Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (390)

Search Parameters:
Keywords = intestinal bacterial community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 957 KiB  
Review
Biofilm and Antimicrobial Resistance: Mechanisms, Implications, and Emerging Solutions
by Bharmjeet Singh, Manju Dahiya, Vikram Kumar, Archana Ayyagari, Deepti N. Chaudhari and Jayesh J. Ahire
Microbiol. Res. 2025, 16(8), 183; https://doi.org/10.3390/microbiolres16080183 - 6 Aug 2025
Abstract
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum [...] Read more.
Biofilms are a spontaneously formed slimy matrix of extracellular polymeric substances (EPS) enveloping miniature bacterial colonies, which aid in pathogen colonization, shielding the bacteria from antibiotics, as well as imparting them resistance towards the same. Biofilms employ a robust communication mechanism called quorum sensing that serves to keep their population density constant. What is most significant about biofilms is that they contribute to the development of bacterial virulence by providing protection to pathogenic species, allowing them to colonize the host, and also inhibiting the activities of antimicrobials on them. They grow on animate surfaces (such as on teeth and intestinal mucosa, etc.) and inanimate objects (like catheters, contact lenses, pacemakers, endotracheal devices, intrauterine devices, and stents, etc.) alike. It has been reported that as much as 80% of human infections involve biofilms. Serious implications of biofilms include the necessity of greater concentrations of antibiotics to treat common human infections, even contributing to antimicrobial resistance (AMR), since bacteria embedded within biofilms are protected from the action of potential antibiotics. This review explores various contemporary strategies for controlling biofilms, focusing on their modes of action, mechanisms of drug resistance, and innovative approaches to find a solution in this regard. This review interestingly targets the extracellular polymeric matrix as a highly effective strategy to counteract the potential harm of biofilms since it plays a critical role in biofilm formation and significantly contributes to antimicrobial resistance. Full article
Show Figures

Figure 1

23 pages, 2699 KiB  
Article
Changes in L-Carnitine Metabolism Affect the Gut Microbiome and Influence Sexual Behavior Through the Gut–Testis Axis
by Polina Babenkova, Artem Gureev, Irina Sadovnikova, Inna Burakova, Yuliya Smirnova, Svetlana Pogorelova, Polina Morozova, Viktoria Gribovskaya, Dianna Adzhemian and Mikhail Syromyatnikov
Microorganisms 2025, 13(8), 1751; https://doi.org/10.3390/microorganisms13081751 - 26 Jul 2025
Viewed by 393
Abstract
L-carnitine and Mildronate are substances that can significantly rearrange the energy metabolism of cells. This can potentially cause changes in the bacterial composition of the gut microbiome and affect testis functionality and male sexual health. Mice of the C57Bl/6 line were used. Sexual [...] Read more.
L-carnitine and Mildronate are substances that can significantly rearrange the energy metabolism of cells. This can potentially cause changes in the bacterial composition of the gut microbiome and affect testis functionality and male sexual health. Mice of the C57Bl/6 line were used. Sexual behavior was assessed using physiological tests, and gene expression patterns were assessed by qPCR. High-throughput sequencing of mouse fecal microbiota was performed. We showed that long-term administration of Mildronate has no significant effect on the intestinal microbiome, and there was a compensatory increase in the expression of genes involved in fatty acid and leptin metabolism. No impairment of sexual motivation in male mice was observed. Prolonged L-carnitine supplementation caused a decrease in alpha diversity of bacteria and a decrease in some groups of microorganisms that are components of a healthy gut microflora. A correlation was observed between the level of bacteria from Firmicutes phylum, indicators of sexual motivation of mice, and the dynamics of body weight gain. Our results may indicate that metabolic modulators can have a significant impact on the structure of the bacterial community of the gut microbiome, which may influence male sexual health through the gut–semen axis. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

