Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = intercalation/deintercalation mechanisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4197 KB  
Review
Advancements and Prospects in Cathode Materials for Aqueous Zinc-Ion Batteries: Mechanisms, Challenges and Modification Strategies
by Yuewen Gong, Miao Jia, Qiong Yuan and Biao Yang
Molecules 2025, 30(20), 4143; https://doi.org/10.3390/molecules30204143 - 21 Oct 2025
Viewed by 694
Abstract
Owing to the inherent safety, environmental friendliness, and high theoretical capacity (820 mAh g−1) of zinc metal, aqueous zinc-ion batteries (AZIBs) have emerged as up-and-coming alternatives to organic lithium-ion batteries. However, the insufficient electrochemically active sites, poor structural stability, and severe [...] Read more.
Owing to the inherent safety, environmental friendliness, and high theoretical capacity (820 mAh g−1) of zinc metal, aqueous zinc-ion batteries (AZIBs) have emerged as up-and-coming alternatives to organic lithium-ion batteries. However, the insufficient electrochemically active sites, poor structural stability, and severe interfacial side reactions of cathode materials have always been key challenges, restricting battery gravimetric energy density and cycling stability. This article systematically reviews current mainstream AZIB cathode material systems, encompassing layered manganese- and vanadium-based metal oxides, Prussian blue analogs, and emerging organic polymers. It focuses on analyzing the energy storage mechanisms of different material systems and their structural evolution during Zn2+ (de)intercalation. Furthermore, mechanisms of innovative strategies for improving cathodes are thoroughly examined here, such as nanostructure engineering, lattice doping control, and surface coating modification, to address common issues like structural degradation, manganese/vanadium dissolution, and interface passivation. Finally, this article proposes future research directions: utilizing multi-scale in situ characterization to elucidate actual reaction pathways, constructing artificial interface layers to suppress side reactions, and optimizing full-cell design. This review provides a new perspective for developing practical AZIBs with high specific energy and long lifespans. Full article
Show Figures

Figure 1

16 pages, 4620 KB  
Article
Ethanol Molecule Engineering Toward Stabilized 1T-MoS2 with Extraordinary Sodium Storage Performance
by Xue’er Bi, Xuelian Wang, Xiaobo Shen, Haijun Yu, Xian Zhang and Jin Bai
Molecules 2025, 30(18), 3801; https://doi.org/10.3390/molecules30183801 - 18 Sep 2025
Viewed by 399
Abstract
Phase molybdenum disulfide (1T-MoS2) holds significant promise as an anode material for sodium-ion batteries (SIBs) due to its metallic conductivity and expanded interlayer distance. However, the practical application of 1T-MoS2 is hindered by its inherent thermodynamic metastability, which poses substantial [...] Read more.
Phase molybdenum disulfide (1T-MoS2) holds significant promise as an anode material for sodium-ion batteries (SIBs) due to its metallic conductivity and expanded interlayer distance. However, the practical application of 1T-MoS2 is hindered by its inherent thermodynamic metastability, which poses substantial challenges for the synthesis of high-purity, long-term stable 1T phase MoS2. Herein, a synergetic ethanol molecule intercalation and electron injection engineering is adopted to induce the formation and stabilization of 1T-MoS2 (E-1T MoS2). The obtained E-1T MoS2 consists of regularly arranged sphere-like ultrasmall few-layered 1T-MoS2 nanosheets with expanded interlayer spacing. The high intrinsic conductivity and enlarged interlayer spacing are greatly favorable for rapid Na+ or e transport. The elaborated nanosheets structure can effectively relieve volume variation during Na+ intercalating/deintercalating processes, shorten transport path of Na+, and enhance diffusion kinetics. Furthermore, a novel sodium reaction mechanism involving the formation of MoS2 nanoclusters during cycling is revealed to produce the higher surface pseudocapacitive contribution to Na+ storage capacity, accelerating Na+ reaction kinetics, as confirmed by the kinetics analysis and ex-situ structural characterizations. Consequently, the E-1T MoS2 electrode exhibits an excellent sodium storage performance. This work provides an important reference for synthesis and reaction mechanism analysis of metastable metal sulfides for advanced SIBs. Full article
Show Figures

