Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,089)

Search Parameters:
Keywords = intermittent renewable energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2504 KiB  
Article
Battery Energy Storage Systems: Energy Market Review, Challenges, and Opportunities in Frequency Control Ancillary Services
by Gian Garttan, Sanath Alahakoon, Kianoush Emami and Shantha Gamini Jayasinghe
Energies 2025, 18(15), 4174; https://doi.org/10.3390/en18154174 - 6 Aug 2025
Abstract
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of [...] Read more.
Battery energy storage systems (BESS) are considered a good energy source to maintain supply and demand, mitigate intermittency, and ensure grid stability. The primary contribution of this paper is to provide a comprehensive overview of global energy markets and a critical analysis of BESS’ participation in frequency control ancillary service (FCAS) markets. This review synthesises the current state of knowledge on the evolution of the energy market and the role of battery energy storage systems in providing grid stability, particularly frequency control services, with a focus on their integration into evolving high-renewable-energy-source (RES) market structures. Specifically, solar PV and wind energy are emerging as the main drivers of RES expansion, accounting for approximately 61% of the global market share. A BESS offers greater flexibility in storage capacity, scalability and rapid response capabilities, making it an effective solution to address emerging security risks of the system. Moreover, a BESS is able to provide active power support through power smoothing when coupled with solar photovoltaic (PV) and wind generation. In this paper, we provide an overview of the current status of energy markets, the contribution of battery storage systems to grid stability and flexibility, as well as the challenges that BESS face in evolving electricity markets. Full article
16 pages, 5548 KiB  
Article
A State-of-Charge-Frequency Control Strategy for Grid-Forming Battery Energy Storage Systems in Black Start
by Yunuo Yuan and Yongheng Yang
Batteries 2025, 11(8), 296; https://doi.org/10.3390/batteries11080296 - 4 Aug 2025
Viewed by 54
Abstract
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In [...] Read more.
As the penetration of intermittent renewable energy sources continues to increase, ensuring reliable power system and frequency stability is of importance. Battery energy storage systems (BESSs) have emerged as an important solution to mitigate these challenges by providing essential grid support services. In this context, a state-of-charge (SOC)-frequency control strategy for grid-forming BESSs is proposed to enhance their role in stabilizing grid frequency and improving overall system performance. In the system, the DC-link capacitor is regulated to maintain the angular frequency through a matching control scheme, emulating the characteristics of the rotor dynamics of a synchronous generator (SG). Thereby, the active power control is implemented in the control of the DC/DC converter to further regulate the grid frequency. More specifically, the relationship between the active power and the frequency is established through the SOC of the battery. In addition, owing to the inevitable presence of differential operators in the control loop, a high-gain observer (HGO) is employed, and the corresponding parameter design of the proposed method is elaborated. The proposed strategy simultaneously achieves frequency regulation and implicit energy management by autonomously balancing power output with available battery capacity, demonstrating a novel dual benefit for sustainable grid operation. To verify the effectiveness of the proposed control strategy, a 0.5-Hz frequency change and a 10% power change are carried out through simulations and also on a hardware-in-the-loop (HIL) platform. Full article
(This article belongs to the Section Battery Modelling, Simulation, Management and Application)
Show Figures

Figure 1

15 pages, 997 KiB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 - 3 Aug 2025
Viewed by 154
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

18 pages, 3493 KiB  
Article
Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery
by Ahmed Fathy and Ahmed M. Agwa
Electrochem 2025, 6(3), 27; https://doi.org/10.3390/electrochem6030027 - 31 Jul 2025
Viewed by 196
Abstract
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique [...] Read more.
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique is the battery storage system since its cost is low compared to other techniques. Therefore, batteries are employed in several applications like power systems, electric vehicles, and smart grids. Due to the merits of the lithium-ion (Li-ion) battery, it is preferred over other kinds of batteries. However, the accuracy of the Li-ion battery model is essential for estimating the state of charge (SOC). Additionally, it is essential for consistent simulation and operation throughout various loading and charging conditions. Consequently, the determination of real battery model parameters is vital. An innovative application of the red-billed blue magpie optimizer (RBMO) for determining the model parameters and the SOC of the Li-ion battery is presented in this article. The Shepherd model parameters are determined using the suggested optimization algorithm. The RBMO-based modeling approach offers excellent execution in determining the parameters of the battery model. The suggested approach is compared to other programmed algorithms, namely dandelion optimizer, spider wasp optimizer, barnacles mating optimizer, and interior search algorithm. Moreover, the suggested RBMO is statistically evaluated using Kruskal–Wallis, ANOVA tables, Friedman rank, and Wilcoxon rank tests. Additionally, the Li-ion battery model estimated via the RBMO is validated under variable loading conditions. The fetched results revealed that the suggested approach achieved the least errors between the measured and estimated voltages compared to other approaches in two studied cases with values of 1.4951 × 10−4 and 2.66176 × 10−4. Full article
Show Figures