19 pages, 2699 KiB  
Article
Nitrogen Utilization and Ruminal Microbiota of Hu Lambs in Response to Varying Dietary Metabolizable Protein Levels
by Yitao Cai, Jifu Zou, Yibang Zhou, Jinyong Yang, Chong Wang and Huiling Mao
Animals 2025, 15(14), 2147; https://doi.org/10.3390/ani15142147 - 21 Jul 2025
Viewed by 302
Abstract
Optimizing the metabolizable protein level in ruminant diets represents a promising strategy to increase nitrogen use efficiency and mitigate environmental pollution. This study explored the impacts of varying metabolizable protein (MP) levels on amino acid (AA) balance, nitrogen (N) utilization, and the ruminal [...] Read more.
Optimizing the metabolizable protein level in ruminant diets represents a promising strategy to increase nitrogen use efficiency and mitigate environmental pollution. This study explored the impacts of varying metabolizable protein (MP) levels on amino acid (AA) balance, nitrogen (N) utilization, and the ruminal microbiota in Hu lambs. Fifty-four female Hu lambs of 60 d old, with an average body weight (BW) of 18.7 ± 2.37 kg, were randomly allocated to three dietary MP groups: (1) low MP (LMP, 7.38% of DM), (2) moderate MP (MMP, 8.66% of DM), and (3) high MP (HMP, 9.93% of DM). Three lambs with similar BW within each group were housed together in a single pen, serving as one experimental replicate (n = 6). The feeding trial lasted for 60 days with 10 days for adaptation. The final BW of lambs in the MMP and HMP groups increased (p < 0.05) by 5.64% and 5.26%, respectively, compared to the LMP group. Additionally, lambs fed the MMP diet exhibited an 11.6% higher (p < 0.05) average daily gain than those in the LMP group. Increasing dietary MP levels enhanced (p < 0.05) N intake, urinary N, retained N, and percent N retained, but decreased apparent N digestibility (p < 0.05). Urinary uric acid, total purine derivatives, intestinally absorbable dietary protein, microbial crude protein, intestinally absorbable microbial crude protein, and actual MP supply all increased (p < 0.05) with higher MP values in the diet. The plasma concentrations of arginine, lysine, methionine, phenylalanine, threonine, aspartic acid, proline, total essential AAs, and total nonessential AAs were the lowest (p < 0.05) in the LMP group. In the rumen, elevated MP levels led to a significant increase (p < 0.05) in the ammonia N content. The relative abundances of Candidatus_Saccharimonas, Ruminococcus, and Oscillospira were the lowest (p < 0.05), whereas the relative abundances of Terrisporobacter and the Christensenellaceae_R-7_group were the highest (p < 0.05) in the MMP group. In conclusion, the moderate dietary metabolizable protein level could enhance growth performance, balance the plasma amino acid profiles, and increase nitrogen utilization efficiency in Hu lambs, while also altering the rumen bacterial community by increasing beneficial probiotics like the Christensenellaceae_R-7_group. Full article
Show Figures

Figure 1

18 pages, 4199 KiB  
Article
Effects of Antibiotic Residues on Fecal Microbiota Composition and Antimicrobial Resistance Gene Profiles in Cattle from Northwestern China
by Wei He, Xiaoming Wang, Yuying Cao, Cong Liu, Zihui Qin, Yang Zuo, Yiming Li, Fang Tang, Jianjun Dai, Shaolin Wang and Feng Xue
Microorganisms 2025, 13(7), 1658; https://doi.org/10.3390/microorganisms13071658 - 14 Jul 2025
Viewed by 333
Abstract
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the [...] Read more.
Grazing is a free-range farming model commonly practiced in low-external-input agricultural systems. The widespread use of veterinary antibiotics in livestock farming has led to significant environmental accumulation of antibiotic residues and antibiotic resistance genes (ARGs), posing global health risks. This study investigated the antibiotic residues, bacterial community, ARG profiles, and mobile genetic elements (MGEs) in cattle feces from three provinces in western China (Ningxia, Xinjiang, and Inner Mongolia) under grazing modes. The HPLC-MS detection showed that the concentration of tetracycline antibiotics was the highest in all three provinces. Correlation analysis revealed a significant negative correlation between antibiotic residues and the diversity and population abundance of intestinal microbiota. However, the abundance of ARGs was directly proportional to antibiotic residues. Then, the Sankey analysis revealed that the ARGs in the cattle fecal samples were concentrated in 15 human pathogenic bacteria (HPB) species, with 9 of these species harboring multiple drug resistance genes. Metagenomic sequencing revealed that carbapenemase-resistant genes (blaKPC and blaVIM) were also present in considerable abundance, accounting for about 10% of the total ARGs detected in three provinces. Notably, Klebsiella pneumoniae strains carrying blaCTX-M-55 were detected, which had a possibility of IncFII plasmids harboring transposons and IS19, indicating the risk of horizontal transfer of ARGs. This study significantly advances the understanding of the impact of antibiotic residues on the fecal microbiota composition and ARG profiles in grazing cattle from northwestern China. Furthermore, it provides critical insights for the development of rational antibiotic usage strategies and comprehensive public health risk assessments. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

