Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = interstitial water in sediments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1916 KB  
Article
Freeze-Dried Probiotic Fermented Camel Milk Enriched with Ajwa Date Pulp: Evaluation of Functional Properties, Probiotic Viability, and In Vitro Antidiabetic and Anticancer Activities
by Sally S. Sakr and Hassan Barakat
Foods 2025, 14(15), 2698; https://doi.org/10.3390/foods14152698 - 31 Jul 2025
Viewed by 1413
Abstract
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve [...] Read more.
Noncommunicable diseases (NCDs) like diabetes and cancer drive demand for therapeutic functional foods. This study developed freeze-dried fermented camel milk (FCM) with Ajwa date pulp (ADP), evaluating its physical and functional properties, probiotic survival, and potential benefits for diabetes and cancer. To achieve this target, six FCM formulations were prepared using ABT-5 starter culture (containing Lactobacillus acidophilus, Bifidobacterium bifidum, and Streptococcus thermophilus) with or without Lacticaseibacillus rhamnosus B-1937 and ADP (12% or 15%). The samples were freeze-dried, and their functional properties, such as water activity, dispersibility, water absorption capacity, water absorption index, water solubility index, insolubility index, and sedimentation, were assessed. Reconstitution properties such as density, flowability, air content, porosity, loose bulk density, packed bulk density, particle density, carrier index, Hausner ratio, porosity, and density were examined. In addition, color and probiotic survivability under simulated gastrointestinal conditions were analyzed. Also, antidiabetic potential was assessed via α-amylase and α-glucosidase inhibition assays, while cytotoxicity was evaluated using the MTT assay on Caco-2 cells. The results show that ADP supplementation significantly improved dispersibility (up to 72.73% in FCM15D+L). These improvements are attributed to changes in particle size distribution and increased carbohydrate and mineral content, which facilitate powder rehydration and reduce clumping. All FCM variants demonstrated low water activity (0.196–0.226), indicating good potential for shelf stability. The reconstitution properties revealed that FCM powders with ADP had higher bulk and packed densities but lower particle density and porosity than controls. Including ADP reduced interstitial air and increased occluded air within the powders, which may minimize oxidation risks and improve packaging efficiency. ADP incorporation resulted in a significant decrease in lightness (L*) and increases in redness (a*) and yellowness (b*), with greater pigment and phenolic content at higher ADP levels. These changes reflect the natural colorants and browning reactions associated with ADP, leading to a more intense and visually distinct product. Probiotic survivability was higher in ADP-fortified samples, with L. acidophilus and B. bifidum showing resilience in intestinal conditions. The FCM15D+L formulation exhibited potent antidiabetic effects, with IC50 values of 111.43 μg mL−1 for α-amylase and 77.21 μg mL−1 for α-glucosidase activities, though lower than control FCM (8.37 and 10.74 μg mL−1, respectively). Cytotoxicity against Caco-2 cells was most potent in non-ADP samples (IC50: 82.22 μg mL−1 for FCM), suggesting ADP and L. rhamnosus may reduce antiproliferative effects due to proteolytic activity. In conclusion, the study demonstrates that ADP-enriched FCM is a promising functional food with enhanced probiotic viability, antidiabetic potential, and desirable physical properties. This work highlights the potential of camel milk and date synergies in combating some NCDs in vitro, suggesting potential for functional food application. Full article
Show Figures

Figure 1

20 pages, 2993 KB  
Article
The Effects and Mechanisms of pH and Dissolved Oxygen Conditions on the Release of Arsenic at the Sediment–Water Interface in Taihu Lake
by Liqing Zeng, Changzhou Yan, Fan Yang, Zhuo Zhen, Jiaming Yang, Jielun Chen, Yujie Huang, Yuhui Xiao and Wen Zhang
Toxics 2023, 11(11), 890; https://doi.org/10.3390/toxics11110890 - 30 Oct 2023
Cited by 9 | Viewed by 4224
Abstract
The pH and dissolved oxygen (DO) conditions are important environmental factors that control the migration of arsenic (As) at the sediment–water interface. This study investigates the distribution differences of reactive iron, manganese, and arsenic at the sediment–water interface under anaerobic and aerobic conditions [...] Read more.
The pH and dissolved oxygen (DO) conditions are important environmental factors that control the migration of arsenic (As) at the sediment–water interface. This study investigates the distribution differences of reactive iron, manganese, and arsenic at the sediment–water interface under anaerobic and aerobic conditions at different pH levels. The strong buffering capacity of sediment to water pH results in a shift towards neutral pH values in the overlying water under different initial pH conditions. The level of DO becomes a key factor in the release of As from sediment, with lower DO environments exhibiting higher release quantities and rates of As compared to high DO environments. Under low DO conditions, the combined effects of ion exchange and anaerobic reduction lead to the most significant release of As, particularly under pH 9.5 conditions. The formation of amorphous ferrous sulfide compounds under low DO conditions is a significant factor contributing to increased arsenic concentration in the interstitial water. Therefore, the re-migration of endogenous arsenic in shallow lake sediments should consider the combined effects of multiple driving forces. Full article
(This article belongs to the Special Issue Monitoring Heavy Metal Pollution for Environmental Health and Safety)
Show Figures

