Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (227)

Search Parameters:
Keywords = internal N cycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1553 KiB  
Review
Perennial Grains in Russia: History, Status, and Perspectives
by Alexey Morgounov, Olga Shchuklina, Inna Pototskaya, Amanjol Aydarov and Vladimir Shamanin
Crops 2025, 5(4), 46; https://doi.org/10.3390/crops5040046 - 23 Jul 2025
Viewed by 290
Abstract
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after [...] Read more.
The review summarizes the historical and current research on perennial grain breeding in Russia within the context of growing global interest in perennial crops. N.V. Tsitsin’s pioneering work in the 1930s produced the first wheat–wheatgrass amphiploids, which demonstrated the capacity to regrow after harvest and survive for 2–3 years. Subsequent research at the Main Botanical Garden in Moscow focused on characterizing Tsitsin’s material, selecting superior germplasm, and expanding genetic diversity through new cycles of hybridization and selection. This work led to the development of a new crop species, Trititrigia, and the release of cultivar ‘Pamyati Lyubimovoy’ in 2020, designed for dual-purpose production of high-quality grain and green biomass. Intermediate wheatgrass (Thinopyrum intermedium) is native to Russia, where several forage cultivars have been released and cultivated. Two large-grain cultivars (Sova and Filin) were developed from populations provided by the Land Institute and are now grown by farmers. Perennial rye was developed through interspecific crosses between Secale cereale and S. montanum, demonstrating persistence for 2–3 years with high biomass production and grain yields of 1.5–2.0 t/ha. Hybridization between Sorghum bicolor and S. halepense resulted in two released cultivars of perennial sorghum used primarily for forage production under arid conditions. Russia’s agroclimatic diversity in agricultural production systems provides significant opportunities for perennial crop development. The broader scientific and practical implications of perennial crops in Russia extend to climate-resilient, sustainable agriculture and international cooperation in this emerging field. Full article
Show Figures

Figure 1

21 pages, 3177 KiB  
Review
Galectin-3: Integrator of Signaling via Hexosamine Flux
by Mana Mohan Mukherjee, Devin Biesbrock and John Allan Hanover
Biomolecules 2025, 15(7), 1028; https://doi.org/10.3390/biom15071028 - 16 Jul 2025
Viewed by 296
Abstract
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate [...] Read more.
Galectin-3 (Gal-3) is a β-galactoside-binding lectin that mediates diverse signaling events in multiple cell types, including immune cells. It is also a prognostic indicator for multiple clinically important disorders, including cardiovascular disease. Gal-3 binds to cell surface glycans to form lattices that modulate surface receptor signaling and internalization. However, the tissue-specific regulation of Gal-3 surface expression remains poorly understood. Here, we review evidence for the involvement of Gal-3 in cell surface signaling, intranuclear events, and intracellular trafficking. Our focus will be on the O-GlcNAc modification as a regulator of Gal-3 biosynthesis, non-canonical secretion, and recycling. We argue that the nutrient-driven cytoplasmic hexosamine biosynthetic pathway (HBP) and endomembrane transport mechanisms generate unique pools of nucleotide sugars. The differing levels of nucleotide sugars in the cytosol, endoplasmic reticulum (ER), and Golgi apparatus generate differential thresholds for the responsiveness of O-GlcNAc cycling, N- and O-linked glycan synthesis/branching, and glycolipid synthesis. By regulating Gal-3 synthesis and non-canonical secretion, O-GlcNAc cycling may serve as a nexus constraining Gal-3 cell surface expression and lattice formation. This homeostatic feedback mechanism would be critical under conditions where extensive glycan synthesis and branching in the endomembrane system and on the cell surface are maintained by elevated hexosamine synthesis. Thus, O-GlcNAc cycling and Gal-3 synergize to regulate Gal-3 secretion and influence cellular signaling. In humans, Gal-3 serves as an early-stage prognostic indicator for heart disease, kidney disease, viral infection, autoimmune disease, and neurodegenerative disorders. Since O-GlcNAc cycling has also been linked to these pathologic states, exploring the interconnections between O-GlcNAc cycling and Gal-3 expression and synthesis is likely to emerge as an exciting area of research. Full article
(This article belongs to the Special Issue Cell Biology and Biomedical Application of Galectins)
Show Figures

