nuclear energy systems. Aluminum alloys present a compelling option due to their excellent neutronic properties, notably a low thermal neutron absorption cross-section. However, their historically poor high-temperature performance has limited their use in commercial power reactors. This makes them prime candidates for specialized, lower-temperature but high-radiation environments, such as research reactors, spent fuel storage systems, and spallation neutron sources. In these applications, mitigating radiation damage—particularly swelling and embrittlement from helium produced during irradiation—remains a paramount challenge. Grain Boundary Engineering (GBE) is a potent strategy to mitigate radiation damage by increasing the fraction of low-energy Coincident Site Lattice (CSL) boundaries. These interfaces act as effective sinks for radiation-induced point defects (vacancies and self-interstitials), suppressing their accumulation and subsequent clustering into damaging dislocation loops and voids. By controlling the defect population, GBE can substantially reduce macroscopic effects like volumetric swelling and embrittlement, enhancing material performance in harsh radiation environments. In this article we evaluate the efficacy of GBE in an AlSi10Mg alloy, a candidate material for nuclear applications. Samples were prepared via KOBO extrusion, with a subset undergoing subsequent annealing to produce varied initial grain sizes and grain boundary character distributions. This allows for a direct comparison of how these microstructural features influence the material’s response to helium ion irradiation, which simulates damage from fission and fusion reactions. The resulting post-irradiation defect structures and their interaction with the engineered grain boundary network were characterized using a combination of Transmission Electron Microscopy (TEM) and High-Resolution Transmission Electron Microscopy (HRTEM), providing crucial insights for designing next-generation, radiation-tolerant energy materials. Full article
Show Figures

Figure 1

24 pages, 2257 KB  
Article
Hybrid Renewable Energy Systems: Integration of Urban Mobility Through Metal Hydrides Solution as an Enabling Technology for Increasing Self-Sufficiency
by Lorenzo Bartolucci, Edoardo Cennamo, Stefano Cordiner, Vincenzo Mulone and Alessandro Polimeni
Energies 2025, 18(19), 5306; https://doi.org/10.3390/en18195306 - 8 Oct 2025
Viewed by 426
Abstract
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most [...] Read more.
The ongoing energy transition and decarbonization efforts have prompted the development of Hybrid Renewable Energy Systems (HRES) capable of integrating multiple generation and storage technologies to enhance energy autonomy. Among the available options, hydrogen has emerged as a versatile energy carrier, yet most studies have focused either on stationary applications or on mobility, seldom addressing their integration withing a single framework. In particular, the potential of Metal Hydride (MH) tanks remains largely underexplored in the context of sector coupling, where the same storage unit can simultaneously sustain household demand and provide in-house refueling for light-duty fuel-cell vehicles. This study presents the design and analysis of a residential-scale HRES that combines photovoltaic generation, a PEM electrolyzer, a lithium-ion battery and MH storage intended for direct integration with a fuel-cell electric microcar. A fully dynamic numerical model was developed to evaluate system interactions and quantify the conditions under which low-pressure MH tanks can be effectively integrated into HRES, with particular attention to thermal management and seasonal variability. Two simulation campaigns were carried out to provide both component-level and system-level insights. The first focused on thermal management during hydrogen absorption in the MH tank, comparing passive and active cooling strategies. Forced convection reduced absorption time by 44% compared to natural convection, while avoiding the additional energy demand associated with thermostatic baths. The second campaign assessed seasonal operation: even under winter irradiance conditions, the system ensured continuous household supply and enabled full recharge of two MH tanks every six days, in line with the hydrogen requirements of the light vehicle daily commuting profile. Battery support further reduced grid reliance, achieving a Grid Dependency Factor as low as 28.8% and enhancing system autonomy during cold periods. Full article
Show Figures