18 pages, 3287 KiB  
Article
Evaluation of the Application Effects of Siniperca chuatsi in Biofloc Systems: A Comparative Study on the Use of Bamboo Flour and Rice Straw as Carbon Sources
by Huiling Zhang, Zhaojie Deng, Shijun Chen, Xi Xiong, Wenhui Zeng, Fang Chen, Huanjiao Tan, Xuran Chen, Canmin Yang, Yuhui He, Dizhi Xie and Lian Gan
Microorganisms 2025, 13(7), 1631; https://doi.org/10.3390/microorganisms13071631 - 10 Jul 2025
Viewed by 348
Abstract
A 56-day trial was conducted to assess the effects of rice straw (RS) and bamboo flour (BF) on growth performance, water quality, gill histology, and the bacterial community of water and the intestine of mandarin fish (Siniperca chuatsi) in biofloc technology [...] Read more.
A 56-day trial was conducted to assess the effects of rice straw (RS) and bamboo flour (BF) on growth performance, water quality, gill histology, and the bacterial community of water and the intestine of mandarin fish (Siniperca chuatsi) in biofloc technology systems. The results showed that mandarin fish in the RS and BF groups had comparable survival rates of 100.00 ± 0.00 and 93.33 ± 3.85%; feed conversion ratios of 1.13 ± 0.02 and 1.40 ± 0.15; and weight gain rates of 112.21 ± 1.56 and 100.92 ± 6.45%, respectively. From days 11 to 56 of the farming period, the BF group was more effective than the RS group in removing total ammonia nitrogen (TAN) and NO2-N, maintaining TAN levels below 0.24 ± 0.05 mg/L. During the early stage of the experiment, the TAN level in the RS group was higher; however, with the supplementation of a carbon source, it gradually decreased and eventually stabilized at 0.13 ± 0.03 mg/L later in the farming period. The secondary gill lamella in the RS group was curved and showed hyperplasia, and the basal gill lamellae showed an increase in the volume of interlamellar cell mass in the BF group. Genes related to denitrification (narG, napA, nirS, nirK, and nosZ) and anammox showed higher expression levels in the BF group than in the RS group, although the differences were not statistically significant (p > 0.05). The results of 16S rRNA sequencing research showed that both treatment groups’ intestinal and water bacterial communities had comparable levels of richness and diversity. Pseudomonas mosselii was the dominant bacterial species in the water. In the BF group, the dominant intestinal species were Bacillus halodurans and Caldalkalibacillus thermarum, while in the RS group, the dominant species was Plesiomonas shigelloides. In conclusion, rice straw and bamboo flour are applicable in BFT systems for mandarin fish culture, with good growth performance and water quality. The BF group showed higher nitrogen removal efficiency and denitrification gene expression than the RS group. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