Figure 1

19 pages, 5664 KiB  
Review
6PPD and 6PPD-Quinone in the Urban Environment: Assessing Exposure Pathways and Human Health Risks
by Stanley Chukwuemeka Ihenetu, Qiao Xu, Li Fang, Muhamed Azeem, Gang Li and Christian Ebere Enyoh
Urban Sci. 2025, 9(6), 228; https://doi.org/10.3390/urbansci9060228 - 16 Jun 2025
Viewed by 831
Abstract
In recent years, tires have become a prominent concern for researchers and environmentalists in regard to their potential threat of tire-derived pollutants (TDPs) to human health. Among these pollutants, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidized form, 6PPD-quinone (6PPD-Q), have been of primary interest due [...] Read more.
In recent years, tires have become a prominent concern for researchers and environmentalists in regard to their potential threat of tire-derived pollutants (TDPs) to human health. Among these pollutants, N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD) and its oxidized form, 6PPD-quinone (6PPD-Q), have been of primary interest due their ubiquity in urban environments, and their potential negative effects on human health. This review provides a summary of human health implications of TDPs, including 6PPD and 6PPD-Q. For the methodology, datasets were collected from the literature sources, including sources, formations and ecological effects of these pollutants, and pathways of human exposure and public health significance. Urban soils are key for services including carbon storage, water filtration, and nutrient cycling, underpinning urban ecosystem resilience. Soil degradation through compaction, sealing, and pollution, particularly by pollutants from tire wear, destroys these functions, however. These pollutants disturb the soil microbial communities, leading to a loss of diversity, an increase in pathogenic species, and changes in metabolism, which in turn can impact human health by increasing disease transmission and diseases of the respiratory systems. Incorporating green-infrastructure practices can enhance the ecosystem service potentials of urban soils and contribute to sustainable, climate-resilient urban city development. These findings underscore the pressing need for a coordinated international campaign to study chronic health effects and science informed policy frameworks to address this ubiquitous environmental health concern—an issue that crosses urban water quality, environmental justice, and global management of tire pollution. Full article
Show Figures

Figure 1

16 pages, 3346 KiB  
Article
Optimizing the PECVD Process for Stress-Controlled Silicon Nitride Films: Enhancement of Tensile Stress via UV Curing and Layered Deposition
by Jianping Ning, Chunjie Niu, Zhen Tang, Yue Sun, Hao Yan and Dayu Zhou
Coatings 2025, 15(6), 708; https://doi.org/10.3390/coatings15060708 - 12 Jun 2025
Viewed by 3013
Abstract
Silicon nitride (SiN) films deposited via plasma-enhanced chemical vapor deposition (PECVD) exhibit tunable tensile stress, which is critical for various microelectronic and optoelectronic applications. In this paper, the effects of silane (SiH4) flow rate during PECVD deposition, ultraviolet (UV) curing, and [...] Read more.
Silicon nitride (SiN) films deposited via plasma-enhanced chemical vapor deposition (PECVD) exhibit tunable tensile stress, which is critical for various microelectronic and optoelectronic applications. In this paper, the effects of silane (SiH4) flow rate during PECVD deposition, ultraviolet (UV) curing, and layered deposition on the tensile stress of SiN films are mainly investigated. The results reveal that increasing the SiH4 concentration raises hydrogen incorporation, which modifies internal stress dynamics. UV curing significantly increases tensile stress by breaking N-H and Si-H bonds, facilitating hydrogen desorption, and promoting Si-N-Si crosslinking. The optimal UV curing duration stabilizes tensile stress at approximately 1570 MPa, while excessive UV power alters hydrogen content dynamics, reducing stress. Additionally, layered deposition further amplifies stress enhancement, with films subjected to multiple deposition cycles exhibiting increased densification and crosslinking. The combined optimization of PECVD deposition parameters, UV curing, and layered deposition provides a robust strategy for tailoring SiN film stress, offering a versatile approach to engineering mechanical properties for advanced applications. Full article
Show Figures