Figure 1

23 pages, 4079 KB  
Article
Influencing Factors and Nutrient Release from Sediments in the Water Level Fluctuation Zone of Biliuhe Reservoir, a Drinking Water Reservoir
by Weijia Li, Shiguo Xu, Xiaoqiang Chen, Dongning Han and Baoquan Mu
Water 2023, 15(20), 3659; https://doi.org/10.3390/w15203659 - 19 Oct 2023
Cited by 13 | Viewed by 4764
Abstract
Significant amounts of nitrogen and phosphorus in sediments will be released into the overlying water during the flood season in the water level fluctuation zone (WLFZ) of reservoirs that undergo periodic drying and flooding. This will result in water quality deterioration of the [...] Read more.
Significant amounts of nitrogen and phosphorus in sediments will be released into the overlying water during the flood season in the water level fluctuation zone (WLFZ) of reservoirs that undergo periodic drying and flooding. This will result in water quality deterioration of the reservoir. In order to clarify the distribution characteristics and release behavior of nitrogen (N) and phosphorus (P) from sediments in the WLFZ of a reservoir, this study analyzed the sediment distribution characteristics and potential exchange flux sediment–water interface(SWI) through field investigations and sediment core incubation experiments. And the main factors affecting the release of N and P through the incubation experiments in sediments of the WLFZ in the reservoir were determined. Our findings indicated that the sediment in the WLFZ serves as the primary source of NH4+-N and acts as a sink for NO2-N in the overlying water of sediment. The concentration of NH4+-N in the interstitial water of sediments is the key factor that affects the water quality of Biliuhe Reservoir. Total nitrogen content of surface sediments in the WLFZ of Biliuhe Reservoir ranges from 1052.52 ± 49.39 to 3520.54 ± 30.31 mg/kg. High concentrations of N pollution are the primary increased risk of eutrophication in Biliuhe Reservoir during summer. The sediment N and P release flux of BLH1 located in the main stream is 1.67 ± 1.06 and 12.32 ± 2.42 mg·(m2·d)−1, respectively, which is smaller than that of BLH2 (3.27 ± 2.15 and 15.19 ± 2.36 mg·(m2·d)−1, respectively), BLH3 (4.24 ± 1.74 and 17.02 ± 2.47 mg·(m2·d)−1, respectively) and BLH4 (7.78 ± 2.03 and 20.56 ± 2.38 mg·(m2·d)−1, respectively) located in the tributary. It indicates that the water conveyance project located in BLH1 has an impact on nutrient scouring of sediments in the WLFZ at this site. The main water environment factor affecting the release of N and P in the sediment of the WLFZ is dissolved oxygen (DO). And the Pearson correlation coefficients between TN and TP with DO were −0.838 and −0.777, respectively (p < 0.05). At the same time, the diffusion of nutrients in the sediments can be effectively inhibited by maintaining a certain DO concentration in the overlying water. Full article
Show Figures