22 pages, 1183 KiB  
Review
Exploring the Impact of Olive-Derived Bioactive Components on Gut Microbiota: Implications for Digestive Health
by Manuel Garrido-Romero, Marina Díez-Municio and Francisco Javier Moreno
Foods 2025, 14(14), 2413; https://doi.org/10.3390/foods14142413 - 8 Jul 2025
Viewed by 1196
Abstract
Recent advances highlight the crucial role of the gut microbiota in human health and disease, with dietary components emerging as powerful modulators of microbial communities. This review synthesizes current evidence on the effects of olive-derived bioactive compounds, including polyphenols (e.g., hydroxytyrosol, oleuropein or [...] Read more.
Recent advances highlight the crucial role of the gut microbiota in human health and disease, with dietary components emerging as powerful modulators of microbial communities. This review synthesizes current evidence on the effects of olive-derived bioactive compounds, including polyphenols (e.g., hydroxytyrosol, oleuropein or tyrosol), triterpenes and other phytochemicals on gut microbiota composition and function. These compounds have been shown to enhance beneficial bacterial populations such as Lactobacillus and Bifidobacterium, reduce potentially pathogenic taxa, and promote the production of short-chain fatty acids and other health microbial metabolites, reinforcing intestinal barrier integrity. In vitro, in vivo, and clinical studies also reveal the potential of olive bioactives to ameliorate metabolic, inflammatory, and neurocognitive disorders through gut-microbiota-brain axis modulation. Despite promising results, key challenges remain, including interindividual microbiota variability, lack of standardized intervention protocols, and limited human clinical trials. Addressing these gaps through robust translational research could pave the way for microbiota-targeted, personalized nutritional strategies based on olive-derived compounds. Full article
Show Figures

Figure 1

16 pages, 2299 KiB  
Review
Intestinal Microeukaryotes in Fish: A Concise Review of an Underexplored Component of the Microbiota
by Jesús Salvador Olivier Guirado-Flores, Estefanía Garibay-Valdez, Diana Medina-Félix, Francisco Vargas-Albores, Luis Rafael Martínez-Córdova, Yuniel Mendez-Martínez and Marcel Martínez-Porchas
Microbiol. Res. 2025, 16(7), 158; https://doi.org/10.3390/microbiolres16070158 - 8 Jul 2025
Viewed by 390
Abstract
The intestinal microbiota of fish is predominantly composed of prokaryotic microorganisms, with research historically focused on bacteria. In contrast, the role of microeukaryotic organisms in the fish gut remains largely unexplored. This review synthesizes current knowledge on the diversity, ecology, and potential functions [...] Read more.
The intestinal microbiota of fish is predominantly composed of prokaryotic microorganisms, with research historically focused on bacteria. In contrast, the role of microeukaryotic organisms in the fish gut remains largely unexplored. This review synthesizes current knowledge on the diversity, ecology, and potential functions of intestinal microeukaryotes, particularly fungi and protozoans, in teleost fish. Fungi, especially Ascomycota and Basidiomycota phyla members, are consistently identified across species and may contribute to digestion, immune modulation, and microbial homeostasis. Protists, though often viewed as pathogens, also exhibit potential commensal or immunoregulatory roles, including the modulation of bacterial communities through grazing. Other eukaryotic taxa, including metazoan parasites, microalgae, and zooplankton, are commonly found as transient or diet-derived members of the gut ecosystem. While many of these organisms remain poorly characterized, emerging evidence suggests they may play essential roles in host physiology and microbial balance. The review highlights the need for improved detection methodologies, functional studies using gnotobiotic and in vitro models, and multi-kingdom approaches to uncover fish gut microeukaryotes’ ecological and biotechnological potential. Full article
Show Figures

Figure 1

16 pages, 3254 KiB  
Article
Integrated Microbiome–Metabolome Analysis Reveals Intestine–Liver Metabolic Associations in the Moustache Toad
by Shui-Sheng Yu, Jing-Wen Xiang, Lin Zhang, Xiao-Hua Guo, Yu Wang, Guo-Hua Ding and Hua-Li Hu
Animals 2025, 15(13), 1973; https://doi.org/10.3390/ani15131973 - 4 Jul 2025
Viewed by 383
Abstract
The intestinal microbiota regulates host metabolic homeostasis through production of bioactive microbial metabolites. These microorganisms facilitate digestion, enhance immune function, maintain osmoregulation, and support physiological balance via these bioactive compounds, thereby enhancing environmental adaptation. Our study investigated intestinal microbiota–liver metabolic interactions in Leptobrachium [...] Read more.
The intestinal microbiota regulates host metabolic homeostasis through production of bioactive microbial metabolites. These microorganisms facilitate digestion, enhance immune function, maintain osmoregulation, and support physiological balance via these bioactive compounds, thereby enhancing environmental adaptation. Our study investigated intestinal microbiota–liver metabolic interactions in Leptobrachium liui using 16S rRNA gene sequencing and non-targeted liquid chromatography–tandem mass spectrometry metabolomics. Key findings include (1) comparable alpha diversity but distinct microbial community structures between the small intestine (SI) and large intestine (LI), with the SI dominated by Enterobacteriaceae (72.14%) and the LI by Chitinophagaceae (55.16%); (2) segment-specific microbe–metabolite correlations, with predominantly positive correlations in the SI and complex patterns in the LI involving fatty acids, amino acids, and energy metabolites; and (3) significant correlations between specific bacterial families (Aeromonadaceae, Enterobacteriaceae, Chitinophagaceae) and hepatic metabolites related to fatty acid metabolism, amino acid synthesis, and energy pathways, indicating potential gut–liver axis associations. These findings provide insights into amphibian intestinal microbiota–hepatic metabolite associations and may inform future studies of host–microbe interactions. Full article
Show Figures