Graphical abstract

24 pages, 1719 KiB  
Review
NAA10 (N-Alpha-Acetyltransferase 10): A Multifunctional Regulator in Development, Disease, and Cancer
by Zeng Quan Yang, Ion John Campeanu, Ivan Lopez, Manaal Syed, Yuanyuan Jiang and Hilda Afisllari
Cells 2025, 14(12), 863; https://doi.org/10.3390/cells14120863 - 7 Jun 2025
Viewed by 934
Abstract
NAA10 (N-alpha-acetyltransferase 10) is a pivotal enzyme in eukaryotic cells, serving as the catalytic subunit of the NatA complex, which is responsible for the N-terminal acetylation of approximately 40–50% of the human proteome. Beyond its canonical role in co-translational N-terminal acetylation, NAA10 also [...] Read more.
NAA10 (N-alpha-acetyltransferase 10) is a pivotal enzyme in eukaryotic cells, serving as the catalytic subunit of the NatA complex, which is responsible for the N-terminal acetylation of approximately 40–50% of the human proteome. Beyond its canonical role in co-translational N-terminal acetylation, NAA10 also acetylates internal lysine residues of various proteins and exerts non-catalytic regulatory functions through diverse protein–protein interactions. Pathogenic variants in NAA10 are linked to a spectrum of developmental disorders, most notably Ogden syndrome, which is characterized by neurodevelopmental delay, cardiac defects, and craniofacial anomalies. In cancer, NAA10 is frequently overexpressed or genomically amplified, where its dysregulation correlates with tumor aggressiveness and poor prognosis. Functional studies implicate NAA10 in regulating cell cycle progression, apoptosis, migration, and other hallmarks of cancer. In this review, we summarize the structure, molecular mechanisms, and physiological functions of NAA10, as well as its roles in human diseases and cancer. We present in silico pan-cancer analyses that highlight its clinical significance and potential downstream pathways. Furthermore, we discuss the therapeutic potential and challenges of targeting NAA10 in cancer, and propose future research directions to better understand its multifaceted roles in health and disease. Full article
Show Figures

Figure 1

18 pages, 5538 KiB  
Article
Wetlands as Climate-Sensitive Hotspots: Evaluating Greenhouse Gas Emissions in Southern Chhattisgarh
by Adikant Pradhan, Abhinav Sao, Tarun Kumar Thakur, James T. Anderson, Girish Chandel, Amit Kumar, Venkatesh Paramesh, Dinesh Jinger and Rupesh Kumar
Water 2025, 17(10), 1553; https://doi.org/10.3390/w17101553 - 21 May 2025
Viewed by 466
Abstract
In recent decades, wetlands have played a significant role in the global carbon cycle, making it essential to quantify their greenhouse gas (GHG) emissions at regional, national, and international levels. This study examines three dammed water bodies (Dalpatsagar, Gangamunda, and Dudhawa lake–wetland complexes) [...] Read more.
In recent decades, wetlands have played a significant role in the global carbon cycle, making it essential to quantify their greenhouse gas (GHG) emissions at regional, national, and international levels. This study examines three dammed water bodies (Dalpatsagar, Gangamunda, and Dudhawa lake–wetland complexes) in Chhattisgarh, India, to estimate their GHG emission potentials. Methane (CH4) showed the highest emission rate, peaking at 167.24 mg m−2 h−1 at 29.4 °C in Dalpatsagar during the standard meteorological week of 21–27 May. As temperatures rose from 17 °C to 18 °C, CH4 emissions ranged from 125–130 mg m−2 h−1. Despite slightly higher temperatures, Dudhawa showed lower emissions, likely due to its larger surface area and shallower depth. Carbon dioxide (CO2) emissions from Gangamunda increased sharply from 124.25 to 144.84 mg m−2 h−1 as temperatures rose from 12 °C to 25 °C, while Dudhawa recorded a peak CO2 emission of 113.72 mg m−2 h−1 in April. Nitrous oxide (N2O) emissions peaked at 29.11 mg m−2 h−1 during the 8th meteorological week, with an average of approximately 10.0 mg m−2 h−1. These findings indicate that climate-induced changes in water quality may increase health risks. This study offers critical insights to inform policies and conservation strategies aimed at mitigating emissions and enhancing the carbon sequestration potential of wetlands. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Figure 1