Figure 1

15 pages, 3411 KB  
Article
Effects of Ar Ion Irradiation on Mechanical Properties and Microstructure of SA508 Grade 3 Class 1 and Class 2 Reactor Pressure Vessel Steels
by Ho-A Kim, Mincheol Kim, Sungjun Choi and Sangtae Kim
Materials 2025, 18(19), 4601; https://doi.org/10.3390/ma18194601 - 3 Oct 2025
Viewed by 376
Abstract
This study investigates the effects of Ar ion irradiation on the mechanical properties and microstructure of SA508 Grade 3 Class 1 and Class 2 reactor pressure vessel steels. Three different fluence levels of Ar ion irradiation were applied to simulate accelerated irradiation damage [...] Read more.
This study investigates the effects of Ar ion irradiation on the mechanical properties and microstructure of SA508 Grade 3 Class 1 and Class 2 reactor pressure vessel steels. Three different fluence levels of Ar ion irradiation were applied to simulate accelerated irradiation damage conditions. Charpy impact and tensile tests conducted before and after irradiation showed no significant changes in bulk mechanical properties. Stopping and Range of Ions in Matter (SRIM) and Transport of Ions in Matter (TRIM) simulations revealed that Ar ion irradiation produces a shallow penetration depth of approximately 2.5 µm, highlighting the limitations of conventional macro-mechanical testing for evaluating irradiation effects in such a thin surface layer. To overcome this limitation, nano-indentation tests were performed, revealing a clear increase in indentation hardness after irradiation. Transmission electron microscopy (TEM) analysis using STEM–BF imaging confirmed a higher density of irradiation-induced defects in the irradiated specimens. The findings demonstrate that while macro-mechanical properties remain largely unaffected, micro-scale testing methods such as nano-indentation are essential for assessing irradiation-induced hardening in shallowly damaged layers, providing insight into the behavior of SA508 reactor pressure vessel steels under accelerated irradiation conditions. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

11 pages, 10889 KB  
Article
Post-Irradiation Annealing of Bi Ion Tracks in Si3N4: In-Situ and Ex-Situ Transmission Electron Microscopy Study
by Anel Ibrayeva, Jacques O’Connell, Ruslan Rymzhanov, Arno Janse van Vuuren and Vladimir Skuratov
Crystals 2025, 15(10), 852; https://doi.org/10.3390/cryst15100852 - 30 Sep 2025
Viewed by 304
Abstract
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room [...] Read more.
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room temperature to 1000 °C in 50 °C increments, each held for 10 s. We observed a steady decrease in both the size and number of tracks, with only a small number of residual crystalline defects remaining at 1000 °C. Ex-situ annealing experiments were conducted at 400 °C, 700 °C, and 1000 °C for durations of 10, 20, and 30 min. Complete restoration of the crystalline lattice occurred after 30 min at 700 °C and 20 min at 1000 °C. Due to inherent differences in geometry, heat flow, and stress conditions between thin lamella and bulk specimens, in-situ and ex-situ results cannot be compared. Molecular dynamics simulations further revealed that track shrinkage begins in cells within picoseconds, supporting the notion that recrystallization can start on very short timescales. Overall, these findings demonstrate that thermal recrystallization of damage induced by swift heavy ion irradiation in polycrystalline Si3N4 is possible. This study provides a foundation for future research aimed at better understanding radiation damage recovery in this material. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