Figure 1

20 pages, 11995 KB  
Article
Pore Structure Characteristics and Main Control Factors of Sandstone in the Jurassic Zhiluo Formation in the Northern Ordos Basin
by Xiaofeng Liu, Xiaodan Guo, Zenglin Hong, Xuping Xue and Shifeng Li
Minerals 2023, 13(8), 1102; https://doi.org/10.3390/min13081102 - 18 Aug 2023
Cited by 4 | Viewed by 1328
Abstract
The Jurassic Yan’an Formation in the Ordos Basin is one of the main coal seams mined in the basin, and the enrichment of water bodies in the upper part of this coal seam is closely related to the sand bodies in the Zhiluo [...] Read more.
The Jurassic Yan’an Formation in the Ordos Basin is one of the main coal seams mined in the basin, and the enrichment of water bodies in the upper part of this coal seam is closely related to the sand bodies in the Zhiluo Formation. This study is based on the use of core observations in the northern part of the Ordos Basin for studying the pore characteristics of the permeable sand layer of the Zhiluo Formation in the study area through testing methods such as ordinary thin sections, cast thin sections, scanning electron microscopy (SEM), mercury intrusions, and physical property analysis. The results indicate that the primary pores of the Zhiluo Formation sandstone in the study area include primary intergranular pores, residual intergranular pores, and interstitial micropores. The secondary pores are mainly intergranular pores, feldspar dissolution pores, and rock debris dissolution pores. The throat-type pores are mainly variable fault contractions, sheets, curved sheets, and bundle-shaped throats. The pore structures of the Zhiluo Formation sandstone in the research area are complex, and the permeability is influenced by the throat characteristics. The main controlling factors of the pore structure characteristics of the Zhiluo Formation sandstone in the study area are sedimentation and diagenesis. Compaction and cementation are the main factors that destroy the sandstone pore structure, while later dissolution plays a certain role in the improvement of the pores. Section 1 of the Zhiluo Formation is greatly affected by diagenesis, and section 2 is greatly affected by sedimentation. Full article
Show Figures

Figure 1

13 pages, 2679 KB  
Article
Biochar Derived from Post-Adsorbent for Immobilizing Cu and Cd in Sediment: The Effect on Heavy Metal Species and the Microbial Community Composition
by Qinju Sun, Shaohua Lin, Guohua Liu and Pingping Li
Toxics 2023, 11(8), 666; https://doi.org/10.3390/toxics11080666 - 2 Aug 2023
Cited by 4 | Viewed by 1637
Abstract
Many biomass wastes or their modified forms have been investigated as heavy metal adsorbents. However, less emphasis has been placed on post-adsorbent management or possible further utilization. In this study, biochar (BC) derived from modified bamboo adsorbent after the adsorption of Cu from [...] Read more.
Many biomass wastes or their modified forms have been investigated as heavy metal adsorbents. However, less emphasis has been placed on post-adsorbent management or possible further utilization. In this study, biochar (BC) derived from modified bamboo adsorbent after the adsorption of Cu from an aqueous solution was used for the in situ remediation of lake sediment contaminated with Cd and Cu. The results indicated that the Cu concentration was extremely low (≤0.015 mg/L), while Cd was not detected in the overlying water or the interstitial water after the 90-day BC treatment. The pH value (7.5–8.1) slightly increased, and the toxicity characteristic leaching procedure (TCLP) leachability of the Cu and Cd in the sediment decreased overall. Cu and Cd were preferentially transformed into more stable species. The findings highlighted the potential possibility of BC derived from post-adsorbent being used for sediment remediation. However, the BC addition produced significant effects on the sediment microbial activity and community structure. In general, with an increase in BC, the urease activity increased, while the alkaline phosphatase and invertase activity decreased, which could be attributed to the BC itself. In addition, significant changes in both bacterial and fungal genera were observed. Hence, a cautious approach should be taken in the practical application of BC. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

12 pages, 4775 KB  
Article
Redox Changes during the Past 100 ka in the Deeper Eastern Arabian Sea: A Study Based on Trace Elements and Multivariate Statistical Analysis
by Ishfaq Ahmad Mir and Maria Brenda Luzia Mascarenhas
Water 2023, 15(7), 1252; https://doi.org/10.3390/w15071252 - 23 Mar 2023
Cited by 4 | Viewed by 2893
Abstract
The temporal distribution of trace elements in a sediment core (SK117/GC-08) indicates minor changes in oxygenation during the last 100 kilo years in the bottom waters of the deeper eastern Arabian Sea. The high values of Mn, Co, Cu, Mn/Al, Co/Al, Cu/Al, V/Cr, [...] Read more.
The temporal distribution of trace elements in a sediment core (SK117/GC-08) indicates minor changes in oxygenation during the last 100 kilo years in the bottom waters of the deeper eastern Arabian Sea. The high values of Mn, Co, Cu, Mn/Al, Co/Al, Cu/Al, V/Cr, and V/(V + Ni) in the sediments during interglacials and interstitials collectively indicate oxic conditions during warm periods. The high values of Cr, Ni, V, Mo, Cr/Al, Ni/Al, and Ni/Co in sediments during glacials and stadials collectively indicate dysoxic to suboxic conditions during the colder last glacial maximum and during the entire marine isotope stage two. The bottom waters have never experienced anoxic conditions. Multivariate statistics showed the attribution of the trace elements in two factors: cluster 1 (Co, Cu, Mn) was enriched during oxic conditions and cluster 2 (Cr, Mo, Ni, V) was enriched during dysoxic to suboxic conditions. Oxygenation conditions are mainly driven by variations in monsoon-controlled surface water productivity and changes in the flux of circumpolar deep water. The dysoxic to suboxic bottom water conditions developed at the core location during colder climates are very well synchronised with an increased organic matter flux. The main factor that controls the accumulation of the organic-rich sediments in the eastern Arabian Sea during a glacial is the increase in the supply of organic matter from increased primary productivity in the surface waters, controlled by winter monsoon winds, and localized convective mixing. During warmer interglacials and interstadials, the core location has remained well ventilated. Full article
Show Figures