18 pages, 5216 KiB  
Article
Fatigue Assessment of Marine Propulsion Shafting Due to Cyclic Torsional and Bending Stresses
by Alen Marijančević, Sanjin Braut, Roberto Žigulić and Ante Skoblar
Machines 2025, 13(5), 384; https://doi.org/10.3390/machines13050384 - 3 May 2025
Cited by 2 | Viewed by 559
Abstract
The International Maritime Organization (IMO) mandates a reduction in carbon dioxide emissions from 2008 levels by at least 40% by 2030, prompting the widespread adoption of slow steaming and engine de-rating strategies. This study investigates the fatigue life of marine propulsion shafts under [...] Read more.
The International Maritime Organization (IMO) mandates a reduction in carbon dioxide emissions from 2008 levels by at least 40% by 2030, prompting the widespread adoption of slow steaming and engine de-rating strategies. This study investigates the fatigue life of marine propulsion shafts under slow steaming conditions, focusing on the interplay between torsional and bending vibrations. A finite element (FE) model of a low-speed two-stroke propulsion system is developed, incorporating torsional and lateral excitation sources from both the engine and propeller. Vibrational stresses are computed for multiple operating conditions, and fatigue life is assessed using both the conventional Det Norske Veritas (DNV) methodology and a proposed biaxial stress approach. Results indicate that while torsional vibrations remain the primary fatigue driver, bending-induced stresses contribute marginally to the overall fatigue life. The proposed methodology refines high-cycle fatigue (HCF) assessment by incorporating a corrected S-N curve and equivalent von Mises stress criteria. Comparisons with classification society standards demonstrate that existing guidelines remain valid for most cases, though further studies on extreme alignment deviations and dynamic bending effects are recommended. This study enhances understanding of fatigue mechanisms in marine shafting and proposes a refined methodology for improved fatigue life prediction. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

18 pages, 19701 KiB  
Article
N-Doped Modified MoS2 for Piezoelectric–Photocatalytic Removal of Tetracycline: Simultaneous Improvement of Photocatalytic and Piezoelectric Properties
by Donghai Yuan, Chao Guo, Yuting Ning, Xinping Fu, Xiuqing Li, Xueting Xu, Chen Wang, Yingying Kou and Jun Cui
Water 2025, 17(9), 1296; https://doi.org/10.3390/w17091296 - 26 Apr 2025
Viewed by 507
Abstract
Piezoelectric and photocatalytic technologies use mechanical and light energy to decompose environmental contaminants, demonstrating a beneficial synergistic impact. This investigation employs a two-step hydrothermal-calcination technique to synthesize N-doped MoS2 photocatalytic materials. The ideal catalyst, N-MoS2-3, utilizing the synergistic effect of [...] Read more.
Piezoelectric and photocatalytic technologies use mechanical and light energy to decompose environmental contaminants, demonstrating a beneficial synergistic impact. This investigation employs a two-step hydrothermal-calcination technique to synthesize N-doped MoS2 photocatalytic materials. The ideal catalyst, N-MoS2-3, utilizing the synergistic effect of piezoelectric–photocatalysis processes, attained a TC degradation rate of 90.8% in 60 min. The kinetic constant (0.0374 min−1) is 1.75 times greater than the combined rates of single photocatalysis and piezoelectric catalysis, indicating a notable synergistic impact. The material has 80% degradation efficiency after five cycles, indicating its remarkable resilience. Mechanistic investigations reveal that nitrogen doping establishes an internal electric field by modulating the S-Mo-S charge distribution. Photogenerated electrons move to generate •O2, while holes accumulate internally. The ultrasound-induced piezoelectric polarization field interacts with the photogenerated electric field in reverse, thereby synergistically improving carrier separation efficiency and facilitating redox processes. This study emphasizes the viability of non-metal doping as a method for modifying the properties of two-dimensional materials, offering a novel approach to enhance the synergistic attributes of piezoelectric and photocatalytic processes. This technology possesses significant promise for environmental restoration through the utilization of solar and mechanical energy. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

