Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (443)

Search Parameters:
Keywords = interlayer bond

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2416 KiB  
Article
Analysis of Asphalt Pavement Response to Long Longitudinal Slope Considering the Influence of Temperature Fields
by Xu Li, Jie Chen, Shuxing Mao and Chaochao Liu
Materials 2025, 18(15), 3670; https://doi.org/10.3390/ma18153670 - 5 Aug 2025
Abstract
With the rapid increase in traffic volume and the number of heavy-duty vehicles, the load on asphalt pavements has increased significantly. Especially on sections with long longitudinal slopes, the internal stress conditions of asphalt pavement have become even more complex. This study aims [...] Read more.
With the rapid increase in traffic volume and the number of heavy-duty vehicles, the load on asphalt pavements has increased significantly. Especially on sections with long longitudinal slopes, the internal stress conditions of asphalt pavement have become even more complex. This study aims to investigate the thermal–mechanical coupling behavior of asphalt pavement structures on long longitudinal slopes under the combined influence of temperature fields and moving loads. A pavement temperature field model was developed based on the climatic conditions of Nanning (AAT: 21.8 °C; Tmax: 37 °C; Tmin: 3 °C; AAP: 1453.4 mm). In addition, a three-dimensional finite element model of asphalt pavement structures on long longitudinal slopes was established using finite element software. Variations in pavement mechanical responses were compared under different vehicle axle loads (100–200 kN), slope gradients (0–5%), braking coefficients (0–0.7), and asphalt mixture layer thicknesses (2–8 cm). The results indicate that the pavement structure exhibits a strong capacity for pressure attenuation, with the middle and lower surface layers showing more pronounced stress reduction—up to 40%—significantly greater than the 6.5% observed in the upper surface layer. As the axle load increases from 100 kN to 200 kN, the internal mechanical responses of the pavement show a linear relationship with load magnitude, with an average increase of approximately 29%. In addition, the internal shearing stress of the pavement is more sensitive to changes in slope and braking coefficient; when the slope increases from 0% to 5% and the braking coefficient increases from 0 to 0.7, the shear stress at the bottom of the upper surface layer increases by 12% and 268%, respectively. This study provides guidance for the design of asphalt pavements on long longitudinal slopes. In future designs, special attention should be given to enhancing the shear strength of the surface layer and improving the interlayer bonding performance. In particular, under conditions of steep slopes and frequent heavy vehicle traffic, the thickness and modulus of the upper surface asphalt mixture may be appropriately increased. Full article
Show Figures

Figure 1

18 pages, 7058 KiB  
Article
Failure Analysis and Optimized Simulation Design of Silicon Micromechanical Resonant Accelerometers
by Jingchen Wang, Heng Liu and Zhi Li
Sensors 2025, 25(15), 4583; https://doi.org/10.3390/s25154583 - 24 Jul 2025
Viewed by 203
Abstract
To develop solutions to the frequency instability and failure of silicon micromechanical resonant accelerometers, the state characteristics of micromechanical resonant accelerometers are investigated under temperature and vibration stresses. Through theoretical analysis and finite element simulation, the following is found: the Young’s modulus of [...] Read more.
To develop solutions to the frequency instability and failure of silicon micromechanical resonant accelerometers, the state characteristics of micromechanical resonant accelerometers are investigated under temperature and vibration stresses. Through theoretical analysis and finite element simulation, the following is found: the Young’s modulus of silicon varies with temperature, causing a resonance frequency shift of −1.364 Hz/°C; the residual stress of temperature change affects the resonance frequency shift of the microstructure, causing it to be 5.43 Hz/MPa (tensile stress) and −5.25 Hz/MPa (compressive stress); thermal expansion triggers the failure of the bonding wire, and, in the range of 10 °C to 150 °C, the peak stress of the electrode/lead bond area increases from 83.2/85.6 MPa to 1.08/1.28 GPa. The failure mode under vibration stress is resonance structure fracture and interlayer peeling. An isolation frame design is proposed for the sensitive part of the microstructure, which reduces the frequency effects by 34% (tensile stress) and 15% (compressive stress) under temperature-variable residual stresses and the maximum value of the structural root mean square stresses by 69.7% (X-direction), 63.6% (Y-direction), and 71.3% (Z-direction) under vibrational stresses. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