Graphical abstract

12 pages, 2105 KB  
Article
Study of CaSrFe0.75Co0.75Mn0.5O6-δ as an Anode in Li-Ion Battery
by Arjun Kumar Thapa, Ariella Fogel and Ram Krishna Hona
Energies 2025, 18(10), 2508; https://doi.org/10.3390/en18102508 - 13 May 2025
Viewed by 1227
Abstract
The application of oxygen-deficient perovskites (ODPs) has attracted interest as anode materials for lithium-ion batteries for their unique properties. One such material, CaSrFe0.75Co0.75Mn0.5O6-δ, has been studied extensively. The structure of CaSrFe0.75Co0.75Mn [...] Read more.
The application of oxygen-deficient perovskites (ODPs) has attracted interest as anode materials for lithium-ion batteries for their unique properties. One such material, CaSrFe0.75Co0.75Mn0.5O6-δ, has been studied extensively. The structure of CaSrFe0.75Co0.75Mn0.5O6-δ was investigated using various techniques, including Rietveld refinements with X-ray diffraction and neutron diffraction. Additionally, iodometric titration and X-ray photoelectron spectroscopy were employed to study the oxygen-deficiency amount and the transition metal’s oxidation states in the material. As an anode material, CaSrFe0.75Co0.75Mn0.5O6-δ exhibits promising performance. It delivers 393 mAhg−1 of discharge capacity at a current density of 25 mAg−1 after 100 cycles. Notably, this capacity surpasses both the theoretical graphite anode capacity (372 mAhg−1) and that of the calcium analog reported previously. Furthermore, the electrochemical performance of CaSrFe0.75Co0.75Mn0.5O6-δ remains highly reversible across various current densities ranging from 25 to 500 mAg−1. This suggests the material’s excellent stability and reversibility during charge–discharge cycles, showing its probable application as an anode for lithium-ion batteries. The mechanism of lithium intercalation and deintercalation within CaSrFe0.75Co0.75Mn0.5O6-δ has also been discussed. Understanding this mechanism is crucial for optimizing the battery’s performance and ensuring long-term stability. Overall, this study highlights the significant potential of oxygen-deficient perovskites, particularly CaSrFe0.75Co0.75Mn0.5O6-δ, for applications as an anode material for lithium-ion batteries, offering enhanced capacity and stability compared with traditional graphite-based anodes. Full article
Show Figures

Figure 1

14 pages, 5729 KB  
Article
Study on the Mechanism of Diffusion Stress Inducing Anode’s Failure for Automotive Lithium-Ion Battery
by Xing Hu, Kuo Yang and Jinrun Cheng
Crystals 2025, 15(2), 131; https://doi.org/10.3390/cryst15020131 - 25 Jan 2025
Viewed by 1262
Abstract
Diffusion stress in the anode of an automotive lithium-ion battery could cause volume changes, particle rupture, and detachment of the electrode, which may lead to the failure of anode materials. In order to investigate the mechanism of diffusion stress in the anode of [...] Read more.
Diffusion stress in the anode of an automotive lithium-ion battery could cause volume changes, particle rupture, and detachment of the electrode, which may lead to the failure of anode materials. In order to investigate the mechanism of diffusion stress in the anode of the battery, this paper proposes an electrochemical–mechanical coupling model to simulate the stress and strain changes in the anode. And, SEM and X-ray diffraction are also carried out to examine the mechanism between diffusion stress and the damage to the anode microstructure. The results show that as the discharge C-rate increases, the intercalation and deintercalation of lithium ions in the anode become more active, leading to greater diffusion stress. This results in noticeable cracking in the anode material, with significant particle fragmentation, ultimately causing an increase in internal resistance. Full article
Show Figures

Figure 1

19 pages, 3079 KB  
Review
Opportunities and Challenges of Multi-Ion, Dual-Ion and Single-Ion Intercalation in Phosphate-Based Polyanionic Cathodes for Zinc-Ion Batteries
by Lei Cao, Tao Du, Hao Wang, Zhen-Yu Cheng, Yi-Song Wang and Li-Feng Zhou
Molecules 2024, 29(20), 4929; https://doi.org/10.3390/molecules29204929 - 18 Oct 2024
Cited by 3 | Viewed by 1459
Abstract
Abstract: With the continuous development of science and technology, battery storage systems for clean energy have become crucial for global economic transformation. Among various rechargeable batteries, lithium-ion batteries are widely used, but face issues like limited resources, high costs, and safety concerns. In [...] Read more.
Abstract: With the continuous development of science and technology, battery storage systems for clean energy have become crucial for global economic transformation. Among various rechargeable batteries, lithium-ion batteries are widely used, but face issues like limited resources, high costs, and safety concerns. In contrast, zinc-ion batteries, as a complement to lithium-ion batteries, are drawing increasing attention. In the exploration of zinc-ion batteries, especially of phosphate-based cathodes, the battery action mechanism has a profound impact on the battery performance. In this paper, we first review the interaction mechanism of multi-ion, dual-ion, and single-ion water zinc batteries. Then, the impact of the above mechanisms on battery performance was discussed. Finally, the application prospects of the effective use of multi-ion, dual-ion, and single-ion intercalation technology in zinc-ion batteries is reviewed, which has significance for guiding the development of rechargeable water zinc-ion batteries in the future. Full article
(This article belongs to the Special Issue Novel Electrode Materials for Rechargeable Batteries, 2nd Edition)
Show Figures