16 pages, 4578 KB  
Article
Thermal Stability of Color Centers in Lithium Fluoride Crystals Irradiated with Electrons and N, O, Kr, U Ions
by Zhadra Malikova, Zhakyp T. Karipbayev, Abdirash Akilbekov, Alma Dauletbekova, Anatoli I. Popov, Vladimir N. Kuzovkov, Ainash Abdrakhmetova, Alyona Russakova and Muratbek Baizhumanov
Materials 2025, 18(19), 4441; https://doi.org/10.3390/ma18194441 - 23 Sep 2025
Viewed by 874
Abstract
Lithium fluoride (LiF) crystals are widely employed both as optical windows transparent in the ultraviolet spectral region and as efficient personal dosimeters, with their application scope recently expanding into lithium-ion technologies. Moreover, as an alkali halide crystal (AHC), LiF serves as a model [...] Read more.
Lithium fluoride (LiF) crystals are widely employed both as optical windows transparent in the ultraviolet spectral region and as efficient personal dosimeters, with their application scope recently expanding into lithium-ion technologies. Moreover, as an alkali halide crystal (AHC), LiF serves as a model system for studying and simulating radiation effects in solids. This work identifies radiation-induced defects formed in lithium fluoride upon irradiation with swift heavy ion beams (N, O, Kr, U) and intense pulsed electron beams, investigates their thermal stability, and performs computer modeling of annealing processes. The theoretical analysis of existing experimental kinetics for F-centers induced by electron and heavy ion irradiation reveals considerable differences in the activation energies for interstitial migration. A strong correlation between the activation energy Ea and the pre-exponential factor X(Ea) is observed; notably, X(Ea) is no longer constant but closely matches the potential function Ea. Indeed, with increasing irradiation dose, both the migration energy Ea and pre-exponential factor X decrease simultaneously, leading to an effective increase in the defect diffusion rate. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

16 pages, 1119 KB  
Article
Simulated Photoabsorption Spectra for Singly and Multiply Charged Ions
by Stephan Fritzsche, Aloka Kumar Sahoo, Lalita Sharma and Stefan Schippers
Atoms 2025, 13(9), 77; https://doi.org/10.3390/atoms13090077 - 3 Sep 2025
Viewed by 492
Abstract
Simulated (or measured) photoabsorption spectra often provide the first indication of how matter interacts with light when irradiated by some radiation source. In addition to the direct, often slowly varying photoabsorption cross-section as a function of the incident photon frequency, such spectra typically [...] Read more.
Simulated (or measured) photoabsorption spectra often provide the first indication of how matter interacts with light when irradiated by some radiation source. In addition to the direct, often slowly varying photoabsorption cross-section as a function of the incident photon frequency, such spectra typically exhibit numerous resonances and edges arising from the interaction of the radiation field with the subvalence or even inner-shell electrons. Broadly speaking, these resonances reflect photoexcitation, with its subsequent fluorescence, or the autoionization of bound electrons. Here, a (relativistic) cascade model is developed for estimating the photoabsorption of (many) atoms and multiply charged ions with a complex shell structure across the periodic table. This model helps distinguish between level- and shell-resolved, as well as total photoabsorption, cross-sections, starting from admixtures of selected initial-level populations. Examples are shown for the photoabsorption of C+ ions near the 1s − 2p excitation threshold and for Xe2+ ions in the photon energy range from 10 to 200 eV. While the accuracy and resolution of the predicted photoabsortion spectra remain limited due to the additive treatment of resonances and because of missing electronic correlations in the representation of the levels involved, the present implementation is suitable for ions with quite different open-shell structures and may support smart surveys of resonances along different isoelectronic sequences. Full article
Show Figures

Figure 1

18 pages, 3493 KB  
Article
Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery
by Ahmed Fathy and Ahmed M. Agwa
Electrochem 2025, 6(3), 27; https://doi.org/10.3390/electrochem6030027 - 31 Jul 2025
Viewed by 794
Abstract
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique [...] Read more.
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique is the battery storage system since its cost is low compared to other techniques. Therefore, batteries are employed in several applications like power systems, electric vehicles, and smart grids. Due to the merits of the lithium-ion (Li-ion) battery, it is preferred over other kinds of batteries. However, the accuracy of the Li-ion battery model is essential for estimating the state of charge (SOC). Additionally, it is essential for consistent simulation and operation throughout various loading and charging conditions. Consequently, the determination of real battery model parameters is vital. An innovative application of the red-billed blue magpie optimizer (RBMO) for determining the model parameters and the SOC of the Li-ion battery is presented in this article. The Shepherd model parameters are determined using the suggested optimization algorithm. The RBMO-based modeling approach offers excellent execution in determining the parameters of the battery model. The suggested approach is compared to other programmed algorithms, namely dandelion optimizer, spider wasp optimizer, barnacles mating optimizer, and interior search algorithm. Moreover, the suggested RBMO is statistically evaluated using Kruskal–Wallis, ANOVA tables, Friedman rank, and Wilcoxon rank tests. Additionally, the Li-ion battery model estimated via the RBMO is validated under variable loading conditions. The fetched results revealed that the suggested approach achieved the least errors between the measured and estimated voltages compared to other approaches in two studied cases with values of 1.4951 × 10−4 and 2.66176 × 10−4. Full article
Show Figures

