Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = intrinsically disordered proteins (IDP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 790 KiB  
Review
Not Just PA28γ: What We Know About the Role of PA28αβ in Carcinogenesis
by Paolo Cascio
Biomolecules 2025, 15(6), 880; https://doi.org/10.3390/biom15060880 - 16 Jun 2025
Viewed by 396
Abstract
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover [...] Read more.
The ubiquitin-proteasome pathway performs a strictly controlled degradation of specific protein substrates within the eukaryotic cell. This catabolic mechanism allows the rapid removal of proteins damaged in any way, and therefore potentially capable of compromising cellular homeostasis, as well as the constant turnover of all cellular proteins, in order to balance their synthesis and thus maintain the correct levels of proteins required by the cell at any given time. Consequently, the ubiquitin-proteasome system plays a fundamental role in regulating essential cellular processes, such as the cell cycle, apoptosis, immune responses, and inflammation, whose dysregulation or malfunction can lead to neoplastic transformation. Not surprisingly, therefore, alterations in the activity and regulatory mechanisms of the proteasome are common not only in various types of tumors, but often represent a contributing cause of oncogenesis itself. Among proteasome modulators, PA28γ, due to its function in promoting cell growth and proliferation, while inhibiting apoptosis and cell-mediated immune responses, has received great attention in recent years for its well established pro-tumoral activity. Conversely, the role played in oncogenesis by the second paralogue of the PA28 family of proteasome activators, namely PA28αβ, is less clearly defined, which is also related to the lower level of general understanding of its cellular activities and biological functions. However, increasing experimental evidence has demonstrated that PA28αβ also plays a non-secondary role in the process of neoplastic transformation and tumor growth, both by virtue of its regulatory function on class I cell-mediated immune responses and through activity promoting cell duplication and growth. This review aims to summarize the current knowledge and evidence on the molecular mechanisms and cellular functions through which PA28αβ may support development and growth of cancer. Full article
Show Figures

Figure 1

20 pages, 6095 KiB  
Article
Phase-Separated Multienzyme Condensates for Efficient Synthesis of Imines from Carboxylic Acids with Enhanced Dual-Cofactor Recycling
by Tingxiao Guo, Lifang Zeng, Jiaxu Liu, Xiaoyan Zhang and Yunpeng Bai
Int. J. Mol. Sci. 2025, 26(10), 4795; https://doi.org/10.3390/ijms26104795 - 16 May 2025
Cited by 1 | Viewed by 463
Abstract
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle [...] Read more.
Enzyme catalysis represents a promising approach for sustainable chemical synthesis, yet its industrial applications face limitations due to the inefficient regeneration and high cost of essential cofactors, such as adenosine-5′-triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). While natural metabolic systems efficiently recycle cofactors through spatially organized enzymes, replicating this efficiency in vitro remains challenging. Here, we prepare a five-enzyme condensate system using liquid–liquid phase separation (LLPS) mediated by intrinsically disordered proteins (IDPs). By colocalizing a carboxylic acid reductase from Norcadia iowensis (NiCAR) with a reductive aminase from Aspergillus oryzae (AspRedAm) and three cofactor-regenerating enzymes, we generated a phase-separated catalytic condensate that enhanced ATP and NADPH recycling efficiency by 4.7-fold and 1.9-fold relative to free enzymes, respectively. Catalytic performance was correlated with the extent of phase separation, as confirmed by fluorescence microscopy, which revealed clear enrichment of ATP and NADPH within the condensates. This proximity effect enabled efficient cofactor turnover in the one-step reaction, achieving substrate conversion above 90% within 6 h and enhancing the space–time yield (STY) of the chiral imines 1.6-fold, with only one-fifth of the standard cofactor load. This approach creates a scalable and economic tool for performing multienzyme cascade reactions in vitro that are driven by the efficient recycling of multiple cofactors. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