24 pages, 738 KiB  
Review
Photocuring in Lithium-Ion Battery Fabrication: Advances Towards Integrated Manufacturing
by Zihao Li, Yanlong Li, Mengting Chen, Weishan Li and Xiaoming Wei
Batteries 2025, 11(8), 282; https://doi.org/10.3390/batteries11080282 - 23 Jul 2025
Viewed by 386
Abstract
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, [...] Read more.
Photocuring, including photopolymerization and photocrosslinking, has emerged as a transformative manufacturing paradigm that enables the precise, rapid, and customizable fabrication of advanced battery components. This review first introduces the principles of photocuring and vat photopolymerization and their unique advantages of high process efficiency, non-contact fabrication, ambient-temperature processing, and robust interlayer bonding. It then systematically summarizes photocured battery components, involving electrolytes, membranes, anodes, and cathodes, highlighting their design strategies. This review examines the impact of photocured materials on the battery’s properties, such as its conductivity, lithium-ion transference number, and mechanical strength, while examining how vat-photopolymerization-derived 3D architectures optimize ion transport and electrode–electrolyte integration. Finally, it discusses current challenges and future directions for photocuring-based battery manufacturing, emphasizing the need for specialized energy storage resins and scalable processes to bridge lab-scale innovations with industrial applications. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 339
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

27 pages, 15704 KiB  
Article
Study on Mechanical Properties of Composite Basalt Fiber 3D-Printed Concrete Based on 3D Meso-Structure
by Shengxuan Ding, Jiren Li and Mingqiang Wang
Materials 2025, 18(14), 3379; https://doi.org/10.3390/ma18143379 - 18 Jul 2025
Viewed by 430
Abstract
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A [...] Read more.
As 3D concrete printing emerges as a transformative construction method, its structural safety remains hindered by unresolved issues of mechanical anisotropy and interlayer defects. To address this, we systematically investigate the failure mechanisms and mechanical performance of basalt fiber-reinforced 3D-printed magnesite concrete. A total of 30 cube specimens (50 mm × 50 mm × 50 mm)—comprising three types (Corner, Stripe, and R-a-p)—were fabricated and tested under compressive and splitting tensile loading along three orthogonal directions using a 2000 kN electro-hydraulic testing machine. The results indicate that 3D-printed concrete exhibits significantly lower strength than cast-in-place concrete, which is attributed to weak interfacial bonds and interlayer pores. Notably, the R-a-p specimen’s Z-direction compressive strength is 38.7% lower than its Y-direction counterpart. To complement the mechanical tests, DIC, CT scanning, and SEM analyses were conducted to explore crack development, internal defect morphology, and microstructure. A finite element model based on the experimental data successfully reproduced the observed failure processes. This study not only enhances our understanding of anisotropic behavior in 3D-printed concrete but also offers practical insights for print-path optimization and sustainable structural design. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Figure 1