Figure 1

15 pages, 5148 KB  
Article
Effect of Kr15+ Ion Irradiation on the Structure and Properties of PSZ Ceramics
by Madi Abilev, Almira Zhilkashinova, Leszek Łatka, Alexandr Pavlov, Igor Karpov, Leonid Fedorov and Sergey Gert
Ceramics 2025, 8(3), 95; https://doi.org/10.3390/ceramics8030095 - 31 Jul 2025
Viewed by 508
Abstract
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of [...] Read more.
This article deals with the effect of Kr15+ ion irradiation on the structure and properties of partially stabilized zirconium dioxide (ZrO2 + 3 mol. % Y2O3) ceramics. Ion irradiation is used to simulate radiation damage typical of operating conditions in nuclear reactors and space technology. It is shown that with an increase in the irradiation fluence, point defects are formed, dislocations accumulate, and the crystal lattice parameters change. At high fluences (>1013 ions/cm2), a phase transition of the monoclinic (m-ZrO2) phase to the tetragonal (t-ZrO2) and cubic (c-ZrO2) modifications is observed, which is accompanied by a decrease in the crystallite size and an increase in internal stresses. Changes in the mechanical properties of the material were also observed: at moderate irradiation fluences, strengthening is observed due to the formation of dislocation structures, whereas at high fluences (>1014 ions/cm2), a decrease in strength and a potential amorphization of the structure begins. The change in the phase composition was confirmed by X-ray phase analysis and Raman spectroscopy. The results obtained allow a deeper understanding of the mechanisms of radiation-induced phase transformations in stabilized ZrO2 and can be used in the development of ceramic materials with increased radiation resistance. Full article
Show Figures

Figure 1

16 pages, 3308 KB  
Article
Photocatalytic Degradation of Typical Fibrates by N and F Co-Doped TiO2 Nanotube Arrays Under Simulated Sunlight Irradiation
by Xiangyu Chen, Hao Zhong, Juanjuan Yao, Jingye Gan, Haibing Cong and Tengyi Zhu
Water 2025, 17(15), 2261; https://doi.org/10.3390/w17152261 - 29 Jul 2025
Viewed by 533
Abstract
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical [...] Read more.
Fibrate pharmaceuticals (fibrates), as a widespread class of emerging contaminants, pose potential risks to both ecological systems and human health. The photocatalytic system based on nitrogen (N) and fluorine (F) co-doped TiO2 nanotube arrays (NF-TNAs) provides a renewable solution for fibrate pharmaceutical removal from water, powered by inexhaustible sunlight. In this study, the degradation of two typical fibrates, i.e., bezafibrate (BZF) and ciprofibrate (CPF), under simulated sunlight irradiation through NF-TNAs were investigated. The photocatalytic degradation of BZF/CPF was achieved through combined radical and non-radical oxidation processes, while the generation and reaction mechanisms of associated reactive oxygen species (ROS) were examined. Electron paramagnetic resonance detection and quenching tests confirmed the existence of h+, •OH, O2•−, and 1O2, with O2•− playing the predominant role. The transformation products (TPs) of BZF/CPF were identified through high-resolution mass spectrometry analysis combined with quantum chemical calculations to elucidate the degradation pathways. The influence of co-existing ions and typical natural organic matters (NOM) on BZF/CPF degradation were also tested. Eventually, the ecological risk of BZF/CPF transformation products was assessed through quantitative structure–activity relationship (QSAR) modeling, and the results showed that the proposed photocatalytic system can largely alleviate fibrate toxicity. Full article
Show Figures