Figure 1

15 pages, 4783 KB  
Article
Anion Intercalation/De-Intercalation Mechanism Enabling High Energy and Power Densities of Lithium-Ion Capacitors
by Yang Zhang, Junquan Lao and Ping Xiao
Batteries 2024, 10(9), 296; https://doi.org/10.3390/batteries10090296 - 23 Aug 2024
Cited by 2 | Viewed by 2472
Abstract
The growing demands for electrochemical energy storage systems is driving the exploration of novel devices, with lithium-ion capacitors (LICs) emerging as a promising strategy to achieve both high energy density and fast charge capability. However, the low capacitance of commercial activated carbon (AC) [...] Read more.
The growing demands for electrochemical energy storage systems is driving the exploration of novel devices, with lithium-ion capacitors (LICs) emerging as a promising strategy to achieve both high energy density and fast charge capability. However, the low capacitance of commercial activated carbon (AC) cathode based on anion absorption/desorption limits LIC applications. Herein, commercial graphite is proposed as the cathode to construct an innovative AC (−)//graphite (+) system. The graphite cathode functions as anion hosting, allowing reversible intercalation/de-intercalation of anions into/from its interlayers. The as-designed AC (−)//graphite (+) full cell achieves stable cycling with 90.6% capacity retention after 200 cycles at 0.1 A g−1 and a prolonged lifespan with 87.5% capacity retention after 5000 cycles at 0.5 A g−1 with the upper cut-off voltage of 5.0 V, yielding a high average Coulombic efficiency (CE) of 99.3%. Moreover, the full cell exhibits a high energy density (>200 Wh kg−1) and power density of 7.7 kW kg−1 (calculated based on active mass in both electrodes). These performances exceed most LICs based on anions absorption/desorption on the surface of AC cathodes. This work explores an effective electrode revolution with the assistance of anion intercalation/de-intercalation chemistry for developing novel LICs with high energy and power densities. Full article
Show Figures

Graphical abstract

15 pages, 625 KB  
Article
Designing Strain-Less Electrode Materials: Computational Analysis of Volume Variations in Li-Ion and Na-Ion Batteries
by Maxime Maréchal, Romain Berthelot, Patrick Rozier and Matthieu Saubanère
Batteries 2024, 10(8), 262; https://doi.org/10.3390/batteries10080262 - 25 Jul 2024
Cited by 1 | Viewed by 1612
Abstract
Mechanical degradation in electrode materials during successive electrochemical cycling is critical for battery lifetime and aging properties. A common strategy to mitigate electrode mechanical degradation is to suppress the volume variation induced by Li/Na intercalation/deintercalation, thereby designing strain-less electrodes. In this study, we [...] Read more.
Mechanical degradation in electrode materials during successive electrochemical cycling is critical for battery lifetime and aging properties. A common strategy to mitigate electrode mechanical degradation is to suppress the volume variation induced by Li/Na intercalation/deintercalation, thereby designing strain-less electrodes. In this study, we investigate the electrochemically-induced volume variation in layered and spinel compounds used in Li-ion and Na-ion battery electrode materials through density functional theory computations. Specifically, we propose to decompose the volume variation into electronic, ionic, and structural contributions. Based on this analysis, we suggest methods to separately influence each contribution through strategies such as chemical substitution, doping, and polymorphism. Altogether, we conclude that volume variations can be controlled by designing either mechanically hard or compact electrode materials. Full article
Show Figures