Figure 1

12 pages, 11493 KB  
Article
Groundwater Amphipods of the Hyporheic Interstitial: A Case Study from Luxembourg and The Greater Region
by Dieter Weber and Alexander M. Weigand
Diversity 2023, 15(3), 411; https://doi.org/10.3390/d15030411 - 11 Mar 2023
Cited by 5 | Viewed by 2307
Abstract
Hyporheic interstitials are ecologically dynamic and often neglected aquatic environments. In this study, groundwater amphipods (Niphargidae, Pseudoniphargidae and Crangonyctidae) were sampled in hyporheic interstitials throughout Luxembourg and The Greater Region and specimens were analyzed by DNA barcoding. Sites characterized by gravel or coarse [...] Read more.
Hyporheic interstitials are ecologically dynamic and often neglected aquatic environments. In this study, groundwater amphipods (Niphargidae, Pseudoniphargidae and Crangonyctidae) were sampled in hyporheic interstitials throughout Luxembourg and The Greater Region and specimens were analyzed by DNA barcoding. Sites characterized by gravel or coarse sand and high flow velocities of incoming water were the most species- and specimen-rich. A total of 11 species were detected, of which the Niphargus aquilex lineage EF of the N. aquilex cryptic species complex and juveniles of N. schellenbergi dominated the data set, but an unknown lineage of the N. aquilex-complex was also found. Some regions appeared to be devoid of groundwater amphipods. We hypothesize that underlying sandstone formations resulting in low sediment porosity may prevent physical colonization, but also that historical water pollution may have a long-lasting effect, either through the persistence of contaminants in the sediment or low recolonization rates of affected populations. In summary, our approach expanded regional species inventories, confirmed known occurrences, and validated previously questionable or historical morphology-based detections. In addition, the collection of absence data provided valuable insights into local extinctions. Finally, DNA-based distribution data are needed to gather information on the ecological affinities of groundwater amphipods to understudied hyporheic interstitial environments. Full article
Show Figures

Figure 1

16 pages, 4467 KB  
Article
Assessment and Management of Mercury Leaching from a Riverbank
by Hasti Ziaei, Balaji Rao, Tea V. Wood, Uriel Garza-Rubalcava, Ashkan Alborzi, Huayun Zhou, Paul Bireta, Nancy Grosso and Danny Reible
Toxics 2023, 11(2), 179; https://doi.org/10.3390/toxics11020179 - 15 Feb 2023
Cited by 1 | Viewed by 3292
Abstract
The South River located in the city of Waynesboro, Virginia, contains mercury (Hg) contamination due to historical releases from an industrial facility operating between 1929 and 1950. In 2015, two sampling events were conducted in two of the contaminated bank regions (Constitution Park [...] Read more.
The South River located in the city of Waynesboro, Virginia, contains mercury (Hg) contamination due to historical releases from an industrial facility operating between 1929 and 1950. In 2015, two sampling events were conducted in two of the contaminated bank regions (Constitution Park and North Park) to evaluate non-particulate total mercury (THg) and methylmercury (MeHg) concentrations in bank interstitial waters during river base flows and during bank drainage after flooding events. Porewater THg and MeHg at the bank–water interface were measured using diffusive gradient in thin-film devices (DGTs). The results showed THg mercury concentrations during bank drainage were approximately a factor of 3 higher than during base flow conditions. To have a better understanding of the parameters that control Hg leaching, a series of laboratory experiments were designed using South River sediments. The field and laboratory assessment showed that drainage/inundation cycles can lead to high THg concentration leachate from contaminated sediment due to increased partitioning from solids under oxic bank conditions and mobilization by the drainage waters. The results also demonstrated that methyl mercury concentrations at the bank–water interface are highest under base flow when conditions are more reduced due to the absence of oxic water exchange with the surface water. A remedial approach was implemented involving partial removal of surficial sediments and placement of biochar (to reduce non-particulate THg) and an armoring layer (to reduce erosion). DGT Measurements after bank stabilization showed THg decreased by a factor of ~200 and MeHg concentration by a factor of more than 20. Full article
(This article belongs to the Topic Removal of Hazardous Substances from Water Resources)
Show Figures