Graphical abstract

16 pages, 5631 KB  
Article
Comprehensive Study of Proton and Heavy Ion-Induced Damages for Cascode GaN-Based HEMTs
by Huixiang Huang, Zhipeng Wu, Chao Peng, Hanxin Shen, Xiaoqiang Wu, Jianqun Yang, Zhifeng Lei, Xiuhai Cui, Teng Ma, Zhangang Zhang, Yujuan He, Yiqiang Chen and Guoguang Lu
Electronics 2025, 14(13), 2653; https://doi.org/10.3390/electronics14132653 - 30 Jun 2025
Viewed by 791
Abstract
Proton and heavy ion irradiation experiments were carried out on Cascode GaN HEMT devices. Results show that device degradation from heavy ion irradiation is more significant than from proton irradiation. Under proton irradiation, obvious device degradation occurred. Low-frequency noise testing revealed a notable [...] Read more.
Proton and heavy ion irradiation experiments were carried out on Cascode GaN HEMT devices. Results show that device degradation from heavy ion irradiation is more significant than from proton irradiation. Under proton irradiation, obvious device degradation occurred. Low-frequency noise testing revealed a notable increase in internal defect density, reducing channel carrier concentration and mobility, and causing electrical performance degradation. Under heavy ion irradiation, devices suffered from single-event burnout (SEB) and exhibited increased leakage current. Failure analysis of post-irradiation devices showed that those with leakage current increase had conductive channels without morphological changes, while burned out devices showed obvious damage between the gate and drain regions. SRIM simulation indicated that ionization energy loss-induced electron–hole pairs and displacement damage from nuclear energy loss were the main causes of degradation. Sentaurus TCAD simulation of heavy ion irradiated GaN HEMT devices confirmed the mechanisms of leakage current increase and SEB. Full article
Show Figures

Figure 1

14 pages, 1097 KB  
Article
Modeling the Impact of Viscosity on Fricke Gel Dosimeter Radiolysis: A Radiation Chemical Simulation Approach
by Sumaiya Akhter Ria, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Gels 2025, 11(7), 489; https://doi.org/10.3390/gels11070489 - 24 Jun 2025
Cited by 1 | Viewed by 781
Abstract
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in [...] Read more.
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in both standard and gel-like Fricke systems of varying viscosities, under low- and high-linear energy transfer (LET) conditions. We employed our Monte Carlo track chemistry code IONLYS-IRT, using protons of 300 MeV (LET~0.3 keV/µm) and 1 MeV (LET~25 keV/µm) as radiation sources. To assess the impact of viscosity on G(Fe3+), we systematically varied the diffusion coefficients of all radiolytic species in the Fricke gel, including Fe2+ and Fe3+ ions. Increasing gel viscosity reduces Fe3+ diffusion and stabilizes spatial dose distributions but also lowers G(Fe3+), compromising measurement accuracy and sensitivity—especially under high-LET irradiation. Our results show that an optimal Fricke gel dosimeter must balance these competing factors. Simulations with lower sulfuric acid concentrations (e.g., 0.05 M vs. 0.4 M) further revealed that G(Fe3+) values at ~100 s are nearly identical for both low- and high-LET conditions. This study underscores the utility of Monte Carlo simulations in modeling viscosity effects on Fricke gel radiolysis, guiding dosimeter optimization to maximize sensitivity and accuracy while preserving spatial dose distribution integrity. Full article
(This article belongs to the Special Issue Application of Gel Dosimetry)
Show Figures