Figure 1

21 pages, 1321 KiB  
Review
Exploration of Multi-Source Lignocellulose-Degrading Microbial Resources and Bioaugmentation Strategies: Implications for Rumen Efficiency
by Xiaokang Lv, Zhanhong Qiao, Chao Chen, Jinling Hua and Chuanshe Zhou
Animals 2025, 15(13), 1920; https://doi.org/10.3390/ani15131920 - 29 Jun 2025
Viewed by 296
Abstract
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive [...] Read more.
Utilizing straw feed is an effective strategy to optimize straw resource utilization by incorporating microbial degradation agents to expedite lignocellulose breakdown and enhance feed efficiency. Lignocellulose-degrading species and microbial communities are present in various Earth ecosystems, including the rumen of ruminants, insect digestive tracts, forest soil, and microbial populations in papermaking processes. The rumen of ruminants harbors a diverse range of microbial species, making it a promising source of lignocellulose-degrading microorganisms. Exploring alternative systems like insect intestines and forest soil is essential for future research. Current studies primarily rely on traditional microbial isolation techniques to identify lignocellulose-degrading strains, underscoring the necessity to transition to utilizing microbial culturomics and genome-editing technologies for discovering and manipulating cellulose-degrading microbes. This review provides an overview of lignocellulose-degrading microbial communities from diverse environments, encompassing bacterial and fungal populations. It also delves into the use of metagenomic, metatranscriptomic, and metaproteomic approaches to pinpoint highly efficient cellulase genes, along with the application of genome-editing tools for engineering lignocellulose-degrading microorganisms. The primary objective of this review is to offer insights for further exploration of potential lignocellulose-degrading microbial resources and high-performance cellulase genes to enhance roughage utilization in ruminant rumen ecosystems. Full article
Show Figures

Figure 1

14 pages, 2548 KiB  
Article
Differences in Intestinal Microbiota Between White and Common Cranes in the Yellow River Delta During Winter
by Xiaodong Gao, Yunpeng Liu, Zhicheng Yao, Yuelong Chen, Lei Li and Shuai Shang
Biology 2025, 14(6), 704; https://doi.org/10.3390/biology14060704 - 16 Jun 2025
Viewed by 371
Abstract
The avian intestinal microbiota is a vital interface for host/environment interactions, playing a pivotal role in nutrient metabolism, immune regulation, and ecological adaptation. In the Yellow River Delta region, common cranes and white cranes coexist in mixed flocks. During the winter, when food [...] Read more.
The avian intestinal microbiota is a vital interface for host/environment interactions, playing a pivotal role in nutrient metabolism, immune regulation, and ecological adaptation. In the Yellow River Delta region, common cranes and white cranes coexist in mixed flocks. During the winter, when food resources are scarce, studying their gut microbiota can effectively reveal the feeding patterns of these two crane species, thereby providing valuable data for crane conservation efforts. This study systematically investigated and compared the intestinal microbiota structures of white cranes (Grus leucogeranus) and common cranes (Grus grus) inhabiting the Yellow River Delta region. The results demonstrated that the predominant phyla of the intestinal microbiota in white and common cranes are Firmicutes and Proteobacteria at the phylum level; Catellicoccus and Lactobacillus were the predominant genera in the crane species. LEfse was used to analyze the differential flora of the intestinal bacterial communities of white cranes and common cranes and to detect the marker species with significant differences between the groups. Based on the COG database, a preliminary functional prediction of the intestinal microbiota was conducted, and 16 metabolic pathways relating to the COG pathway were obtained. In general, although both types of cranes belong to the Grus genus and are distributed in the same area, there are significant differences in the composition and functional characteristics of their intestinal microbiota due to the differences in their feeding composition. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