Figure 1

13 pages, 3286 KB  
Article
Effect of Mn Substitution on GeFe2O4 as an Anode for Sodium Ion Batteries
by Marco Ambrosetti, Walter Rocchetta, Irene Quinzeni, Chiara Milanese, Vittorio Berbenni and Marcella Bini
Batteries 2024, 10(2), 48; https://doi.org/10.3390/batteries10020048 - 27 Jan 2024
Cited by 2 | Viewed by 3020
Abstract
GeFe2O4 (GFO), with its intriguing intercalation mechanism based on alloying–conversion reactions, was recently proposed as an anode material for sodium ion batteries (SIBs). However, drawbacks related to excessive volume expansion during intercalation/deintercalation and poor electronic conductivity enormously hinder its practical [...] Read more.
GeFe2O4 (GFO), with its intriguing intercalation mechanism based on alloying–conversion reactions, was recently proposed as an anode material for sodium ion batteries (SIBs). However, drawbacks related to excessive volume expansion during intercalation/deintercalation and poor electronic conductivity enormously hinder its practical application in batteries. In this regard, some experimental strategies such as cation substitutions and proper architectures/carbon coatings can be adopted. In this paper, pure and Mn-doped GFO samples were prepared by hydrothermal synthesis. The doped samples maintained the spinel cubic structure and the morphology of pure GFO. The electrochemical tests of the samples, performed after proper carbon coating, showed the expected redox processes involving both Ge and Fe ions. The Mn doping had a positive effect on the capacity values at a low current density (about 350 mAh/g at C/5 for the Mn 5% doping in comparison to 300 mAh/g for the pure sample). Concerning the cycling stability, the doped samples were able to provide 129 mAh/g (Mn 10%) and 150 mAh/g (Mn 5%) at C/10 after 60 cycles. Full article
Show Figures

Graphical abstract

14 pages, 4302 KB  
Article
Modification of Single-Walled Carbon Nanotube Networks Anodes for Application in Aqueous Lithium-Ion Batteries
by Yelyzaveta Rublova, Raimonds Meija, Vitalijs Lazarenko, Jana Andzane, Janis Svirksts and Donats Erts
Batteries 2023, 9(5), 260; https://doi.org/10.3390/batteries9050260 - 3 May 2023
Cited by 8 | Viewed by 3260
Abstract
The changes in global energy trends and the high demand for secondary power sources, have led to a renewed interest in aqueous lithium-ion batteries. The selection of a suitable anode for aqueous media is a difficult task because many anode materials have poor [...] Read more.
The changes in global energy trends and the high demand for secondary power sources, have led to a renewed interest in aqueous lithium-ion batteries. The selection of a suitable anode for aqueous media is a difficult task because many anode materials have poor cycling performance due to side reactions with water or dissolved oxygen. An effective method for improving the characteristics of anodes in aqueous electrolyte solutions is adding carbon nanotubes (CNTs) to the electrode materials. For a better comprehension of the mechanism of energy accumulation and the reasons for the loss of capacity during the cycling of chemical current sources, it is necessary to understand the behaviour of the constituent components of the anodes. Although CNTs are well studied theoretically and experimentally, there is no information about their behaviour in aqueous solutions during the intercalation/deintercalation of lithium ions. This work reveals the mechanism of operation of untreated and annealed single-walled carbon nanotubes (SWCNT) anodes during the intercalation/deintercalation of Li+ from an aqueous 5 M LiNO3 electrolyte. The presence of -COOH groups on the surface of untreated SWCNTs is the reason for the low discharge capacity of the SWCNT anode in 5 M LiNO3 (3 mAh g−1 after 100 cycles). Their performance was improved by annealing in a hydrogen atmosphere, which selectively removed the -COOH groups and increased the discharge capacity of SWCNT by a factor of 10 (33 mAh g−1 after 100 cycles). Full article
Show Figures

Figure 1

12 pages, 3537 KB  
Article
Operando Observation of Coupled Discontinuous-Continuous Transitions in Ion-Stabilized Intercalation Cathodes
by Guobin Zhang, Tengfei Xiong, Lixue Xia, Xuhui Yao, Yan Zhao, Lirong Zheng, Han Chen, Yunlong Zhao and Mengyu Yan
Batteries 2022, 8(12), 252; https://doi.org/10.3390/batteries8120252 - 22 Nov 2022
Cited by 4 | Viewed by 2138
Abstract
Irreversible phase transition caused capacity fading has been considered as an obstacle for rechargeable batteries. An in-depth investigation of the irreversible phase transition is critical for understanding the reaction mechanism and developing advanced batteries. In this work, taking vanadium oxide and its alkali [...] Read more.
Irreversible phase transition caused capacity fading has been considered as an obstacle for rechargeable batteries. An in-depth investigation of the irreversible phase transition is critical for understanding the reaction mechanism and developing advanced batteries. In this work, taking vanadium oxide and its alkali ion-stabilized intercalation compounds (A-V-O, A = Li, Na, K) as prototypes, utilizing operando characterizations, we discovered coupled discontinuous (interlayer)-continuous (intralayer) transitions in the stabilized multielectron intercalation cathodes. The highly ordered crystal of vanadium pentoxide irreversibly transfers to a disordered/amorphous structure after the first cycle, whereas A-V-O enables reversible discontinuous lattice transitions at the interlayer pathway for facilitating lithium diffusion. Among the A-V-O family, K-V-O, with the highest capacity retention, shows a coupled discontinuous-continuous transition, which exhibits a continuous transition and the minimum volume change at the V-O intralayer during lithium intercalation/deintercalation. These coupled discontinuous-continuous lattice transitions were captured for the first time in cathode materials. It implies that the suitable ion intercalation induced continuous intralayer transition inhibits the irreversible ion intercalation and phase transition. Full article
Show Figures