19 pages, 2929 KiB  
Article
Plant–Soil–Microbial Carbon, Nitrogen, and Phosphorus Ecological Stoichiometry in Mongolian Pine-Planted Forests Under Different Environmental Conditions in Liaoning Province, China
by Hui Li, Yi Yang, Xiaohang Weng, Yongbin Zhou, Songzhu Zhang, Liying Liu and Jiubo Pei
Forests 2025, 16(5), 720; https://doi.org/10.3390/f16050720 - 23 Apr 2025
Viewed by 363
Abstract
Mongolian pine (Pinus sylvestris var. Mongolia) has been widely utilized as a key species for afforestation projects within the Three-North Shelterbelt of Liaoning Province in China. Its impressive ecological resilience has made it a favorite choice for this endeavor. However, as [...] Read more.
Mongolian pine (Pinus sylvestris var. Mongolia) has been widely utilized as a key species for afforestation projects within the Three-North Shelterbelt of Liaoning Province in China. Its impressive ecological resilience has made it a favorite choice for this endeavor. However, as the stands mature and climate conditions shift, some areas are experiencing premature decline or even mortality. Ecological stoichiometry is capable of uncovering the supply and equilibrium of plant and soil nutrients within ecosystems and is extensively utilized in the identification of limiting elements. Therefore, studying its ecological stoichiometry and internal stability dynamics is of crucial significance for clarifying the nutrient cycling process in the Mongolian pine region and alleviating the decline situation. The eastern and northwestern regions of Liaoning differ significantly in precipitation and soil nutrient availability. This study examines Mongolian pine plantations in both regions, analyzing the carbon (C), nitrogen (N), and phosphorus (P) content in plant tissues, soil, microbial biomass, and stoichiometric ratio under distinct environmental conditions. In order to provide a theoretical basis for alleviating the decline of artificial poplar forests and healthy management. Results indicate that (1) leaf C, N, and P contents in the eastern Liaoning region averaged 496.67, 15.19, and 1.66 g·kg−1, respectively, whereas those in northwestern Liaoning were 514.16, 14.82, and 1.23 g·kg−1, respectively. Soil C, N, and P concentrations exhibited notable regional differences, with eastern Liaoning recording 34.54, 2.62, and 0.48 g·kg−1, compared to significantly lower values in northwestern Liaoning (7.74, 0.77, and 0.21 g·kg−1). Similarly, microbial biomass C, N, and P were higher in eastern Liaoning (18.63, 5.09, and 7.72 mg·kg−1) than in northwestern Liaoning (10.18, 3.46, and 4.38 mg·kg−1). (2) The stoichiometric ratio of soil in the Mongolian pine plantations is higher than that in northwestern Liaoning, but the stoichiometric ratio of plants shows the opposite trend. Specifically, microbial carbon-to-nitrogen (MBC/MBN) ratios are higher in eastern Liaoning, whereas microbial carbon-to-phosphorus (MBC/MBP) and nitrogen-to-phosphorus (MBN/MBP) ratios are greater in northwestern Liaoning. Correlation analysis of plant–soil–microbe stoichiometry indicates that plant growth in both regions is co-limited by nitrogen, with Mongolian pine exhibiting strong internal stability. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

19 pages, 6353 KiB  
Article
Anti-Swelling Aramid-Nanofiber-Reinforced Zwitterionic Polymer Hydrogel for Strain Sensors
by Zeyu Chen and Wenbin Zhong
Materials 2025, 18(8), 1800; https://doi.org/10.3390/ma18081800 - 15 Apr 2025
Cited by 1 | Viewed by 594
Abstract
Zwitterionic polymer hydrogels have great application prospects in wearable electronic devices due to their antifouling and excellent biocompatibility. However, its strong hydrophilicity often leads to easy swelling and poor mechanical properties. In this study, aramid nanofiber (ANF)-reinforced zwitterionic ion hydrogels were synthesized by [...] Read more.
Zwitterionic polymer hydrogels have great application prospects in wearable electronic devices due to their antifouling and excellent biocompatibility. However, its strong hydrophilicity often leads to easy swelling and poor mechanical properties. In this study, aramid nanofiber (ANF)-reinforced zwitterionic ion hydrogels were synthesized by the one-step free radical polymerization of N-acryloyl glycinamide (NAGA), N-[Tris (hydroxymethyl) methyl] acrylamide (THMA) and sulfobetaine methacrylate (SBMA) monomers in the presence of ANFs. A large number of hydrogen bonds were formed between the amide groups of the ANFs and the amide groups of the NAGA units/the hydroxyl groups of the THMA units/the sulfonic groups of the SBMA units, which improved the internal interface force of the hydrogel. The obtained ANF-reinforced hydrogel had an anti-swelling property, and its swelling ratio and tensile strength were 25% and 170% of those of the hydrogel without the addition of ANFs. By introducing lithium chloride as an electrolyte to improve its ion conductivity and subsequently assembling it into strain sensors, it exhibited a high sensitivity (GF = 1.12), short response and recovery times (100 ms and 150 ms), and excellent cycling stability. This work provides a feasible strategy for anti-swelling wearable strain sensors. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