Figure 1

19 pages, 3963 KiB  
Article
Real-Time Energy Management in Microgrids: Integrating T-Cell Optimization, Droop Control, and HIL Validation with OPAL-RT
by Achraf Boukaibat, Nissrine Krami, Youssef Rochdi, Yassir El Bakkali, Mohamed Laamim and Abdelilah Rochd
Energies 2025, 18(15), 4035; https://doi.org/10.3390/en18154035 - 29 Jul 2025
Viewed by 376
Abstract
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these [...] Read more.
Modern microgrids face critical challenges in maintaining stability and efficiency due to renewable energy intermittency and dynamic load demands. This paper proposes a novel real-time energy management framework that synergizes a bio-inspired T-Cell optimization algorithm with decentralized voltage-based droop control to address these challenges. A JADE-based multi-agent system (MAS) orchestrates coordination between the T-Cell optimizer and edge-level controllers, enabling scalable and fault-tolerant decision-making. The T-Cell algorithm, inspired by adaptive immune system dynamics, optimizes global power distribution through the MAS platform, while droop control ensures local voltage stability via autonomous adjustments by distributed energy resources (DERs). The framework is rigorously validated through Hardware-in-the-Loop (HIL) testing using OPAL-RT, which interfaces MATLAB/Simulink models with Raspberry Pi for real-time communication (MQTT/Modbus protocols). Experimental results demonstrate a 91% reduction in grid dependency, 70% mitigation of voltage fluctuations, and a 93% self-consumption rate, significantly enhancing power quality and resilience. By integrating centralized optimization with decentralized control through MAS coordination, the hybrid approach achieves scalable, self-organizing microgrid operation under variable generation and load conditions. This work advances the practical deployment of adaptive energy management systems, offering a robust solution for sustainable and resilient microgrids. Full article
Show Figures

Figure 1

20 pages, 3837 KiB  
Review
Recent Advances in the Application of VO2 for Electrochemical Energy Storage
by Yuxin He, Xinyu Gao, Jiaming Liu, Junxin Zhou, Jiayu Wang, Dan Li, Sha Zhao and Wei Feng
Nanomaterials 2025, 15(15), 1167; https://doi.org/10.3390/nano15151167 - 28 Jul 2025
Viewed by 211
Abstract
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO [...] Read more.
Energy storage technology is crucial for addressing the intermittency of renewable energy sources and plays a key role in power systems and electronic devices. In the field of energy storage systems, multivalent vanadium-based oxides have attracted widespread attention. Among these, vanadium dioxide (VO2) is distinguished by its key advantages, including high theoretical capacity, low cost, and strong structural designability. The diverse crystalline structures and plentiful natural reserves of VO2 offer a favorable foundation for facilitating charge transfer and regulating storage behavior during energy storage processes. This mini review provides an overview of the latest progress in VO2-based materials for energy storage applications, specifically highlighting their roles in lithium-ion batteries, zinc-ion batteries, photoassisted batteries, and supercapacitors. Particular attention is given to their electrochemical properties, structural integrity, and prospects for development. Additionally, it explores future development directions to offer theoretical insights and strategic guidance for ongoing research and industrial application of VO2. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Storage)
Show Figures