24 pages, 2232 KiB  
Review
Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications
by Chih Hung Lo, Lenny Yi Tong Cheong and Jialiu Zeng
Nanomaterials 2025, 15(10), 704; https://doi.org/10.3390/nano15100704 - 8 May 2025
Viewed by 994
Abstract
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate [...] Read more.
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). Misfolded IDPs are prone to aggregate into oligomers and fibrils, exacerbating disease progression by disrupting cellular functions in the central nervous system, triggering neuroinflammation and neurodegeneration. Furthermore, aggregated IDPs exhibit prion-like behavior, acting as seeds that are released into the extracellular space, taken up by neighboring cells, and have a propagating pathology across different regions of the brain. Conventional inhibitors, such as small molecules, peptides, and antibodies, face challenges in stability and blood–brain barrier penetration, limiting their efficacy. In recent years, nanotechnology-based strategies, such as multifunctional nanoplatforms or nanoparticles, have emerged as promising tools to address these challenges. These nanoplatforms leverage tailored designs to prevent or remodel the aggregation of IDPs and reduce associated neurotoxicity. This review discusses recent advances in nanoplatforms designed to target tau, Aβ, and αSyn aggregation, with a focus on their roles in reducing neuroinflammation and neurodegeneration. We examine critical aspects of nanoplatform design, including the choice of material backbone and targeting moieties, which influence interactions with IDPs. We also highlight key mechanisms including the interaction between nanoplatforms and IDPs to inhibit their aggregation, redirect aggregation cascade towards nontoxic, off-pathway species, and disrupt fibrillar structures into soluble forms. We further outline future directions for enhancing IDP clearance, achieving spatiotemporal control, and improving cell-specific targeting. These nanomedicine strategies offer compelling paths forward for developing more effective and targeted therapies for neurodegenerative diseases. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

43 pages, 5385 KiB  
Article
Hypothermia Shifts Neurodegeneration Phenotype in Neonatal Human Hypoxic–Ischemic Encephalopathy but Not in Related Piglet Models: Possible Relationship to Toxic Conformer and Intrinsically Disordered Prion-like Protein Accumulation
by Lee J. Martin, Jennifer K. Lee, Mark V. Niedzwiecki, Adriana Amrein Almira, Cameron Javdan, May W. Chen, Valerie Olberding, Stephen M. Brown, Dongseok Park, Sophie Yohannan, Hasitha Putcha, Becky Zheng, Annalise Garrido, Jordan Benderoth, Chloe Kisner, Javid Ghaemmaghami, Frances J. Northington and Panagiotis Kratimenos
Cells 2025, 14(8), 586; https://doi.org/10.3390/cells14080586 - 12 Apr 2025
Viewed by 1869
Abstract
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We [...] Read more.
Hypothermia (HT) is used clinically for neonatal hypoxic–ischemic encephalopathy (HIE); however, the brain protection is incomplete and selective regional vulnerability and lifelong consequences remain. Refractory damage and impairment with HT cooling/rewarming could result from unchecked or altered persisting cell death and proteinopathy. We tested two hypotheses: (1) HT modifies neurodegeneration type, and (2) intrinsically disordered proteins (IDPs) and encephalopathy cause toxic conformer protein (TCP) proteinopathy neonatally. We studied postmortem human neonatal HIE cases with or without therapeutic HT, neonatal piglets subjected to global hypoxia-ischemia (HI) with and without HT or combinations of HI and quinolinic acid (QA) excitotoxicity surviving for 29–96 h to 14 days, and human oligodendrocytes and neurons exposed to QA for cell models. In human and piglet encephalopathies with normothermia, the neuropathology by hematoxylin and eosin staining was similar; necrotic cell degeneration predominated. With HT, neurodegeneration morphology shifted to apoptosis-necrosis hybrid and apoptotic forms in human HIE, while neurons in HI piglets were unshifting and protected robustly. Oligomers and putative TCPs of α-synuclein (αSyn), nitrated-Syn and aggregated αSyn, misfolded/oxidized superoxide dismutase-1 (SOD1), and prion protein (PrP) were detected with highly specific antibodies by immunohistochemistry, immunofluorescence, and immunoblotting. αSyn and SOD1 TCPs were seen in human HIE brains regardless of HT treatment. αSyn and SOD1 TCPs were detected as early as 29 h after injury in piglets and QA-injured human oligodendrocytes and neurons in culture. Cell immunophenotyping by immunofluorescence showed αSyn detected with antibodies to aggregated/oligomerized protein; nitrated-Syn accumulated in neurons, sometimes appearing as focal dendritic aggregations. Co-localization also showed aberrant αSyn accumulating in presynaptic terminals. Proteinase K-resistant PrP accumulated in ischemic Purkinje cells, and their target regions had PrP-positive neuritic plaque-like pathology. Immunofluorescence revealed misfolded/oxidized SOD1 in neurons, axons, astrocytes, and oligodendrocytes. HT attenuated TCP formation in piglets. We conclude that HT differentially affects brain damage in humans and piglets. HT shifts neuronal cell death to other forms in human while blocking ischemic necrosis in piglet for sustained protection. HI and excitotoxicity also acutely induce formation of TCPs and prion-like proteins from IDPs globally throughout the brain in gray matter and white matter. HT attenuates proteinopathy in piglets but seemingly not in humans. Shifting of cell death type and aberrant toxic protein formation could explain the selective system vulnerability, connectome spreading, and persistent damage seen in neonatal HIE leading to lifelong consequences even after HT treatment. Full article
(This article belongs to the Special Issue Perinatal Brain Injury—from Pathophysiology to Therapy)
Show Figures