24 pages, 8848 KiB  
Article
A Multi-Scale Investigation of Sandy Red Clay Degradation Mechanisms During Wet–Dry Cycles and Their Implications for Slope Stability
by Wei Xie, Zhenguo Liu, Zhigang Kong, Lu Jing and Rui Xiao
Appl. Sci. 2025, 15(8), 4085; https://doi.org/10.3390/app15084085 - 8 Apr 2025
Cited by 1 | Viewed by 534
Abstract
Sandy red clay, abundant in clay minerals, exhibits a marked sensitivity to variations in water content. Several of its properties are highly prone to deterioration due to wet–dry cycling, potentially leading to slope instability. To investigate the multi-scale deterioration patterns and the underlying [...] Read more.
Sandy red clay, abundant in clay minerals, exhibits a marked sensitivity to variations in water content. Several of its properties are highly prone to deterioration due to wet–dry cycling, potentially leading to slope instability. To investigate the multi-scale deterioration patterns and the underlying chain mechanism of sandy red clay subjected to wet–dry cycles, this study conducted systematic tests on remolded sandy red clay specimens through 0 to 5 wet–dry cycles, with the number of cycles (N) as the variable. The study’s results indicated the following, under wet–dry cycling: (1) Regarding the expansion and shrinking properties, the absolute expansion rate (δa) progressively increased, whereas the absolute shrinkage rate (ηa) gradually decreased. Concurrently, the relative expansion rate (δr) and relative shrinkage rate (ηr) gradually declined. (2) At the microscale, wet–dry cycles induced significant changes in the microstructure, characterized by increased particle rounding, disrupted stacked aggregates, altered inter-particle contacts, enlarged and interconnected pores, increased number of pores, and a reduction in clay mineral content. (3) At the mesoscale, cracks initiated and propagated. The evolution of cracks undergoes stages of initiation stage, propagation stage, and stable stage, and with the crack rate increasing to 2.0% after five cycles. (4) At the macroscale, the shear strength exhibited a continuous decline. After five cycles, cohesion decreased by as much as 49.6%, whereas the internal friction angle only decreased by 4.3%. This indicates that the loss of cohesion was the primary factor contributing to the strength deterioration. (5) A 19.4% decrease in the slope factor of safety (Fv) occurred after five cycles. This reduction was primarily attributed to the decrease in material cohesion and the upward shift in the potential sliding surface. Under the influence of wet–dry cycles, slope failures typically transitioned from overall or deep sliding to localized or shallow sliding. Full article
Show Figures