24 pages, 12602 KiB  
Article
Effects of Different Rearing Methods on the Intestinal Morphology, Intestinal Metabolites, and Gut Microbiota of Lueyang Black-Bone Chickens
by Shuang Zeng, Linqing Shao, Mingming Zhao, Ling Wang, Jia Cheng, Tao Zhang and Hongzhao Lu
Animals 2025, 15(12), 1758; https://doi.org/10.3390/ani15121758 - 14 Jun 2025
Viewed by 676
Abstract
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The [...] Read more.
The Lueyang black-bone chicken represents a distinct indigenous avian breed native to China and it is a slow-growing broiler breed. The gut, whose primary function is to digest food and absorb nutrients, is also home to a large and diverse microbial community. The intestinal morphology, intestinal metabolites, and gut microbiota are critical determinants of nutrient utilization efficiency and immune health in poultry. This study investigates the impact of two distinct rearing modalities—cage-raised (CR) and cage-free (CF)—on the intestinal morphology, intestinal metabolites, and gut microbiota of the duodenum and cecum in Lueyang black-bone chickens. Additionally, we have integrated metabolomics and microbiome analyses. Morphological assessments revealed that, in comparison to the CR group, the CF group exhibited a significant increase in duodenal villi height (VH) and crypt depth (CD) (p < 0.01). Furthermore, there was a notable increase in the number of intestinal inflammatory cells within the CF group. Non-targeted metabolomics indicated an upregulation of omega-3 series polyunsaturated fatty acids and bile acid metabolites in the CR group. Conversely, the CF group demonstrated significantly elevated levels of lysophosphatidylcholine (LPC) and phosphatidylcholine (PE) in the intestine. Microbiome analysis revealed that in the duodenum, beneficial bacteria (e.g., Lactobacillus) were the dominant genera in the CF group, while the Bacteroides predominate in the CR group. Correlation analyses indicated a positive association between LPC levels and the presence of eight bacterial genera, including Ureaplasma. The omega-3 series polyunsaturated fatty acids were positively correlated with three bacterial genera, such as Flavobacterium. Notably, bile acid metabolites exhibited a significant positive correlation with Rikenellaceae_RC9_gut_group. In conclusion, this study provides novel insights into how rearing methods influence intestinal morphology, intestinal metabolites, and gut microbiota, offering a new perspective for the scientific management of poultry with the premise of ensuring animal health and welfare. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

14 pages, 1400 KiB  
Article
From Farm to Slaughter: Tracing Antimicrobial Resistance in a Poultry Short Food Chain
by Andrea Laconi, Roberta Tolosi, Claudia Chirollo, Cristiana Penon, Giacomo Berto, Francesco Galuppo and Alessandra Piccirillo
Antibiotics 2025, 14(6), 604; https://doi.org/10.3390/antibiotics14060604 - 13 Jun 2025
Viewed by 708
Abstract
Background: Short food supply chains are commonly perceived as more sustainable and safer alternatives to conventional production systems, often linked to organic, free-range livestock practices. Materials and methods: This study investigates, for the first time, the distribution of antimicrobial resistance genes [...] Read more.
Background: Short food supply chains are commonly perceived as more sustainable and safer alternatives to conventional production systems, often linked to organic, free-range livestock practices. Materials and methods: This study investigates, for the first time, the distribution of antimicrobial resistance genes (ARGs) and characterizes the microbial communities’ composition, using 16S rRNA sequencing and real-time PCR, respectively. Eleven fecal, 76 slaughterhouse surface, 11 cecal, and 11 carcass samples, from 11 poultry farms belonging to the same short food chain, were analyzed in the study. Results: While cleaning and disinfection procedures appeared to reduce the bacterial load on slaughterhouse surfaces, diverse and potentially resistant bacteria, including genera such as Staphylococcus and Streptococcus, persisted both before and after slaughter. ARGs conferring resistance to high-priority critically important antimicrobials (HPCIAs), such as fluoroquinolones and third-generation cephalosporins, were frequently detected on carcasses, with qnrS (76.15%, 95%CI 68.02-84.28%) and blaCMY2 (57.8%, 95%CI 48.38-67.22%) being the most prevalent. The slaughtering process emerged as a critical step for ARG dissemination via intestinal bacteria, such as genus Lactobacillus. Additionally, the detection of mcr genes and blaNDM on carcasses but not in the bird gut samples suggests possible anthropogenic contamination. Discussion: These findings highlight that the evisceration process, slaughterhouse environment, and personnel are all contributing factors in ARG spread and underscore the need for enhanced hygiene protocols and reduced gut ARG carriage in domestic birds to mitigate the risk for the consumer. Full article
(This article belongs to the Special Issue Livestock Antibiotic Use and Resistance)
Show Figures