Figure 1

24 pages, 4293 KiB  
Article
Conformational Analyses of the AHD1-UBAN Region of TNIP1 Highlight Key Amino Acids for Interaction with Ubiquitin
by Michael L. Samulevich, Liam E. Carman, Rambon Shamilov and Brian J. Aneskievich
Biomolecules 2025, 15(3), 453; https://doi.org/10.3390/biom15030453 - 20 Mar 2025
Viewed by 676
Abstract
Tumor necrosis factor ɑ (TNFɑ)-induced protein 3 (TNFAIP3)-interacting protein 1 (TNIP1) is genetically and functionally linked to limiting auto-immune and inflammatory responses. We have shown that TNIP1 (alias A20-binding inhibitor of NF-κB 1, ABIN1), functioning as a hub location to coordinate other proteins [...] Read more.
Tumor necrosis factor ɑ (TNFɑ)-induced protein 3 (TNFAIP3)-interacting protein 1 (TNIP1) is genetically and functionally linked to limiting auto-immune and inflammatory responses. We have shown that TNIP1 (alias A20-binding inhibitor of NF-κB 1, ABIN1), functioning as a hub location to coordinate other proteins in repressing inflammatory signaling, aligns with biophysical traits indicative of its being an intrinsically disordered protein (IDP). IDPs move through a repertoire of three-dimensional structures rather than being in one set conformation. Here we employed bioinformatic analysis and biophysical interventions via amino acid mutations to assess and alter, respectively, conformational flexibility along a crucial region of TNIP1, encompassing the ABIN homology domain 1 and ubiquitin-binding domain in ABIN proteins and NEMO (AHD1-UBAN), by purposeful replacement of key residues. In vitro secondary structure measurements were mostly in line with, but not necessarily to the same degree as, expected results from in silico assessments. Notably, changes in single amino acids outside of the ubiquitin-binding region for gain-of-order effects had consequences along the length of the AHD1-UBAN propagating to that region. This is evidenced by differences in recognition of the partner protein polyubiquitin ≥ 28 residues away, depending on the mutation site, from the previously identified key binding site. These findings serve to demonstrate the role of conformational flexibility in protein partner recognition by TNIP1, thus identifying key amino acids likely to impact the molecular dynamics involved in TNIP1 repression of inflammatory signaling at large. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