22 pages, 7286 KiB  
Article
Enhancing Mechanical Properties of Three-Dimensional Cementitious Composites Through 3 mm Short Fibre Systems: Single and Hybrid Types
by Han Yao, Yujie Cao, Yangling Mei and Zhixuan Xiong
Buildings 2025, 15(14), 2519; https://doi.org/10.3390/buildings15142519 - 18 Jul 2025
Viewed by 381
Abstract
Three-dimensionally printed cement-based composites emerge as a research hotspot in the fields of construction engineering in recent years. Current research primarily focuses on the reinforcement mechanisms of individually incorporated fibres, while a significant gap remains in the synergistic effects of hybrid fibre systems. [...] Read more.
Three-dimensionally printed cement-based composites emerge as a research hotspot in the fields of construction engineering in recent years. Current research primarily focuses on the reinforcement mechanisms of individually incorporated fibres, while a significant gap remains in the synergistic effects of hybrid fibre systems. This study investigates the effects of mono-doping (0.2 wt.% and 0.4 wt.% by the mass of the cement) and hybrid-doping (0.1 wt.% + 0.1 wt.% by the mass of the cement) with 3 mm polypropylene, basalt, and carbon fibres on the fresh-state properties and mechanical behaviours. Through quantitative characterisation of the flowability and mechanical performance of short-fibre-reinforced 3D-printed cementitious composites (SFR3DPC), coupled with comprehensive testing including digital image correlation, X-ray diffraction, and scanning electron microscopy, several key findings are obtained. The experimental results indicate that the addition of excess fibres reduces fluidity, which affects the mechanical performance and make the anisotropy of the composites more pronounced. While the single addition of 0.2 wt.% CF shows the most significant improvement in flexural and compressive strengths, the hybrid combination of 0.1 wt.% CF and 0.1 wt.% BF shows the greatest increase in interlayer bond strength by 26.7%. The complementary effect of the hybrid fibres contributes to the damage mode of the composites from brittle fracture to quasi-brittle behaviour at the physical level. These findings offer valuable insights into optimising the mechanical performance and improving defects of 3D-printed cementitious composites with short fibres. Full article
(This article belongs to the Special Issue Advanced Research on Cementitious Composites for Construction)
Show Figures

Graphical abstract

20 pages, 6738 KiB  
Article
Biocompatible Inorganic PVD MeSiON Thin Films (Me = Cr or Zr) Used to Enhance the Bond Strength Between NiCr-Based Metallic Frameworks and Ceramic in Dental Restorations
by Mihaela Dinu, Cosmin Mihai Cotrut, Alina Vladescu (Dragomir), Florin Baciu, Anca Constantina Parau, Iulian Pana, Lidia Ruxandra Constantin and Catalin Vitelaru
Dent. J. 2025, 13(7), 318; https://doi.org/10.3390/dj13070318 - 14 Jul 2025
Viewed by 229
Abstract
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve [...] Read more.
Background/Objectives: The increasing demand for aesthetics in dentistry has driven significant advancements in both materials and techniques. The primary cause of ceramic detachment in dental restorations is extensive mechanical stress, which often results in detachment and clinical complications. This study aims to improve the bond strength between NiCr-based metal frameworks and ceramic coatings by introducing biocompatible inorganic MeSiON thin films (Me = Cr or Zr) as interlayers. Methods: MeSiON coatings with a thickness of ~2 μm were deposited on NiCr alloy using cathodic arc evaporation. To tailor the stoichiometry, morphology, and mechanical properties of the coatings, the substrate bias voltage was varied: −50 V, −100 V, −150 V, −200 V. Structural and surface characterization was performed using SEM/EDS, XRD, profilometry, and contact angle analysis. The coating adhesion was evaluated by using standardized scratch testing, while the bond strength was evaluated using a three-point bending test. Results: The NiCr alloy exhibited a dendritic microstructure, and the ceramic layer consisted mainly of quartz, feldspar, kaolin, and ZrO2. ZrSiON coatings showed superior roughness, elemental incorporation, and adhesion compared to Cr-based coatings, these properties being further improved by increasing the substrate bias. The highest bond strength was achieved with a ZrSiON coating deposited at −200 V, a result we attributed to increased surface roughness and mechanical interlocking at the ceramic-metal interface. Conclusions: CrSiON and ZrSiON interlayers enhanced ceramic-to-metal adhesion in NiCr-based dental restorations. The enhancement in bond strength is primarily ascribed to substrate bias-induced modifications in the coating’s stoichiometry, roughness, and adhesion. Full article
(This article belongs to the Special Issue Dental Materials Design and Innovative Treatment Approach)
Show Figures