Figure 1

10 pages, 1554 KB  
Article
Investigating the Secondary Thermal Neutron Intensity of Neutron Capture-Enhanced Proton Therapy
by Takahiro Shimo, Shintaro Shiba, Hiroyuki Watanabe, Masashi Yamanaka, Kazuki Matsumoto, Akihiro Yamano, Hisato Nagano and Kohichi Tokuuye
Appl. Sci. 2025, 15(12), 6833; https://doi.org/10.3390/app15126833 - 17 Jun 2025
Viewed by 629
Abstract
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 [...] Read more.
This study aimed to investigate the distribution of thermal neutron fluence generated during proton-beam therapy (PBT) scanning, focusing on neutrons produced within the body using Monte Carlo simulations (MCSs). MCSs used the Particle and Heavy Ion Treatment Code System to define a 35 × 35 × 35 cm3 water phantom, and proton-beam energies ranging from 70.2 to 228.7 MeV were investigated. The MCS results were compared with neutron fluence measurements obtained from gold activation analysis, showing good agreement with a difference of 3.54%. The internal thermal neutron distribution generated by PBT was isotropic around the proton-beam axis, with the Bragg peak depth varying between 3.45 and 31.9 cm, while the thermal neutron peak depth ranged from 5.41 to 15.9 cm. Thermal neutron generation depended on proton-beam energy, irradiated particle count, and depth. Particularly, the peak of the thermal neutron fluence did not occur within the treatment target volume but in a location outside the target, closer to the source. This discrepancy between the Bragg peak and the thermal neutron fluence peak is a key finding of this study. These data are crucial for optimizing beam angles to maximize dose enhancement within the target during clinical applications of neutron capture-enhanced particle therapy. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

14 pages, 4970 KB  
Article
Correlation of the Microstructural, Chemical, Luminescent, and Photocatalytic Properties of SrGd2O4 Doped with Rare Earth Ions
by Tijana Stamenković and Vesna Lojpur
Catalysts 2025, 15(6), 522; https://doi.org/10.3390/catal15060522 - 26 May 2025
Viewed by 765
Abstract
This study evaluated the relationship between the microstructure, photoluminescence, and photocatalytic properties of newly synthesized nanostructured phosphor materials. The combustion method was used to create samples of down-converting SrGd2O4 doped with Dy3+ ions (1, and 7 at%) and up-converting [...] Read more.
This study evaluated the relationship between the microstructure, photoluminescence, and photocatalytic properties of newly synthesized nanostructured phosphor materials. The combustion method was used to create samples of down-converting SrGd2O4 doped with Dy3+ ions (1, and 7 at%) and up-converting SrGd2O4 co-doped with varying quantities of Yb3+ ions (2, and 6 at%) and a constant quantity of Ho3+ ions (1 at%). Transmission electron microscopy (TEM) revealed the existence of porous agglomerated round-shaped particles, with the size around 150 nm, arranged in network-like structures. Energy dispersive X-ray spectroscopy (EDS) confirmed the presence of all structural elements and their homogeneous distribution throughout the particles. The presence of specific emission peaks associated with Dy3+ or Ho3+ dopant ions was demonstrated by luminescent measurement. The degradation processes of specific organic dyes (methylene blue for up-converters and rhodamine B for down-converters) under simulated sun irradiation were used to investigate photocatalytic activity. A reduction in dye concentration in aqueous solutions was measured using UV/Vis absorption spectroscopy. The results showed a successful dye breakdown rate after 4 h, and aliquots of the working solutions were obtained at precise intervals. Additionally, the results indicated that samples with the highest luminescence intensity exhibited superior photocatalytic activity, suggesting a significant promise for usage as multifunctional materials. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis for Environmental Applications)
Show Figures

Graphical abstract

11 pages, 883 KB  
Article
Rate Equation Analysis of the Effect of Damage Distribution on Defect Evolution in Self-Ion Irradiated Fe
by Toshimasa Yoshiie
Metals 2025, 15(5), 555; https://doi.org/10.3390/met15050555 - 17 May 2025
Viewed by 564
Abstract
Ion irradiations have a damage peak near the beam incident surface. A simulation model with reaction kinetic analysis using rate equations was employed to study the defect evolution caused by localized damage distribution in self-ion irradiated iron. Comparisons were made between the localized [...] Read more.
Ion irradiations have a damage peak near the beam incident surface. A simulation model with reaction kinetic analysis using rate equations was employed to study the defect evolution caused by localized damage distribution in self-ion irradiated iron. Comparisons were made between the localized damage irradiation by ions (the damage peak near the specimen surface) and homogeneous damage irradiation (the flat damage rate across the specimen) such as those caused by neutron irradiation. The irradiation conditions were as follows: the accelerating voltage was 2 MeV and 100 MeV, the irradiation temperatures was 273 K and 573 K, the damage rate was 1 × 10−5 dpa/s, and the total damage was 1 dpa. The distribution of residual point defects in clusters is complex due to the influence of the surface and the sharp distribution of the damage peak. The effects of the damage distributions on defect production were obtained, revealing a dependence on irradiation temperatures. At 573 K irradiation, localized damage irradiation produced higher residual interstitials than homogeneous damage irradiation when using the peak damage rate. The 100 MeV irradiation was more prominent than 2 MeV irradiation. However, the remaining vacancies were almost identical. At 273 K irradiation, the residual point defects, interstitials, and vacancies, were nearly identical in both the localized and homogeneous damage irradiations, even if the accelerating voltage was different. Full article
Show Figures