Figure 1

16 pages, 5475 KB  
Article
Compressive Yield Stress of Flocculated Kaolin Suspensions in Seawater
by Steven Nieto, Eder Piceros, Pedro G. Toledo, Pedro Robles and Ricardo Jeldres
Polymers 2023, 15(3), 530; https://doi.org/10.3390/polym15030530 - 19 Jan 2023
Cited by 7 | Viewed by 2967
Abstract
The mining industry has resorted to using seawater while trying to find a solution to the water shortage, which is severe in some regions. Today, the industry looks to tailings dams to recover more water and, thus, increase recirculation. The migration of interstitial [...] Read more.
The mining industry has resorted to using seawater while trying to find a solution to the water shortage, which is severe in some regions. Today, the industry looks to tailings dams to recover more water and, thus, increase recirculation. The migration of interstitial water due to the consolidation of particle networks can give rise to large water mirrors in different dam areas. These pools can contain enough water to be recovered and recirculated if the external stress caused by the weight of the pulp exceeds the compressive yield stress. The density and rheological properties of the discarded pulps determine the feasibility of water expulsion during tailings consolidation. As these conditions are largely established in the thickening stage, it is necessary to revisit operations, looking at the dam as a water source. Thus, a thorough understanding of the compressive properties that determine the level of consolidation of typical pulps and their relationships to aggregate properties, such as size and fractal dimension, is crucial. Here, the effect of two types of water, industrial water and synthetic seawater, on kaolin flocculation, sedimentation rate, yield stress, and compressive yield stress were studied. In addition, the relationship of these properties with the flocculant dose and the resulting aggregate size and fractal dimension was examined. One promising finding to practitioners was that salt and small doses of high molecular weight flocculant improved the consolidation of kaolin slurries under compression. These conditions generated low compressive yield stress compared to fresh water and water with low salt content, favoring the consolidation of the pulps and the release of water. Full article
(This article belongs to the Special Issue Status and Progress of Soluble Polymers)
Show Figures

Figure 1

29 pages, 4216 KB  
Article
Calcium Carbonate Hexahydrate (Ikaite): History of Mineral Formation as Recorded by Stable Isotopes
by Michael J. Whiticar, Erwin Suess, Gerold Wefer and Peter J. Müller
Minerals 2022, 12(12), 1627; https://doi.org/10.3390/min12121627 - 17 Dec 2022
Cited by 12 | Viewed by 3869
Abstract
Calcium carbonate hexahydrate (ikaite) is a rare mineral that forms as metastable species in the organic-carbon-rich sediments of the King George Basin, Bransfield Strait, Antarctica, as a consequence of early diagenetic decomposition of organic matter under cold water (−1.4 °C) and high pressure [...] Read more.
Calcium carbonate hexahydrate (ikaite) is a rare mineral that forms as metastable species in the organic-carbon-rich sediments of the King George Basin, Bransfield Strait, Antarctica, as a consequence of early diagenetic decomposition of organic matter under cold water (−1.4 °C) and high pressure (200 bar) conditions. Large crystals grow in the sediment immediately below the diagenetic transition between microbial sulfate reduction and methanogenesis at ~320 cm below sea floor (bsf). This process is reflected in the dissolved sulfate, total carbon dioxide, and methane concentrations, as well as in the carbon, hydrogen, and oxygen isotope chemistries of the interstitial fluids and dissolved gases of the host sediment. The ikaite crystal faithfully records in its zonal structure the changing carbon isotope ratio of the total dissolved carbon dioxide pool as it gradually diminishes during methanogenesis (δ13Cikaite = −17.5 to −21.4‰). These changes in the crystal’s host environment follow general Rayleigh carbon isotope fractionation. The oxygen isotopes of the ikaite carbonate (δ18Oikaite = 1.46 to 4.45‰) also show a strong zonal distribution, unrelated to temperature of formation, but perhaps controlled by the degree of recrystallization of ikaite to calcite. The crystal water of the ikaite is depleted 11‰ in 2H/1H (VSMOW) relative to the coexisting interstitial water, which is in excellent agreement with the isotope fractionation of other hydrated minerals. In addition to the in situ temperature and pressure, nucleation of the ikaite crystals in the Bransfield Basin sediments may be induced by the high alkalinity, high phosphate concentrations, and dissolved organic compounds. Intense microbial metabolism generates such compounds; of these, aspartic acid and glutamic acid may play an important role, as they do in biological and extracellular carbonate mineral precipitation. All indications are that low temperatures (such as of polar environments), high calcium carbonate supersaturation caused by interstitial methanogenesis, and a sufficiently large supply of dissolved phosphate and amino acids favor metastable ikaite formation. These conditions, modified by recrystallization, may be preserved in calcite glendonites, thinolites, and other calcitic pseudomorphs derived from ikaite and found throughout the ancient sedimentary record. Full article
Show Figures