17 pages, 3730 KiB  
Article
Genome-Wide Characterization of Wholly Disordered Proteins in Arabidopsis
by Wenfen Long, Liang Zhao, Huimin Yang, Xinyi Yang, Yulong Bai, Xiuhua Xue, Doudou Wang and Shengcheng Han
Int. J. Mol. Sci. 2025, 26(3), 1117; https://doi.org/10.3390/ijms26031117 - 28 Jan 2025
Viewed by 1177
Abstract
Intrinsically disordered proteins (IDPs) include two types of proteins: partial disordered regions (IDRs) and wholly disordered proteins (WDPs). Extensive studies focused on the proteins with IDRs, but less is known about WDPs because of their difficult-to-form folded tertiary structure. In this study, we [...] Read more.
Intrinsically disordered proteins (IDPs) include two types of proteins: partial disordered regions (IDRs) and wholly disordered proteins (WDPs). Extensive studies focused on the proteins with IDRs, but less is known about WDPs because of their difficult-to-form folded tertiary structure. In this study, we developed a bioinformatics method for screening more than 50 amino acids in the genome level and found a total of 27 categories, including 56 WDPs, in Arabidopsis. After comparing with 56 randomly selected structural proteins, we found that WDPs possessed a more wide range of theoretical isoelectric point (PI), a more negative of Grand Average of Hydropathicity (GRAVY), a higher value of Instability Index (II), and lower values of Aliphatic Index (AI). In addition, by calculating the FCR (fraction of charged residue) and NCPR (net charge per residue) values of each WDP, we found 20 WDPs in R1 (FCR < 0.25 and NCPR < 0.25) group, 15 in R2 (0.25 ≤ FCR ≤ 0.35 and NCPR ≤ 0.35), 19 in R3 (FCR > 0.35 and NCPR ≤ 0.35), and two in R4 (FCR > 0.35 and NCPR > 0.35). Moreover, the gene expression and protein-protein interaction (PPI) network analysis showed that WDPs perform different biological functions. We also showed that two WDPs, SIS (Salt Induced Serine rich) and RAB18 (a dehydrin family protein), undergo the in vitro liquid-liquid phase separation (LLPS). Therefore, our results provide insight into understanding the biochemical characters and biological functions of WDPs in plants. Full article
(This article belongs to the Special Issue Structure, Function and Dynamics in Proteins: 2nd Edition)
Show Figures

Figure 1

17 pages, 1983 KiB  
Article
Kinetics of Polyampholyte Dimerization: Influence of Charge Sequences
by Seowon Kim, Nam-Kyung Lee, Youngkyun Jung and Albert Johner
Polymers 2024, 16(20), 2928; https://doi.org/10.3390/polym16202928 - 18 Oct 2024
Cited by 2 | Viewed by 1031
Abstract
Polyampholytes (PAs) exhibit complex behaviors in various environments influenced by their charge distribution. This study focuses on the kinetics of dimerization of PAs, aiming to elucidate the underlying mechanisms and clarify relevant characteristics of the charge sequence. We focus on PAs with non-zero [...] Read more.
Polyampholytes (PAs) exhibit complex behaviors in various environments influenced by their charge distribution. This study focuses on the kinetics of dimerization of PAs, aiming to elucidate the underlying mechanisms and clarify relevant characteristics of the charge sequence. We focus on PAs with non-zero net charges, employing molecular dynamics simulations and theoretical analyses to examine how charge sequences influence the rates of dimer formation and dissociation. Our findings reveal that the charge sequence of tails and the blockiness of the minority charge group markedly influence the kinetics of dimerization: large blockiness and tails with a high number of majority-type charges slow down the dissociation of dimers. Additionally, the presence of an extended (central) block of the majority charge promotes structural diversity. Within dimer states, blocks alternate between intra- and inter-chain contacts. The duration times in the dimer states are significantly longer than the typical dwell times of block inter-contacts, with a notable extension when multiple blocks are engaged. Intrinsically disordered proteins (IDPs) play crucial roles in cellular functions, primarily due to their ability to undergo rapid conformational changes and form transient complexes. These properties largely depend on the sequence of charged residues. We provide insights into the fundamental principles governing the structural and dynamical properties of polyampholytic IDP, emphasizing the importance of sequence-specific effects on both aggregation and dissociation. Full article
(This article belongs to the Special Issue Polymer Electrolyte: Recent Progress and Applications)
Show Figures

Figure 1

31 pages, 5219 KiB  
Review
On the Roles of Protein Intrinsic Disorder in the Origin of Life and Evolution
by Vladimir N. Uversky
Life 2024, 14(10), 1307; https://doi.org/10.3390/life14101307 - 15 Oct 2024
Cited by 6 | Viewed by 2452
Abstract
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only [...] Read more.
Obviously, the discussion of different factors that could have contributed to the origin of life and evolution is clear speculation, since there is no way of checking the validity of most of the related hypotheses in practice, as the corresponding events not only already happened, but took place in a very distant past. However, there are a few undisputable facts that are present at the moment, such as the existence of a wide variety of living forms and the abundant presence of intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains and intrinsically disordered regions (IDRs) in all living forms. Since it seems that the currently existing living forms originated from a common ancestor, their variety is a result of evolution. Therefore, one could ask a logical question of what role(s) the structureless and highly dynamic but vastly abundant and multifunctional IDPs/IDRs might have in evolution. This study represents an attempt to consider various ideas pertaining to the potential roles of protein intrinsic disorder in the origin of life and evolution. Full article
(This article belongs to the Special Issue What Is Life?)
Show Figures