Graphical abstract

25 pages, 2281 KiB  
Article
Life Cycle Cost Modeling and Multi-Dimensional Decision-Making of Multi-Energy Storage System in Different Source-Grid-Load Scenarios
by Huijuan Huo, Peidong Li, Cheng Xin, Yudong Wang, Yuan Zhou, Weiwei Li, Yanchao Lu, Tianqiong Chen and Jiangjiang Wang
Processes 2025, 13(8), 2400; https://doi.org/10.3390/pr13082400 - 28 Jul 2025
Viewed by 347
Abstract
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance [...] Read more.
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance for the construction of new power systems. From the perspective of life cycle cost analysis, this paper conducts an economic evaluation of four mainstream energy storage technologies: lithium iron phosphate battery, pumped storage, compressed air energy storage, and hydrogen energy storage, and quantifies and compares the life cycle cost of multiple energy storage technologies. On this basis, a three-dimensional multi-energy storage comprehensive evaluation indicator system covering economy, technology, and environment is constructed. The improved grade one method and entropy weight method are used to determine the comprehensive performance, and the fuzzy comprehensive evaluation method is used to carry out multi-attribute decision-making on the multi-energy storage technology in the source, network, and load scenarios. The results show that pumped storage and compressed air energy storage have significant economic advantages in long-term and large-scale application scenarios. With its fast response ability and excellent economic and technical characteristics, the lithium iron phosphate battery has the smallest score change rate (15.2%) in various scenarios, showing high adaptability. However, hydrogen energy storage technology still lacks economic and technological maturity, and breakthrough progress is still needed for its wide application in various application scenarios in the future. Full article
Show Figures

Figure 1

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 443
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

21 pages, 2594 KiB  
Article
Extraction of Basic Features and Typical Operating Conditions of Wind Power Generation for Sustainable Energy Systems
by Yongtao Sun, Qihui Yu, Xinhao Wang, Shengyu Gao and Guoxin Sun
Sustainability 2025, 17(14), 6577; https://doi.org/10.3390/su17146577 - 18 Jul 2025
Viewed by 205
Abstract
Accurate extraction of representative operating conditions is crucial for optimizing systems in renewable energy applications. This study proposes a novel framework that combines the Parzen window estimation method, ideal for nonparametric modeling of wind, solar, and load datasets, with a game theory-based time [...] Read more.
Accurate extraction of representative operating conditions is crucial for optimizing systems in renewable energy applications. This study proposes a novel framework that combines the Parzen window estimation method, ideal for nonparametric modeling of wind, solar, and load datasets, with a game theory-based time scale selection mechanism. The novelty of this work lies in integrating probabilistic density modeling with multi-indicator evaluation to derive realistic operational profiles. We first validate the superiority of the Parzen window approach over traditional Weibull and Beta distributions in estimating wind and solar probability density functions. In addition, we analyze the influence of key meteorological parameters such as wind direction, temperature, and solar irradiance on energy production. Using three evaluation metrics, the main result shows that a 3-day representative time scale offers optimal accuracy when determined through game theory methods. Validation with real-world data from Inner Mongolia confirms the robustness of the proposed method, yielding low errors in wind, solar, and load profiles. This study contributes a novel 3-day typical profile extraction method validated on real meteorological data, providing a data-driven foundation for optimizing energy storage systems under renewable uncertainty. This framework supports energy sustainability by ensuring realistic modeling under renewable intermittency. Full article
Show Figures

Figure 1

18 pages, 11724 KiB  
Article
Hydrogen–Rock Interactions in Carbonate and Siliceous Reservoirs: A Petrophysical Perspective
by Rami Doukeh, Iuliana Veronica Ghețiu, Timur Vasile Chiș, Doru Bogdan Stoica, Gheorghe Brănoiu, Ibrahim Naim Ramadan, Ștefan Alexandru Gavrilă, Marius Gabriel Petrescu and Rami Harkouss
Appl. Sci. 2025, 15(14), 7957; https://doi.org/10.3390/app15147957 - 17 Jul 2025
Viewed by 769
Abstract
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and [...] Read more.
Underground hydrogen storage (UHS) in carbonate and siliceous formations presents a promising solution for managing intermittent renewable energy. However, experimental data on hydrogen–rock interactions under representative subsurface conditions remain limited. This study systematically investigates mineralogical and petrophysical alterations in dolomite, calcite-rich limestone, and quartz-dominant siliceous cores subjected to high-pressure hydrogen (100 bar, 70 °C, 100 days). Distinct from prior research focused on diffraction peak shifts, our analysis prioritizes quantitative changes in mineral concentration (%) as a direct metric of reactivity and structural integrity, offering more robust insights into long-term storage viability. Hydrogen exposure induced significant dolomite dissolution, evidenced by reduced crystalline content (from 12.20% to 10.53%) and accessory phase loss, indicative of partial decarbonation and ankerite-like formation via cation exchange. Conversely, limestone exhibited more pronounced carbonate reduction (vaterite from 6.05% to 4.82% and calcite from 2.35% to 0%), signaling high reactivity, mineral instability, and potential pore clogging from secondary precipitation. In contrast, quartz-rich cores demonstrated exceptional chemical inertness, maintaining consistent mineral concentrations. Furthermore, Brunauer–Emmett–Teller (BET) surface area and Barrett–Joyner–Halenda (BJH) pore distribution analyses revealed enhanced porosity and permeability in dolomite (pore volume increased >10×), while calcite showed declining properties and quartz showed negligible changes. SEM-EDS supported these trends, detailing Fe migration and textural evolution in dolomite, microfissuring in calcite, and structural preservation in quartz. This research establishes a unique experimental framework for understanding hydrogen–rock interactions under reservoir-relevant conditions. It provides crucial insights into mineralogical compatibility and structural resilience for UHS, identifying dolomite as a highly promising host and highlighting calcitic rocks’ limitations for long-term hydrogen containment. Full article
(This article belongs to the Topic Exploitation and Underground Storage of Oil and Gas)
Show Figures