Figure 1

20 pages, 4455 KB  
Review
The Morphological Characteristics of Authigenic Pyrite Formed in Marine Sediments
by Jingyi Chang, Yuanyuan Li and Hailong Lu
J. Mar. Sci. Eng. 2022, 10(10), 1533; https://doi.org/10.3390/jmse10101533 - 19 Oct 2022
Cited by 38 | Viewed by 6878
Abstract
Pyrites are widely distributed in marine sediments, the morphology of which is applied as a proxy to infer the redox conditions of bottom water, and identify diagenetic stages and hydrocarbon leakage activities. In this review, the methods used for the morphological study of [...] Read more.
Pyrites are widely distributed in marine sediments, the morphology of which is applied as a proxy to infer the redox conditions of bottom water, and identify diagenetic stages and hydrocarbon leakage activities. In this review, the methods used for the morphological study of pyrite are summarized. The textural and size characteristics of euhedral pyrite and pyrite aggregates, as the formation and evolution mechanism of pyrite are discussed for their significance in reconstructing the geochemical environment. The morphological study of pyrite includes shape observation, size estimation, and surface feature analysis. Scanning electron microscope and optical microscope are the main methods for morphological observation; transmission electron microscope and scanning tunneling microscope are applicable to observe nanoscale morphological structures and crystal growth on the crystal surface, and X-ray computed tomography is capable of measuring pyrite size distribution at the scale of a micrometer. Under the marine sedimentary condition, the single crystal of pyrite appears in cube, octahedron, dodecahedron, and their intermediates, the size of which ranges from several nanometers to more than 100 µm. The morphology of euhedral pyrite is controlled by temperature, pH, the chemical composition of interstitial water, etc., and might have been experienced in later reformation processes. The pyrite aggregates occur as framboid, rod-like, fossil-infilling, etc., characterized by the comparatively large size of several microns to several millimeters. It is found that certain textures correspond with different formation mechanisms and geochemical environments. Particularly, under special geological conditions, for instance, the methane leakage and/or decomposition of gas hydrate, pyrite is anomaly enriched with morphological textures of massive framboid cluster, rod-like aggregates, etc., and framboid is found with a large mean diameter (>20 µm) and standard deviation (>10 µm). These typical features can be employed to ascertain the position of the paleo sulfate methane transition zone (SMTZ). Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