Figure 1

14 pages, 2545 KiB  
Article
Investigating the p21 Ubiquitin-Independent Degron Reveals a Dual Degron Module Regulating p21 Degradation and Function
by Marianna Riutin, Pnina Erez, Julia Adler, Assaf Biran, Nadav Myers and Yosef Shaul
Cells 2024, 13(19), 1670; https://doi.org/10.3390/cells13191670 - 9 Oct 2024
Viewed by 1414
Abstract
A group of intrinsically disordered proteins (IDPs) are subject to 20S proteasomal degradation in a ubiquitin-independent manner. Recently, we have reported that many IDPs/IDRs are targeted to the 20S proteasome via interaction with the C-terminus of the PSMA3 subunit, termed the PSMA3 Trapper. [...] Read more.
A group of intrinsically disordered proteins (IDPs) are subject to 20S proteasomal degradation in a ubiquitin-independent manner. Recently, we have reported that many IDPs/IDRs are targeted to the 20S proteasome via interaction with the C-terminus of the PSMA3 subunit, termed the PSMA3 Trapper. In this study, we investigated the biological significance of the IDP–Trapper interaction using the IDP p21. Using a split luciferase reporter assay and conducting detailed p21 mutagenesis, we first identified the p21 RRLIF box, localized at the C-terminus, as mediating the Trapper interaction in cells. To demonstrate the role of this box in p21 degradation, we edited the genome of HEK293 and HeLa cell lines using a CRISPR strategy. We found that the p21 half-life increased in cells with either a deleted or mutated p21 RRLIF box. The edited cell lines displayed an aberrant cell cycle pattern under normal conditions and in response to DNA damage. Remarkably, these cells highly expressed senescence hallmark genes in response to DNA damage, highlighting that the increased p21 half-life, not its actual level, regulates senescence. Our findings suggest that the p21 RRLIF box, which mediates interactions with the PSMA3 Trapper, acts as a ubiquitin-independent degron. This degron is positioned adjacent to the previously identified ubiquitin-dependent degron, forming a dual degron module that functionally regulates p21 degradation and its physiological outcomes. Full article
Show Figures

Figure 1

17 pages, 1893 KiB  
Review
The Disorderly Nature of Caliciviruses
by Vivienne L. Young, Alice M. McSweeney, Matthew J. Edwards and Vernon K. Ward
Viruses 2024, 16(8), 1324; https://doi.org/10.3390/v16081324 - 19 Aug 2024
Cited by 3 | Viewed by 2097
Abstract
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA [...] Read more.
An intrinsically disordered protein (IDP) or region (IDR) lacks or has little protein structure but still maintains function. This lack of structure creates flexibility and fluidity, allowing multiple protein conformations and potentially transient interactions with more than one partner. Caliciviruses are positive-sense ssRNA viruses, containing a relatively small genome of 7.6–8.6 kb and have a broad host range. Many viral proteins are known to contain IDRs, which benefit smaller viral genomes by expanding the functional proteome through the multifunctional nature of the IDR. The percentage of intrinsically disordered residues within the total proteome for each calicivirus type species can range between 8 and 23%, and IDRs have been experimentally identified in NS1-2, VPg and RdRP proteins. The IDRs within a protein are not well conserved across the genera, and whether this correlates to different activities or increased tolerance to mutations, driving virus adaptation to new selection pressures, is unknown. The function of norovirus NS1-2 has not yet been fully elucidated but includes involvement in host cell tropism, the promotion of viral spread and the suppression of host interferon-λ responses. These functions and the presence of host cell-like linear motifs that interact with host cell caspases and VAPA/B are all found or affected by the disordered region of norovirus NS1-2. The IDRs of calicivirus VPg are involved in viral transcription and translation, RNA binding, nucleotidylylation and cell cycle arrest, and the N-terminal IDR within the human norovirus RdRP could potentially drive liquid–liquid phase separation. This review identifies and summarises the IDRs of proteins within the Caliciviridae family and their importance during viral replication and subsequent host interactions. Full article
(This article belongs to the Special Issue Caliciviruses)
Show Figures