Figure 1

25 pages, 5796 KiB  
Article
Enhancing Sustainability and Functionality with Recycled Materials in Multi-Material Additive Manufacturing
by Nida Naveed, Muhammad Naveed Anwar, Mark Armstrong, Furqan Ahmad, Mir Irfan Ul Haq and Glenn Ridley
Sustainability 2025, 17(13), 6105; https://doi.org/10.3390/su17136105 - 3 Jul 2025
Viewed by 467
Abstract
This study presents a novel multi-material additive manufacturing (MMAM) strategy by combining virgin polylactic acid (vPLA) with recycled polylactic acid (rPLA) in a layered configuration to improve both performance and sustainability. Specimens were produced using fused deposition modelling (FDM) with various vPLA: rPLA [...] Read more.
This study presents a novel multi-material additive manufacturing (MMAM) strategy by combining virgin polylactic acid (vPLA) with recycled polylactic acid (rPLA) in a layered configuration to improve both performance and sustainability. Specimens were produced using fused deposition modelling (FDM) with various vPLA: rPLA ratios (33:67, 50:50, and 67:33) and two distinct layering approaches: one with vPLA forming the external layers and rPLA as the core, and a second using the reversed arrangement. Mechanical testing revealed that when vPLA is used as the exterior, printed components exhibit tensile strength and elongation improvements of 10–25% over conventional single-material prints, while the tensile modulus is largely influenced by the distribution of the two materials. Thermal analysis shows that both vPLA and rPLA begin to degrade at approximately 330 °C; however, rPLA demonstrates a higher end-of-degradation temperature (461.7 °C) and increased residue at elevated temperatures, suggesting improved thermal stability due to enhanced crystallinity. Full-field strain mapping, corroborated by digital microscopy (DM) and scanning electron microscopy (SEM), revealed that vPLA-rich regions display more uniform interlayer adhesion with minimal voids or microcracks, whereas rPLA-dominated areas exhibit greater porosity and a higher propensity for brittle failure. These findings highlight the role of optimal material placement in mitigating the inherent deficiencies of recycled polymers. The integrated approach of combining microstructural assessments with full-field strain mapping provides a comprehensive view of interlayer bonding and underlying failure mechanisms. Statistical analysis using analysis of variance (ANOVA) confirmed that both layer placement and material ratio have a significant influence on performance, with high effect sizes highlighting the sensitivity of mechanical properties to these parameters. In addition to demonstrating improvements in mechanical and thermal properties, this work addresses a significant gap in the literature by evaluating the combined effect of vPLA and rPLA in a multi-material configuration. The results emphasise that strategic material distribution can effectively counteract some of the limitations typically associated with recycled polymers, while also contributing to reduced dependence on virgin materials. These outcomes support broader sustainability objectives by enhancing energy efficiency and promoting a circular economy within additive manufacturing (AM). Overall, the study establishes a robust foundation for industrial-scale implementations, paving the way for future innovations in eco-efficient FDM processes. Full article
(This article belongs to the Special Issue 3D Printing for Multifunctional Applications and Sustainability)
Show Figures

Figure 1

24 pages, 4087 KiB  
Article
Optimization of Nozzle Diameter and Printing Speed for Enhanced Tensile Performance of FFF 3D-Printed ABS and PLA
by I. S. ELDeeb, Ehssan Esmael, Saad Ebied, Mohamed Ragab Diab, Mohammed Dekis, Mikhail A. Petrov, Abdelhameed A. Zayed and Mohamed Egiza
J. Manuf. Mater. Process. 2025, 9(7), 221; https://doi.org/10.3390/jmmp9070221 - 1 Jul 2025
Viewed by 680
Abstract
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene [...] Read more.
Fused Filament Fabrication (FFF) is a widely adopted additive manufacturing technique, yet its mechanical performance is highly dependent on process parameters, particularly nozzle diameter and printing speed. This study evaluates the influence of these parameters on the tensile behavior of Acrylonitrile Butadiene Styrene (ABS) and Polylactic Acid (PLA), aiming to determine optimal conditions for enhanced strength. ASTM D638-Type IV specimens were printed using nozzle diameters ranging from 0.05 to 0.25 mm and speeds from 15 to 80 mm/s. For ABS, tensile strength increased from 56.46 MPa to 60.74 MPa, representing a 7.6% enhancement, as nozzle diameter increased, with the best performance observed at 0.25 mm and 45 mm/s, attributed to improved melt flow and interlayer fusion. PLA exhibited a non-linear response, reaching a maximum strength of 89.59 MPa under the same conditions, marking a 22.3% enhancement over the minimum value. The superior performance of PLA was linked to optimal thermal management that enhanced crystallinity and interlayer bonding. Fractographic analysis revealed reduced porosity and smoother fracture surfaces under optimized conditions. Overall, PLA consistently outperformed ABS across all settings, with an average tensile strength advantage of 47.5%. The results underscore the need for material-specific parameter tuning in FFF and offer practical insights for optimizing mechanical performance in applications demanding high structural integrity, including biomedical, aerospace, and functional prototyping. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