17 pages, 5519 KB  
Article
Occurrence and Ecological Risk Assessment of Heavy Metals from Wuliangsuhai Lake, Yellow River Basin, China
by Jialu Li, Qiting Zuo, Feng Feng and Hongtao Jia
Water 2022, 14(8), 1264; https://doi.org/10.3390/w14081264 - 14 Apr 2022
Cited by 21 | Viewed by 3493
Abstract
As one of the eight largest freshwater lakes in China, Wuliangsuhai Lake is an extremely rare large lake with biodiversity and environmental protection functions in one of the world’s arid or semi-arid areas and it plays a pivotal role in protecting the ecological [...] Read more.
As one of the eight largest freshwater lakes in China, Wuliangsuhai Lake is an extremely rare large lake with biodiversity and environmental protection functions in one of the world’s arid or semi-arid areas and it plays a pivotal role in protecting the ecological security of the Yellow River Basin. Heavy metals in sediment interstitial water, surface sediments, and sediment cores of Wuliangsuhai Lake were investigated and analyzed, and the pollution degree evaluated based on multiple assessment methods. The bioavailability of heavy metals of the surface sediments was evaluated by calculating the ratio of chemical fractions of heavy metals. The toxicity assessment of sediment interstitial water indicated that Ni, Zn, As, and Cd would not be toxic to aquatic ecosystems, however, Hg and Cr in some regions may cause acute toxicity to the benthos. The ecological assessment results of the surface sediments indicated that some areas of the lake are heavily polluted and the main polluting elements are Cd and Hg. Cd has the highest bioavailability because of its high exchangeable fraction ratio. In addition, exogenous pollution accumulated within 20 cm of the sediment cores, and then, with the increasing of the depth, the pollution degree and ecological risk decreased. Full article
Show Figures

Figure 1

14 pages, 2011 KB  
Article
Determination of Water Quality Characteristics and Nutrient Exchange Flux at the Sediment—Water Interface of the Yitong River in Changchun City, China
by Ke Zhao, Hang Fu, Qian Wang and Hai Lu
Water 2021, 13(24), 3555; https://doi.org/10.3390/w13243555 - 12 Dec 2021
Cited by 9 | Viewed by 4096
Abstract
In this paper, the characteristics of water pollution in Yitong River were analyzed by the comprehensive pollution index method. Combined with the pore water concentration gradient method and Fick’s first law, the release characteristics of nutrients at the sediment–water interface of Yitong River [...] Read more.
In this paper, the characteristics of water pollution in Yitong River were analyzed by the comprehensive pollution index method. Combined with the pore water concentration gradient method and Fick’s first law, the release characteristics of nutrients at the sediment–water interface of Yitong River (Jilin Province, China) were studied. The results showed that the distribution trend of nitrogen and phosphorus content in the overlying and interstitial water of the Yitong River was the same, and the highest values appeared at the S3 and S5 points in the urban section. The water quality was mainly affected by nitrogen pollutants in domestic sewage. The evaluation results of the water quality comprehensive pollution index showed that the pollution degree of interstitial water in urban areas was much higher than that of the overlying water, and the endogenous nitrogen and phosphorus pollutants had the risk of diffusion to the overlying water. The exchange flux analysis of ammonia nitrogen (NH4+-N), total dissolved nitrogen (TDN), and total dissolved phosphorus (TDP) in water showed that the diffusion flux of NH4+-N ranged from 0.03 to 6.52 mg·(m2·d)−1, and the sediment was the “source” of ammonia nitrogen pollutants. The range of TDN diffusion flux was −1.57 to 11.6 mg·(m2·d) −1, and the difference between points was large. The sediment was both the “source” and “sink” of nitrogen pollutants. The range of TDP diffusion flux was −0.05 to 0.22 mg·(m2·d) −1. Except for point S8, the TDP diffused from sediment into the water body. Among all the sampling points, the diffusion fluxes of NH4+-N, TDN, and TDP at the S3 point were the largest, the release rate of endogenous pollutants was the most rapid, and the pollution to the water quality was the most serious. The results are of great significance to the exchange flux of nutrients at the sediment–water interface of rivers and the prevention and control of water eutrophication. It also provides a reference for the study of nutrient exchange flux at the sediment–water interface of rivers and other surface water bodies worldwide. Full article
Show Figures