Figure 1

46 pages, 8885 KiB  
Article
A Practical Guide to All-Atom and Coarse-Grained Molecular Dynamics Simulations Using Amber and Gromacs: A Case Study of Disulfide-Bond Impact on the Intrinsically Disordered Amyloid Beta
by Pamela Smardz, Midhun Mohan Anila, Paweł Rogowski, Mai Suan Li, Bartosz Różycki and Pawel Krupa
Int. J. Mol. Sci. 2024, 25(12), 6698; https://doi.org/10.3390/ijms25126698 - 18 Jun 2024
Cited by 9 | Viewed by 7754
Abstract
Intrinsically disordered proteins (IDPs) pose challenges to conventional experimental techniques due to their large-scale conformational fluctuations and transient structural elements. This work presents computational methods for studying IDPs at various resolutions using the Amber and Gromacs packages with both all-atom (Amber ff19SB with [...] Read more.
Intrinsically disordered proteins (IDPs) pose challenges to conventional experimental techniques due to their large-scale conformational fluctuations and transient structural elements. This work presents computational methods for studying IDPs at various resolutions using the Amber and Gromacs packages with both all-atom (Amber ff19SB with the OPC water model) and coarse-grained (Martini 3 and SIRAH) approaches. The effectiveness of these methodologies is demonstrated by examining the monomeric form of amyloid-β (Aβ42), an IDP, with and without disulfide bonds at different resolutions. Our results clearly show that the addition of a disulfide bond decreases the β-content of Aβ42; however, it increases the tendency of the monomeric Aβ42 to form fibril-like conformations, explaining the various aggregation rates observed in experiments. Moreover, analysis of the monomeric Aβ42 compactness, secondary structure content, and comparison between calculated and experimental chemical shifts demonstrates that all three methods provide a reasonable choice to study IDPs; however, coarse-grained approaches may lack some atomistic details, such as secondary structure recognition, due to the simplifications used. In general, this study not only explains the role of disulfide bonds in Aβ42 but also provides a step-by-step protocol for setting up, conducting, and analyzing molecular dynamics (MD) simulations, which is adaptable for studying other biomacromolecules, including folded and disordered proteins and peptides. Full article
(This article belongs to the Special Issue Molecular Simulation and Modeling)
Show Figures

Graphical abstract

50 pages, 9208 KiB  
Article
Intrinsic Disorder in the Host Proteins Entrapped in Rabies Virus Particles
by Hafiza Nimra Ashraf and Vladimir N. Uversky
Viruses 2024, 16(6), 916; https://doi.org/10.3390/v16060916 - 4 Jun 2024
Cited by 3 | Viewed by 2872
Abstract
A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: [...] Read more.
A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies. Full article
(This article belongs to the Special Issue Host Cell-Virus Interaction, 3rd Edition)
Show Figures

Figure 1

17 pages, 1877 KiB  
Article
Unveiling the Binding between the Armadillo-Repeat Domain of Plakophilin 1 and the Intrinsically Disordered Transcriptional Repressor RYBP
by Salome Araujo-Abad, Bruno Rizzuti, Miguel Vidal, Olga Abian, María Esther Fárez-Vidal, Adrian Velazquez-Campoy, Camino de Juan Romero and José L. Neira
Biomolecules 2024, 14(5), 561; https://doi.org/10.3390/biom14050561 - 7 May 2024
Viewed by 2172
Abstract
Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell–cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) [...] Read more.
Plakophilin 1 (PKP1), a member of the p120ctn subfamily of the armadillo (ARM)-repeat-containing proteins, is an important structural component of cell–cell adhesion scaffolds although it can also be ubiquitously found in the cytoplasm and the nucleus. RYBP (RING 1A and YY1 binding protein) is a multifunctional intrinsically disordered protein (IDP) best described as a transcriptional regulator. Both proteins are involved in the development and metastasis of several types of tumors. We studied the binding of the armadillo domain of PKP1 (ARM-PKP1) with RYBP by using in cellulo methods, namely immunofluorescence (IF) and proximity ligation assay (PLA), and in vitro biophysical techniques, namely fluorescence, far-ultraviolet (far-UV) circular dichroism (CD), and isothermal titration calorimetry (ITC). We also characterized the binding of the two proteins by using in silico experiments. Our results showed that there was binding in tumor and non-tumoral cell lines. Binding in vitro between the two proteins was also monitored and found to occur with a dissociation constant in the low micromolar range (~10 μM). Finally, in silico experiments provided additional information on the possible structure of the binding complex, especially on the binding ARM-PKP1 hot-spot. Our findings suggest that RYBP might be a rescuer of the high expression of PKP1 in tumors, where it could decrease the epithelial–mesenchymal transition in some cancer cells. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