Figure 1

13 pages, 2335 KiB  
Article
Energy Mix Constraints Imposed by Minimum EROI for Societal Sustainability
by Ziemowit Malecha
Energies 2025, 18(14), 3765; https://doi.org/10.3390/en18143765 - 16 Jul 2025
Viewed by 233
Abstract
This study analyzes the feasibility of energy mixes composed of different shares of various types of power generation units, including photovoltaic (PV) and wind farms, hydropower, fossil fuel-based plants, and nuclear power. The analysis uses the concept of Energy Return on Investment (EROI), [...] Read more.
This study analyzes the feasibility of energy mixes composed of different shares of various types of power generation units, including photovoltaic (PV) and wind farms, hydropower, fossil fuel-based plants, and nuclear power. The analysis uses the concept of Energy Return on Investment (EROI), which is considered the most reliable indicator for comparing different technologies as it measures the energy required rather than monetary costs needed to build and operate each technology. Literature-based EROI values for individual generation technologies were used, along with the minimum EROI thresholds for the entire energy mix that are necessary to sustain developed societies and a high quality of life. The results show that, depending on the assumed minimum EROI value, which ranges from 10 to 30, the maximum share of intermittent renewable energy sources (IRESs), such as PV and wind farms, in the system cannot exceed 90% or 60%, respectively. It is important to emphasize that this EROI-based analysis does not account for power grid stability, which currently can only be maintained by the inertia of large synchronous generators. Therefore, the scenario with a 90% IRES share should be regarded as purely theoretical. Full article
Show Figures

Figure 1

23 pages, 3337 KiB  
Article
Optimization of Economic Space: Algorithms for Controlling Energy Storage in Low-Voltage Networks
by Marcin Rabe, Tomasz Norek, Agnieszka Łopatka, Jarosław Korpysa, Veselin Draskovic, Andrzej Gawlik and Katarzyna Widera
Energies 2025, 18(14), 3756; https://doi.org/10.3390/en18143756 - 16 Jul 2025
Viewed by 246
Abstract
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large [...] Read more.
With the increasing penetration of renewables, the importance of electrical energy storage (EES) for power supply stabilization is growing. The intermittency of renewable energy sources remains the main issue limiting their rapid integration; however, the development of high-capacity batteries capable of storing large quantities of energy offers a way to address this challenge. This article presents and describes dedicated algorithms for controlling the EES system to enable the provision of individual system services. Five services are planned for implementation: RES power stabilization; voltage regulation using active and reactive power; reactive power compensation; power stabilization of unstable loads; and power reduction on demand. The aim of this paper is to develop new, dedicated energy storage control algorithms for delivering these specific services. Additionally, the voltage regulation algorithm includes two operating modes: short-term regulation (voltage fluctuation stabilization) and long-term regulation (triggered by an operator signal). Full article
(This article belongs to the Special Issue Sustainable Energy & Society—2nd Edition)
Show Figures