17 pages, 3640 KiB  
Article
Sustainable Development of PLA-Based Biocomposites Reinforced with Pineapple Core Powder: Extrusion and 3D Printing for Thermal and Mechanical Performance
by Kawita Chattrakul, Anothai Pholsuwan, Athapon Simpraditpan, Ekkachai Martwong and Wichain Chailad
Polymers 2025, 17(13), 1792; https://doi.org/10.3390/polym17131792 - 27 Jun 2025
Viewed by 443
Abstract
This study developed sustainable biocomposites composed of polylactic acid (PLA) and surface-treated pineapple core powder (PACP), fabricated via extrusion and fused deposition modelling (FDM). PACP loadings of 1–3 vol% were combined after chemical modification with NaOH and silane to improve interfacial bonding. Particle [...] Read more.
This study developed sustainable biocomposites composed of polylactic acid (PLA) and surface-treated pineapple core powder (PACP), fabricated via extrusion and fused deposition modelling (FDM). PACP loadings of 1–3 vol% were combined after chemical modification with NaOH and silane to improve interfacial bonding. Particle morphology showed increased porosity and surface roughness following treatment. The melt flow index (MFI) increased from 31.56 to 35.59 g/10 min at 2 vol% PACP, showing improved flowability. Differential scanning calorimetry (DSC) showed the emergence of cold crystallization (Tcc ~121 °C) and an increase in crystallinity from 35.7% (neat PLA) to 47.3% (2 vol% PACP). Thermogravimetric analysis showed only slight decreases in T5 and Tmax, showing the thermal stability. The mechanical testing of extruded filaments showed increased modulus (1463 to 1518 MPa) but a decrease in tensile strength and elongation. For the 3D-printed samples, elongation at break increased slightly at 1–2 vol% PACP, likely because of the improvement in interlayer fusion. Though, at 3 vol% PACP, the mechanical properties declined, consistent with filler agglomeration observed in SEM. Overall, 2 vol% PACP offered the optimal balance between printability, crystallinity, and mechanical performance. These results reveal the possibility of PACP as a value-added biowaste filler for eco-friendly PLA composites suitable for extrusion and 3D printing applications. Full article
(This article belongs to the Special Issue Sustainable Biopolymers and Bioproducts from Bioresources)
Show Figures

Figure 1

17 pages, 11829 KiB  
Article
Revealing a Wetting–Penetration–Interlocking Mechanism for the Interfacial Reinforcement of Degradable Liquid Plugs via Silane-Induced Microstructure Engineering
by Yuexin Tian, Yintao Liu, Haifeng Dong, Xiangjun Liu and Jinjun Huang
Polymers 2025, 17(12), 1660; https://doi.org/10.3390/polym17121660 - 15 Jun 2025
Viewed by 454
Abstract
Hypothesis: Poor interfacial bonding and wetting incompatibility limit the performance of degradable liquid plugs under high-pressure conditions. It is hypothesized that silane-induced interfacial engineering can build a multiscale structure that enhances adhesion via coupled wetting, penetration, and interlocking mechanisms. Experiments: A C18 silane-modified [...] Read more.
Hypothesis: Poor interfacial bonding and wetting incompatibility limit the performance of degradable liquid plugs under high-pressure conditions. It is hypothesized that silane-induced interfacial engineering can build a multiscale structure that enhances adhesion via coupled wetting, penetration, and interlocking mechanisms. Experiments: A C18 silane-modified steel surface was constructed and tested for its bonding behavior with an epoxy-based degradable plug. Interfacial strength, compressive capacity, and microstructure were analyzed using mechanical tests, SEM, AFM, and contact angle measurements. Surface energy was calculated via the Owens–Wendt model. Findings: The silane-treated interface exhibited a significant enhancement in interfacial bonding strength (up to 445%) and shear strength (73.8% increase), attributed to the formation of a 391.6 nm thick infiltrated interlayer and strong chemical anchoring (Si–O–Fe bonds). Contact angle decreased from 74.0° to 53.6°, with interfacial energy increasing by 26.2%, confirming improved wettability and energy compatibility. A triadic enhancement pathway of “wetting–penetration–interlocking” was established, supported by microstructural imaging and theoretical modeling. This work provides mechanistic insights and practical guidance for the design of robust liquid plug systems in complex wellbore environments. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