Figure 1

22 pages, 3733 KB  
Article
Antarctic Special Protected Area 161 as a Reference to Assess the Effects of Anthropogenic and Natural Impacts on Meiobenthic Assemblages
by Federica Semprucci, Luca Appolloni, Eleonora Grassi, Luigia Donnarumma, Lucia Cesaroni, Giuseppina Tirimberio, Elena Chianese, Paola Di Donato, Giovanni Fulvio Russo, Maria Balsamo and Roberto Sandulli
Diversity 2021, 13(12), 626; https://doi.org/10.3390/d13120626 - 29 Nov 2021
Cited by 11 | Viewed by 3105
Abstract
The Antarctic region is usually considered a pristine area. Nevertheless, regional warming effects and increasing human activities, including the presence of several research stations, are inducing considerable environmental changes that may affect the ecosystem’s functions. Therefore, during the XXXIII Antarctic expedition, we carried [...] Read more.
The Antarctic region is usually considered a pristine area. Nevertheless, regional warming effects and increasing human activities, including the presence of several research stations, are inducing considerable environmental changes that may affect the ecosystem’s functions. Therefore, during the XXXIII Antarctic expedition, we carried out an investigation in Terra Nova bay (Ross Sea), close to the Antarctic Specially Protected Area (ASPA) n.161. In particular, we compared the effects of two different types of impacts on the meiobenthic assemblages: anthropogenic impact (AI), associated with the activity of Mario Zucchelli Research Station (MZS), and natural impact (NI) attributable to a large colony of Adélie penguins (Pygoscelis adeliae) in Adelie Cove. For each impacted site, a respective control site and two sampling depths (20 and 50 m) were selected. Several environmental variables (pH, dissolved oxygen, major and minor ions, heavy metals, organic load, and sediment grain size) were measured and analysed, to allow a comprehensive characterization of the sampling areas. According to the criteria defined by Unites States Environmental Protection Agency (US EPA 2009), heavy metal concentrations did not reveal critical conditions. However, both the MZS (AI20) and penguin colony (NI20) sites showed higher heavy metal concentrations, the former due to human activities related to the Italian research station, with the latter caused by the penguins excrements. Meiobenthic richness and abundance values suggested that the worst ecological condition was consistently related to the Adélie penguins colony. Furthermore, the higher contribution of r-strategists corroborates the hypothesis that the chronic impact of the penguin colonies may have stronger effects on the meiobenthos than the human activities at the MZS. Food is not limited in shallow Antarctic bottoms, and microscale differences in primary and secondary production processes can likely explain the greater spatial heterogeneity, highlighted both by the univariate and multivariate attributes of meiobenthic assemblage (i.e., richness, diversity, abundance, whole structure assemblage, and rare taxa) at the deeper stations. As reported in other geographical regions, the assemblage structure of rare meiobenthic taxa is confirmed to be more susceptible to environmental variations, rather than the whole assemblage structure. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

22 pages, 4950 KB  
Article
Influence of Edaphic Salinity on Leaf Morphoanatomical Functional Traits on Juvenile and Adult Trees of Red Mangrove (Rhizophora mangle): Implications with Relation to Climate Change
by Alejandra Robles Sánchez, José Ernesto Mancera Pineda, Xavier Marquínez Casas and Jairo Humberto Medina Calderón
Forests 2021, 12(11), 1586; https://doi.org/10.3390/f12111586 - 18 Nov 2021
Cited by 19 | Viewed by 4141
Abstract
Rhizophora mangle L. is one of the most distributed species of neotropical mangroves. The species exhibits great phenological variability that is associated with saline concentrations of the sediment where it grows. Among the organs that are most affected by interstitial and tidal water [...] Read more.
Rhizophora mangle L. is one of the most distributed species of neotropical mangroves. The species exhibits great phenological variability that is associated with saline concentrations of the sediment where it grows. Among the organs that are most affected by interstitial and tidal water salinity concentrations are the leaves. Since the hypersalinity generates water deficiency, it changes photosynthetic and hydraulic processes of the plant. To understand the relationship between the variation in leaf blade parameters and the water stress generated by salinity in two growth stages, morphoanatomical functional traits were quantified in leaves of juveniles and adults of R. mangle in three structurally different mangrove forests with different ranges of natural salinity (Oligohaline: 5.8–11.7 practical salinity units (PSU); Euhaline: 9.2–35.6 PSU and 23.9–47.7 PSU). We hypothesized that water stress caused by salinity generates modification in conductivity, water-storage, and photosynthetic tissues. Our results showed a greater number of morphoanatomical traits affected by salinity in juveniles compared to adults, greater variability in the traits associated with water accumulation and transport. Adults and juveniles subjected to higher values of salinity had traits more tolerant of variability in this factor, allowing superior adaptation to environments with high water deficit than individuals originating in oligohaline environments. This difference in adaptability to salinity between populations of R. mangle may imply different responses to climate change, where populations of oligohaline origin will be more susceptible to hypersalinization resulting from this phenomenon, while populations of euhaline origin could more effectively tolerate the aquatic stresses caused, allowing a prolongation of their permanence and the provision of their ecosystem services over time. Full article
(This article belongs to the Special Issue Advances in Mangrove Ecology)
Show Figures

Figure 1

Back to TopTop