Figure 1

19 pages, 4269 KiB  
Article
Medicago Pasture Soil C:N:P Stoichiometry Mediated by N Fertilization in Northern China
by Bo Yuan, Lijun Xu, Jiaqiang Wei, Meji Cuo, Hongzhi Zhang, Yingying Nie, Mingying Guo, Jinxia Li and Xinwei Liu
Agronomy 2025, 15(3), 724; https://doi.org/10.3390/agronomy15030724 - 17 Mar 2025
Viewed by 533
Abstract
The degradation of black soil cropland has occurred to varying degrees in the northern agropastoral ecotone. Crop–forage rotation is an effective way to improve soil quality, with Medicago being the preferred perennial legume. The C, N, and P stoichiometric ratios are key indicators [...] Read more.
The degradation of black soil cropland has occurred to varying degrees in the northern agropastoral ecotone. Crop–forage rotation is an effective way to improve soil quality, with Medicago being the preferred perennial legume. The C, N, and P stoichiometric ratios are key indicators of soil quality and organic matter composition, reflecting the status of the internal C, N, and P cycles in soil. This study aims to investigate the ecological stoichiometric ratios of Medicago grassland soils with different planting durations, explore the regulatory effects of nitrogen fertilizer on soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) content, and assess the impacts of these changes on the Medicago grassland ecosystem. This study was conducted on the long-term cultivated grassland core experimental platform of the Hulunber National Field Station. Based on forage yield and soil nutrient measurements, field-based observations and laboratory analyses were carried out. Medicago × varia was the study subject, with different nitrogen fertilizer treatments: CK (0 kg N ha−1), N75 (75 kg N ha−1), and N150 (150 kg N ha−1). A randomized block design was adopted. Variance analysis, boxplot statistics, and scatterplot fitting methods were used to examine soil properties and assess the effects of nitrogen application on the C, N, and P stoichiometry of soils in established perennial Medicago grasslands. The results indicate that, based on the growth characteristics of alfalfa, soil nutrient dynamics, and its effectiveness in improving soil quality, the optimal rotation period for alfalfa in the northern agropastoral ecotone is 4–5 years, but it can also be shortened to 3 years. Soil carbon, nitrogen, and phosphorus contents are significantly influenced by the planting duration. As the planting years increase, soil carbon and nitrogen contents first increase and then decrease, while soil phosphorus content initially decreases followed by a slight increase. Soil pH gradually rises with both planting years and soil depth. Both low and high levels of nitrogen fertilizer application reduce soil organic carbon concentration (by 0.40% and 10.14%, respectively). Low nitrogen fertilizer application increases soil nitrogen concentration (by 1.50%), whereas high nitrogen fertilizer application decreases it (by 7.6%). Both nitrogen levels increase soil phosphorus concentration (by 36.67% and 35.26%, respectively). For soil from an alfalfa grassland planted for 8 years, the carbon-to-nitrogen ratio ranges from 9.08 to 9.76, the carbon-to-phosphorus ratio from 13.00 to 151.32, and the nitrogen-to-phosphorus ratio from 1.65 to 17.14. In summary, alfalfa yield is primarily influenced by the nitrogen fertilizer application rate, planting duration, stoichiometric ratios, and pH. Nitrogen fertilizer application has a positive regulatory effect on soil stoichiometric ratios. The annual yield can reach 8.94 to 10.07 tons per hectare., but phosphorus remains a limiting factor. These findings provide crucial data for understanding the impact of ecological stoichiometry on crop–forage rotation cycles, as well as optimal land use and quality improvement. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

25 pages, 2471 KiB  
Article
Pain Reduction with Repeated Injections of Botulinum Toxin A in Upper Limb Spasticity: A Longitudinal Analysis from the ULIS-III Study
by Lynne Turner-Stokes, Khan Buchwald, Stephen A. Ashford, Klemens Fheodoroff, Jorge Jacinto, Ajit Narayanan and Richard J. Siegert
Toxins 2025, 17(3), 117; https://doi.org/10.3390/toxins17030117 - 1 Mar 2025
Cited by 1 | Viewed by 1460
Abstract
Pain reduction is a common goal of the treatment of upper limb spasticity with botulinum toxin (BoNT-A). ULIS-III was a large international, observational, longitudinal study (N = 953) conducted in real-life clinical practice over two years. In this secondary post hoc analysis, we [...] Read more.
Pain reduction is a common goal of the treatment of upper limb spasticity with botulinum toxin (BoNT-A). ULIS-III was a large international, observational, longitudinal study (N = 953) conducted in real-life clinical practice over two years. In this secondary post hoc analysis, we examine whether goals for pain reduction were met over repeated injection cycles. We report serial changes in pain severity and explore predictors of pain reduction and injection frequency. Patients were selected if pain reduction was a primary/secondary goal for at least one cycle (n = 438/953). They were assessed at the start and end of each cycle using the goal attainment T-score alongside a self-report of pain severity (range 0–10). Across all cycles, pain-related goals were set for 1189/1838 injections (64.7%) and were achieved in 839 (70.6%). Patients continued to show a significant reduction in pain (p < 0.001) for each injection up to seven cycles, with some cumulative benefit (p < 0.001). Those requiring more frequent injections tended to have higher starting pain scores and a smaller reduction in pain score, but these differences were not significant when other covariates (age, previous injection history, time since onset, severity and distribution of spasticity) were taken into account (p > 0.713). Conclusion: Repeated BoNT-A administration continued to result in a significant reduction in upper limb spasticity-related pain, regardless of patient-related factors. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