23 pages, 2177 KiB  
Review
A Comprehensive Review of Rheological Dynamics and Process Parameters in 3D Concrete Printing
by Wen Si, Mehran Khan and Ciaran McNally
J. Compos. Sci. 2025, 9(6), 299; https://doi.org/10.3390/jcs9060299 - 11 Jun 2025
Viewed by 977
Abstract
Three-dimensional concrete printing (3DCP) represents a paradigm shift in construction technology, enabling the automated, formwork-free fabrication of intricate geometries. Despite its rapid growth, successful implementation remains dependent on the precise control of material rheology and printing parameters. This review critically analyzes the foundational [...] Read more.
Three-dimensional concrete printing (3DCP) represents a paradigm shift in construction technology, enabling the automated, formwork-free fabrication of intricate geometries. Despite its rapid growth, successful implementation remains dependent on the precise control of material rheology and printing parameters. This review critically analyzes the foundational rheological properties of static yield stress, dynamic yield stress, plastic viscosity, and thixotropy and their influence on three core printability attributes, i.e., pumpability, extrudability, and buildability. Furthermore, it explores the role of critical process parameters, such as print speed, nozzle dimensions, layer deposition intervals, and standoff distance, in shaping interlayer bonding and structural integrity. Special emphasis is given to modeling frameworks by Suiker, Roussel, and Kruger, which provide robust tools for evaluating structural stability under plastic yield and elastic buckling conditions. The integration of these rheological and process-based insights offers a comprehensive roadmap for optimizing the performance, quality, and scalability of 3DCP. Full article
(This article belongs to the Special Issue Application of Composite Materials in Additive Manufacturing)
Show Figures

Figure 1

34 pages, 5686 KiB  
Review
Influence of Temperature on Interlayer Adhesion and Structural Integrity in Material Extrusion: A Comprehensive Review
by Rayson Pang, Mun Kou Lai, Hiu Hong Teo and Tze Chuen Yap
J. Manuf. Mater. Process. 2025, 9(6), 196; https://doi.org/10.3390/jmmp9060196 - 11 Jun 2025
Cited by 1 | Viewed by 911
Abstract
Additive manufacturing technologies are being increasingly adopted in the manufacturing industries due to their capabilities in producing complex geometries without the need for special tools. Material extrusion (MEX-TRB/P) is a popular additive manufacturing technology due to its simple operation. However, optimization of various [...] Read more.
Additive manufacturing technologies are being increasingly adopted in the manufacturing industries due to their capabilities in producing complex geometries without the need for special tools. Material extrusion (MEX-TRB/P) is a popular additive manufacturing technology due to its simple operation. However, optimization of various process parameters remains a challenge, as incorrect combinations can lead to reduced dimensional accuracy and incapacitated mechanical properties of the fabricated parts. Given that the MEX-TRB/P process relies on the heating and cooling of thermoplastic materials, understanding the role of temperature is critical to optimizing the MEX-TRB/P printed parts. This article reviews existing research on the effects of process parameters, specifically those that are temperature sensitive, on the mechanical properties of the printed parts. The review first classified the process parameters into temperature sensitive and non-temperature sensitive process parameters. Then, the influence of temperature on the bonding quality and material properties is investigated, and a relationship between the thermal conditions and mechanical properties of 3D printed parts is established. This review also summarizes experimental and numerical methods for investigating temperature evolution during printing. This study aims to provide a deep understanding of the optimization of temperature-sensitive process parameters and their role in enhancing the mechanical properties of MEX-TRB/P-printed parts. Full article
Show Figures