Figure 1

15 pages, 18614 KiB  
Article
Exercise Remodels Akkermansia-Associated Eicosanoid Metabolism to Alleviate Intestinal Senescence: Multi-Omics Insights
by Chunxia Yu, Xuanyu Liu, Yitong Li, Silin Li, Yating Huang, Sujuan Liu, Heng Shao, Yanna Shen and Li Fu
Microorganisms 2025, 13(6), 1379; https://doi.org/10.3390/microorganisms13061379 - 13 Jun 2025
Viewed by 470
Abstract
Aerobic exercise mitigates age-related intestinal senescence through gut microbiota modulation, but the underlying mechanism has remained unclear. In this study, we performed 16S rRNA sequencing of gut contents from young, old, and old exercise C57BL/6J mice to assess exercise-induced alterations in microbiota community [...] Read more.
Aerobic exercise mitigates age-related intestinal senescence through gut microbiota modulation, but the underlying mechanism has remained unclear. In this study, we performed 16S rRNA sequencing of gut contents from young, old, and old exercise C57BL/6J mice to assess exercise-induced alterations in microbiota community structure. Differential taxa analyses were applied to reveal age-associated bacterial signatures, gut barrier integrity, and systemic inflammation. Additionally, untargeted metabolomic profiling was employed to characterize gut metabolic profiles and reveal the key pathways through differential metabolite enrichment analyses. Aging significantly exacerbated the senescence-associated secretory phenotypes and the overgrowth of pathogenic bacteria in mice. However, aerobic exercise ameliorated these age-related deteriorations, restored gut microbial homeostasis, and reduced intestinal permeability. Notably, exercise intervention led to a significant increase in Akkermansia abundance in feces, establishing this mucin-degrading bacterium as a prominent exercise-responsive microbe. Metabolomic profiling identified eicosanoid metabolism as the most significantly perturbed pathway, and chronic exercise was found to regulate 14,15-Dhet levels. Our multi-omics integration confirmed that exercise is a potent modulator of the gut–microbiota–metabolite axis during aging. Elucidating the “Akkermansia–eicosanoid signaling” axis provided mechanistic insights into how exercise promotes healthy aging, identifying novel targets for anti-aging strategies via microbiota. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Graphical abstract