12 pages, 1810 KiB  
Article
Mesophiles vs. Thermophiles: Untangling the Hot Mess of Intrinsically Disordered Proteins and Growth Temperature of Bacteria
by Alibek Kruglikov and Xuhua Xia
Int. J. Mol. Sci. 2024, 25(4), 2000; https://doi.org/10.3390/ijms25042000 - 7 Feb 2024
Cited by 2 | Viewed by 2124
Abstract
The dynamic structures and varying functions of intrinsically disordered proteins (IDPs) have made them fascinating subjects in molecular biology. Investigating IDP abundance in different bacterial species is crucial for understanding adaptive strategies in diverse environments. Notably, thermophilic bacteria have lower IDP abundance than [...] Read more.
The dynamic structures and varying functions of intrinsically disordered proteins (IDPs) have made them fascinating subjects in molecular biology. Investigating IDP abundance in different bacterial species is crucial for understanding adaptive strategies in diverse environments. Notably, thermophilic bacteria have lower IDP abundance than mesophiles, and a negative correlation with optimal growth temperature (OGT) has been observed. However, the factors driving these trends are yet to be fully understood. We examined the types of IDPs present in both mesophiles and thermophiles alongside those unique to just mesophiles. The shared group of IDPs exhibits similar disorder levels in the two groups of species, suggesting that certain IDPs unique to mesophiles may contribute to the observed decrease in IDP abundance as OGT increases. Subsequently, we used quasi-independent contrasts to explore the relationship between OGT and IDP abundance evolution. Interestingly, we found no significant relationship between OGT and IDP abundance contrasts, suggesting that the evolution of lower IDP abundance in thermophiles may not be solely linked to OGT. This study provides a foundation for future research into the intricate relationship between IDP evolution and environmental adaptation. Our findings support further research on the adaptive significance of intrinsic disorder in bacterial species. Full article
(This article belongs to the Special Issue Protein Structure and Function in Microorganisms)
Show Figures

Figure 1

21 pages, 9299 KiB  
Article
The Proteomic Analysis of Cancer-Related Alterations in the Human Unfoldome
by Victor Paromov, Vladimir N. Uversky, Ayorinde Cooley, Lincoln E. Liburd, Shyamali Mukherjee, Insung Na, Guy W. Dayhoff and Siddharth Pratap
Int. J. Mol. Sci. 2024, 25(3), 1552; https://doi.org/10.3390/ijms25031552 - 26 Jan 2024
Cited by 2 | Viewed by 2964
Abstract
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human [...] Read more.
Many proteins lack stable 3D structures. These intrinsically disordered proteins (IDPs) or hybrid proteins containing ordered domains with intrinsically disordered protein regions (IDPRs) often carry out regulatory functions related to molecular recognition and signal transduction. IDPs/IDPRs constitute a substantial portion of the human proteome and are termed “the unfoldome”. Herein, we probe the human breast cancer unfoldome and investigate relations between IDPs and key disease genes and pathways. We utilized bottom-up proteomics, MudPIT (Multidimensional Protein Identification Technology), to profile differentially expressed IDPs in human normal (MCF-10A) and breast cancer (BT-549) cell lines. Overall, we identified 2271 protein groups in the unfoldome of normal and cancer proteomes, with 148 IDPs found to be significantly differentially expressed in cancer cells. Further analysis produced annotations of 140 IDPs, which were then classified to GO (Gene Ontology) categories and pathways. In total, 65% (91 of 140) IDPs were related to various diseases, and 20% (28 of 140) mapped to cancer terms. A substantial portion of the differentially expressed IDPs contained disordered regions, confirmed by in silico characterization. Overall, our analyses suggest high levels of interactivity in the human cancer unfoldome and a prevalence of moderately and highly disordered proteins in the network. Full article
(This article belongs to the Special Issue Molecular Research of Multi-omics in Cancer)
Show Figures

Figure 1

Back to TopTop