Figure 1

27 pages, 4956 KiB  
Review
Recent Advancements in Polypropylene Fibre-Reinforced 3D-Printed Concrete: Insights into Mix Ratios, Testing Procedures, and Material Behaviour
by Ben Hopkins, Wen Si, Mehran Khan and Ciaran McNally
J. Compos. Sci. 2025, 9(6), 292; https://doi.org/10.3390/jcs9060292 - 6 Jun 2025
Viewed by 1067
Abstract
This review presents a comprehensive analysis of polypropylene (PP) fibre incorporation in three-dimensional printed concrete (3DPC), focusing on the material behaviour in both fresh and hardened states. PP fibres play a critical role in improving rheological properties such as buildability, flowability, and extrudability. [...] Read more.
This review presents a comprehensive analysis of polypropylene (PP) fibre incorporation in three-dimensional printed concrete (3DPC), focusing on the material behaviour in both fresh and hardened states. PP fibres play a critical role in improving rheological properties such as buildability, flowability, and extrudability. While increased fibre content enhances interlayer bonding and shape retention through the fibre bridging mechanism, it also raises yield stress and viscosity, which may compromise extrudability. In the hardened state, PP fibres contribute to improvements in compressive and flexural strength up to an optimal dosage, beyond which performance may decline due to fibre clustering and reduced packing density. When aligned with the printing direction, fibres are particularly effective in mitigating shrinkage-induced cracking by redistributing internal tensile stress. However, their inclusion can lead to a slight increase in porosity and promote mechanical anisotropy. This review also discusses mix design parameters, fibre characteristics, and experimental protocols, while identifying key research gaps including the lack of standardized testing methods, limited understanding of fibre orientation effects, and insufficient exploration of hybrid fibre systems. Based on the synthesis of reported studies, optimal print quality and structural consistency have been associated with the use of 6 mm long fibres, nozzle diameters of 4 to 6 mm, and printing speeds ranging from 40 to 60 mm/s. Overall, PP fibre reinforcement shows strong potential for enhancing the structural integrity and dimensional stability of 3D-printed concrete, while emphasizing the need for further studies to optimize its use in practice. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

20 pages, 7135 KiB  
Article
Effects of Nanofiber Interleaving on the Strength and Failure Behavior of Co-Cured Composite Joints with Fiber Orientation Mismatch
by Abdul Bari Abdul Raheman, Kaan Bilge and Melih Papila
J. Compos. Sci. 2025, 9(6), 285; https://doi.org/10.3390/jcs9060285 - 2 Jun 2025
Viewed by 675
Abstract
This study investigates the effect of nanofiber interleaving on the mechanical performance of co-cured composite lap joints with effective fiber orientation mismatch at the joint interface. Joint configurations were defined by dominant yarn orientations at the bond line—denoted as (lower-substrate|upper-substrate)—and tested in (0|0), [...] Read more.
This study investigates the effect of nanofiber interleaving on the mechanical performance of co-cured composite lap joints with effective fiber orientation mismatch at the joint interface. Joint configurations were defined by dominant yarn orientations at the bond line—denoted as (lower-substrate|upper-substrate)—and tested in (0|0), (90|90), and mismatched (0|90) setups using an 8-harness satin (8HS) fabric architecture, with and without nanofiber interlayers. Mechanical testing revealed an over ~25% reduction in lap shear strength for the (0|90) configuration relative to the matched (0|0) and (90|90) joints. Nanofiber interleaving effectively restored this loss, achieving strength levels comparable to the matched cases. Statistical analysis using two-way ANOVA and ANOM confirmed that both fiber orientation and nanofiber interleaving significantly influence joint strength, with a notable interaction effect (p < 0.001). Fractographic analysis further showed that nanofibers enhanced delamination resistance by stabilizing crack paths and suppressing crack jumps at crimping sites, especially in (0|90) joints where 0/90 yarn intersections are prone to early failure. These findings underscore the role of nanofiber interleaving in mitigating mismatch-induced failure mechanisms and improving the structural integrity of composite bonded interfaces. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

Back to TopTop