24 pages, 971 KiB  
Review
Knockin’ on Cell’s Door: Influenza A Virus Adsorption and Its Pharmacological Inhibition
by Andrey Gorshkov and Elena Varyushina
Microbiol. Res. 2025, 16(2), 37; https://doi.org/10.3390/microbiolres16020037 - 4 Feb 2025
Viewed by 1580
Abstract
Influenza A virus (IAV) is a widespread human respiratory pathogen that contributes significantly to morbidity and mortality worldwide. The adsorption of the virus into the cell surface is the earliest stage of its replication cycle. The key role of N-linked sialic acids (SIAs) [...] Read more.
Influenza A virus (IAV) is a widespread human respiratory pathogen that contributes significantly to morbidity and mortality worldwide. The adsorption of the virus into the cell surface is the earliest stage of its replication cycle. The key role of N-linked sialic acids (SIAs) as receptors for binding to IAV’s hemagglutinin (HA) has long been acknowledged. The molecular specificity of this interaction is a key factor in host range, pathogenicity, and transmissibility of various IAV subtypes. Along with this, a number of recent studies have introduced significant complexity into the picture of IAV adsorption and revealed a multitude of new molecules on host cell surfaces to serve as receptors and/or co-receptors for IAV attachment. For successful internalization of the adsorbed virus, downstream signal transduction is necessary to activate effector endocytosis mechanisms. In recent years, our understanding of the sophistication and variability of signal transduction pathways in the virus attachment site has significantly expanded, with the help of research techniques like fluorescence imaging of individual viruses in real-time, dominant-negative mutants, siRNA knockdowns, protein kinase selective inhibitors, phosphoproteome profiling, and others. These approaches deepen our knowledge of the molecules involved in the early stages of the IAV life cycle and also serve as the basis for the development of new effective antiviral drugs. In our review, we analyze recent publications on the mechanisms of IAV adsorption, newly discovered receptors for virus attachment, and signal transmission in the site of the adsorbed virion. Besides this, we consider new data on the development of selective inhibitors as antiviral drugs aimed at both viral and cellular factors of IAV adsorption. Full article
Show Figures

Figure 1

14 pages, 3917 KiB  
Article
Fabrication of Network Spherical α-Al2O3 and Its Application on the Separator of Lithium-Ion Batteries
by Haiyang Chen, Huifang Zhang, Hongliang Huang, Mingjie Guo, Jiale Wang, Peng Wang, Bin Li and Junhong Chen
Materials 2025, 18(3), 660; https://doi.org/10.3390/ma18030660 - 2 Feb 2025
Viewed by 1078
Abstract
Ceramic-coated polyolefin separator technology is considered a simple and effective method for the improvement of lithium-ion battery (LIB) safety. However, the characteristics of ceramic powder can adversely affect the surface structure and ion conductivity of the separators. Therefore, it is crucial to develop [...] Read more.
Ceramic-coated polyolefin separator technology is considered a simple and effective method for the improvement of lithium-ion battery (LIB) safety. However, the characteristics of ceramic powder can adversely affect the surface structure and ion conductivity of the separators. Therefore, it is crucial to develop a ceramic powder that not only improves the thermal stability of the separators but also enhances ion conductivity. Herein, network spherical α-Al2O3 (N-Al2O3) with a multi-dimensional network pore structure was constructed. Furthermore, N-Al2O3 was applied as a coating to one side of polyethylene (PE) separators, resulting in N-Al2O3-PE separators that exhibit superior thermal stability and enhanced wettability with liquid electrolytes. Notably, the N-Al2O3-PE separators demonstrated exceptional ionic conductivity (0.632 mS cm−1), attributed to the internal multi-dimensional network pore structures of N-Al2O3, which facilitated an interconnected and efficient “highway” for the transport of Li+ ions. As a consequence, LiCoO2/Li half batteries equipped with these N-Al2O3-PE separators showcased remarkable rate and cycling performance. Particularly at high current densities, their discharge capacity and capacity retention rate significantly outperformed those of conventional PE separators. Full article
Show Figures

Figure 1

Back to TopTop