Graphical abstract

18 pages, 4886 KB  
Article
Kinetics of Different Substituted Phenolic Compounds’ Aqueous OH Oxidation in Atmosphere
by Dandan Hu, Zixuan Wang, Eleonora Aruffo, Xuanli Dai, Zhuzi Zhao and Zhaolian Ye
Atmosphere 2025, 16(5), 567; https://doi.org/10.3390/atmos16050567 - 9 May 2025
Cited by 1 | Viewed by 1861
Abstract
Atmospheric aqueous-phase reactions have been recognized as an important source of secondary organic aerosols (SOAs). However, the unclear reaction kinetics and mechanics hinder the in-depth understanding of the SOA sources and formation processes. This study selected ten different substituted phenolic compounds (termed as [...] Read more.
Atmospheric aqueous-phase reactions have been recognized as an important source of secondary organic aerosols (SOAs). However, the unclear reaction kinetics and mechanics hinder the in-depth understanding of the SOA sources and formation processes. This study selected ten different substituted phenolic compounds (termed as PhCs) emitted from biomass burning as precursors, to investigate the kinetics using OH oxidation reactions under simulated sunlight. The factors influencing reaction rates were examined, and the contribution of reactive oxygen species (ROS) was evaluated through quenching and kinetic analysis experiments. The results showed that the pseudo-first-order rate constants (kobs) for the OH oxidation of phenolic compounds ranged from 1.03 × 10−4 to 7.85 × 10−4 s−1 under simulated sunlight irradiation with an initial H2O2 concentration of 3 mM. Precursors with electron-donating groups (-OH, -OCH3, -CH3, etc.) exhibited higher electrophilic radical reactivity due to the enhanced electron density of the benzene ring, leading to higher reaction rates than those with electron-withdrawing groups (-NO2, -CHO, -COOH). At pH 2, the second-order reaction rate (kPhCs, OH) was lower than at pH 5. However, the kobs did not show dependence on pH. The presence of O2 facilitated substituted phenols’ photodecay. Inorganic salts and transition metal ions exhibited varying effects on reaction rates. Specifically, NO3 and Cu2+ promoted kPhCs, OH, Cl significantly enhanced the reaction at pH 2, while SO42− inhibited the reaction. The kPhCs, OH were determined to be in the range of 109~1010 L mol−1 s−1 via the bimolecular rate method, and a modest relationship with their oxidation potential was found. Additionally, multiple substituents can suppress the reactivity of phenolic compounds toward •OH based on Hammett plots. Quenching experiments revealed that •OH played a dominant role in phenolic compound degradation (exceeding 65%). Electron paramagnetic resonance confirmed the generation of singlet oxygen (1O2) in the system, and probe-based quantification further explored the concentrations of •OH and 1O2 in the system. Based on reaction rates and concentrations, the atmospheric aqueous-phase lifetimes of phenolic compounds were estimated, providing valuable insights for expanding atmospheric kinetic databases and understanding the chemical transformation and persistence of phenolic substances in the atmosphere. Full article
(This article belongs to the Special Issue Coordinated Control of PM2.5 and O3 and Its Impacts in China)
Show Figures

Figure 1

Back to TopTop