18 pages, 5983 KiB  
Article
Plasma and Fecal Metabolites Combined with Gut Microbiome Reveal Systemic Metabolic Shifts in 60Co Gamma-Irradiated Rats
by Jie Zong, Haiyang Wu, Xuan Hu, Ami Yao, Wenhua Zhu, Guifang Dou, Shuchen Liu, Xiaoxia Zhu, Ruolan Gu, Yunbo Sun, Zhuona Wu, Shanshan Wang and Hui Gan
Metabolites 2025, 15(6), 363; https://doi.org/10.3390/metabo15060363 - 29 May 2025
Viewed by 584
Abstract
Background: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances [...] Read more.
Background: High-dose γ-ray exposure (≥7 Gy) in nuclear emergencies induces life-threatening acute radiation syndrome, characterized by rapid hematopoietic collapse (leukocytes <0.5 × 10⁹/L) and gastrointestinal barrier failure. While clinical biomarkers like leukocyte depletion guide current therapies targeting myelosuppression, the concomitant metabolic disturbances and gut microbiota dysbiosis—critical determinants of delayed mortality—remain insufficiently profiled across the 28-day injury-recovery continuum. Methods: This study investigates the effects of 60Co γ-ray irradiation on metabolic characteristics and gut microbiota in Sprague Dawley rats using untargeted metabolomics and 16S rRNA sequencing. Meanwhile, body weight and complete blood counts were measured. Results: Body weight exhibited significant fluctuations, with the most pronounced deviation observed at 14 days. Blood counts revealed a rapid decline in white blood cells, red blood cells, and platelets post-irradiation, reaching nadirs at 7–14 days, followed by gradual recovery to near-normal levels by 28 days. Untargeted metabolomics identified 32 upregulated and 33 downregulated plasma metabolites at 14 days post-irradiation, while fecal metabolites showed 47 upregulated and 18 downregulated species at 3 days. Key metabolic pathways impacted included Glycerophospholipid metabolism, alpha-linolenic acid metabolism, and biosynthesis of unsaturated fatty acids. Gut microbiota analysis demonstrated no significant change in α-diversity but significant β-diversity shifts (p < 0.05), indicating a marked alteration in the compositional structure of the intestinal microbial community following radiation exposure. Principal coordinate analysis confirmed distinct clustering between control and irradiated groups, with increased abundance of Bacteroidota and decreased Firmicutes in irradiated rats. These findings highlight dynamic metabolic and microbial disruptions post-irradiation, with recovery patterns suggesting a 28-day restoration cycle. Spearman’s rank correlation analysis explored associations between the top 20 fecal metabolites and 50 abundant bacterial taxa. Norank_f_Muribaculaceae, Prevotellaceae_UCG-001, and Bacteroides showed significant correlations with various radiation-altered metabolites, highlighting metabolite–microbiota relationships post-radiation. Conclusions: This study provides insights into potential biomarkers for radiation-induced physiological damage and underscores the interplay between systemic metabolism and gut microbiota in radiation response. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

8 pages, 1284 KiB  
Proceeding Paper
Alteration in Gut Microbiome of Common Carp (Cyprinus carpio L., 1758) Mediated by Probiotics and Yeast Prebiotic
by Elshafia Ali Hamid Mohammed, Milán Fehér, Péter Bársony and Károly Pál
Biol. Life Sci. Forum 2025, 45(1), 1; https://doi.org/10.3390/blsf2025045001 - 28 May 2025
Cited by 2 | Viewed by 1525
Abstract
The objective of the present study was to examine the impact of dietary supplementation with probiotics and yeast cell wall prebiotics on the intestinal microbiota of common carp (Cyprinus carpio). A total of 96 carp, with an average body weight of 932 [...] Read more.
The objective of the present study was to examine the impact of dietary supplementation with probiotics and yeast cell wall prebiotics on the intestinal microbiota of common carp (Cyprinus carpio). A total of 96 carp, with an average body weight of 932 ± 161 g, were distributed into 12 fish tanks (800 L), with 8 fish/tank. The fish were fed a variety of experimental diets, including a basal diet only (CD) or a basal diet supplemented with the probiotic Pediococcus acidilactici (PA), the yeast probiotic Saccharomyces cerevisiae (SC), or the yeast cell wall prebiotic (YANG) at a concentration of 0.1% (1 g/kg) for a duration of 42 days. At the end of the trial, fish digesta were withdrawn, and the total bacterial community of the gut of common carp was analyzed using Illumina’s NGS targeting the 16S rRNA gene. A Krona phyla richness pie chart showed that 11 bacterial phyla were recorded in fish fed YANG, with the top three phyla being Fusobacteria, Firmicutes, and Proteobacteria. In addition, 10 phyla were identified in fecal samples from carp fed PA, with the top three phyla being Proteobacteria, Firmicutes, and Fusobacteria. Furthermore, nine phyla were recorded for carp fed SC, with the top three phyla being Fusobacteria, Firmicutes, and Proteobacteria. However, carp fed a basal diet exhibited 14 phyla, with the most abundant phyla being Fusobacteriota, Bacteroidota, and Proteobacteria. This study concluded that the tested feed supplements could cause considerable alterations in the composition of the gut microbiome of carps reared in recirculating systems. Full article
Show Figures

Figure 1

Back to TopTop