Figure 1

18 pages, 3899 KiB  
Article
Multi-Agent-Based Estimation and Control of Energy Consumption in Residential Buildings
by Otilia Elena Dragomir and Florin Dragomir
Processes 2025, 13(7), 2261; https://doi.org/10.3390/pr13072261 - 15 Jul 2025
Viewed by 328
Abstract
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in [...] Read more.
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in dynamic environments, and the difficulty of accurately modeling and influencing occupant behavior. To address these challenges, this study proposes an intelligent multi-agent system designed to accurately estimate and control energy consumption in residential buildings, with the overarching objective of optimizing energy usage while maintaining occupant comfort and satisfaction. The methodological approach employed is a hybrid framework, integrating multi-agent system architecture with system dynamics modeling and agent-based modeling. This integration enables decentralized and intelligent control while simultaneously simulating physical processes such as heat exchange, insulation performance, and energy consumption, alongside behavioral interactions and real-time adaptive responses. The system is tested under varying conditions, including changes in building insulation quality and external temperature profiles, to assess its capability for accurate control and estimation of energy use. The proposed tool offers significant added value by supporting real-time responsiveness, behavioral adaptability, and decentralized coordination. It serves as a risk-free simulation platform to test energy-saving strategies, evaluate cost-effective insulation configurations, and fine-tune thermostat settings without incurring additional cost or real-world disruption. The high fidelity and predictive accuracy of the system have important implications for policymakers, building designers, and homeowners, offering a practical foundation for informed decision making and the promotion of sustainable residential energy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

25 pages, 5341 KiB  
Article
Design of a Methodology to Evaluate the Energy Flexibility of Residential Consumers to Enhance Household Demand Side Management: The Case of a Spanish Municipal Network
by Caterina Lamanna, Andrés Ondó Oná-Ayécaba, Lina Montuori, Manuel Alcázar-Ortega and Javier Rodríguez-García
Appl. Sci. 2025, 15(14), 7827; https://doi.org/10.3390/app15147827 - 12 Jul 2025
Viewed by 301
Abstract
Climate change and global warming are causing growing environmental concerns, prompting many countries to increase investments in renewable energies. The high growth rate of renewables in the energy systems brings significant intermittency challenges. Demand-side flexibility is presented as a viable solution to address [...] Read more.
Climate change and global warming are causing growing environmental concerns, prompting many countries to increase investments in renewable energies. The high growth rate of renewables in the energy systems brings significant intermittency challenges. Demand-side flexibility is presented as a viable solution to address this phenomenon. In this framework, this research study proposes a novel methodology to evaluate the flexibility potential that residential consumers can offer to the Distribution System Operator (DSO). Moreover, it pretends to provide guidelines and design of standardized parameters to disaggregate the aggregated energy consumption data of end-users. This step is essential to identify and characterize the primary energy consumption processes in the residential sector, laying the groundwork for future flexibility evaluation. Furthermore, the modeling of the energy consumption curves will enhance residential sector demand-side flexibility enabling end-users to modify their usual consumption patterns. The implemented methodology has been applied to real consumer data provided by the DSO of a Spanish municipality of about 29,000 habitants in the Alicante Province (Spain). Results achieved allowed the validation of the proposed methodology enabling the disaggregation of residential energy profiles and facilitating the subsequent dynamic assessment of residential end-user’s demand flexibility. Moreover, this work will provide valuable guidelines to carry out short-term energy resource planning and solve operational problems of the energy systems. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Microgrids)
Show Figures

Figure 1

33 pages, 4996 KiB  
Article
Rain-Induced Vibration Energy Harvesting Using Nonlinear Plates with Piezoelectric Integration and Power Management
by Yi-Ren Wang, Wei Ting Lin and Bo-Jang Huang
Sensors 2025, 25(14), 4347; https://doi.org/10.3390/s25144347 - 11 Jul 2025
Viewed by 353
Abstract
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using [...] Read more.
Vibration energy offers promising potential for renewable energy harvesting, especially in conditions where conventional sources such as solar power may be limited or intermittent. This study proposes a rain energy harvester (REH) that converts the kinetic energy of raindrops into electrical energy using nonlinear thin plates, integrated with piezoelectric elements. Two plate configurations—fully hinged (H-H-H-H) and clamped–hinged–free–hinged (C-H-F-H)—are investigated. Theoretical modeling and simulation results are compared with experimental data, with special attention paid to the role of slapping forces in improving prediction accuracy. A power management system is also introduced to stabilize and regulate the harvested voltage. Results confirm the feasibility of rain-induced energy harvesting, showing potential for application in rain-prone areas and integration with existing infrastructure such as solar panels, tents, or canopies. Full article
(This article belongs to the Special Issue Advances in Energy Harvesting and Sensor Systems)
Show Figures

Figure 1

Back to TopTop