Figure 1

14 pages, 1363 KB  
Article
Fast and Slow Laser-Stimulated Degradation of Mn-Doped Li4Ti5O12
by Aleksey A. Nikiforov, Dmitrii K. Kuznetsov, Ralph N. Nasara, Kaviarasan Govindarajan, Shih-kang Lin and Dmitry V. Pelegov
Batteries 2022, 8(12), 251; https://doi.org/10.3390/batteries8120251 - 22 Nov 2022
Cited by 5 | Viewed by 2172
Abstract
Lithium titanate (Li4Ti5O12) is a commercial anode material used for high-power and long-lifespan lithium batteries. The key drawback of this material is its low electronic conductivity. Although doping is commonly used to solve this problem, the introduction [...] Read more.
Lithium titanate (Li4Ti5O12) is a commercial anode material used for high-power and long-lifespan lithium batteries. The key drawback of this material is its low electronic conductivity. Although doping is commonly used to solve this problem, the introduction of dopants also diminished lattice stability. In this work, we studied fast and slow laser-induced degradation processes of single Mn-doped lithium titanate particles and proposed a physicochemical model of their degradation mechanism. We suppose that the preferable route of LTO alteration is the formation of amorphous phases rather than crystalline decomposition products. Our results may be useful for not only developing a nondestructive characterization tool utilizing Raman spectroscopy but also for understanding other degradation processes, including thermal alteration and structural changes caused by the intercalation/deintercalation cycles of lithium ions. Full article
(This article belongs to the Collection Advances in Battery Materials)
Show Figures

Figure 1

21 pages, 4176 KB  
Article
Pseudocapacitive Effects of Multi-Walled Carbon Nanotubes-Functionalised Spinel Copper Manganese Oxide
by Christopher Nolly, Chinwe O. Ikpo, Miranda M. Ndipingwi, Precious Ekwere and Emmanuel I. Iwuoha
Nanomaterials 2022, 12(19), 3514; https://doi.org/10.3390/nano12193514 - 8 Oct 2022
Cited by 23 | Viewed by 2954
Abstract
Spinel copper manganese oxide nanoparticles combined with acid-treated multi-walled carbon nanotubes (CuMn2O4/MWCNTs) were used in the development of electrodes for pseudocapacitor applications. The CuMn2O4/MWCNTs preparation involved initial synthesis of Mn3O4 and CuMn [...] Read more.
Spinel copper manganese oxide nanoparticles combined with acid-treated multi-walled carbon nanotubes (CuMn2O4/MWCNTs) were used in the development of electrodes for pseudocapacitor applications. The CuMn2O4/MWCNTs preparation involved initial synthesis of Mn3O4 and CuMn2O4 precursors followed by an energy efficient reflux growth method for the CuMn2O4/MWCNTs. The CuMn2O4/MWCNTs in a three-electrode cell assembly and in 3 M LiOH aqueous electrolyte exhibited a specific capacitance of 1652.91 F g−1 at 0.5 A g−1 current load. Similar investigation in 3 M KOH aqueous electrolyte delivered a specific capacitance of 653.41 F g−1 at 0.5 A g−1 current load. Stability studies showed that after 6000 cycles, the CuMn2O4/MWCNTs electrode exhibited a higher capacitance retention (88%) in LiOH than in KOH (64%). The higher capacitance retention and cycling stability with a Coulombic efficiency of 99.6% observed in the LiOH is an indication of a better charge storage behaviour in this electrolyte than in the KOH electrolyte with a Coulombic efficiency of 97.3%. This superior performance in the LiOH electrolyte than in the KOH electrolyte is attributed to an intercalation/de-intercalation mechanism which occurs more easily in the LiOH electrolyte than in the KOH electrolyte. Full article
(This article belongs to the Special Issue Nanomaterials for Catalysis and Energy Storage)
Show Figures

Figure 1

33 pages, 10214 KB  
Review
Recent Progress on Graphene-Based Nanocomposites for Electrochemical Sodium-Ion Storage
by Mai Li, Kailan Zhu, Hanxue Zhao and Zheyi Meng
Nanomaterials 2022, 12(16), 2837; https://doi.org/10.3390/nano12162837 - 18 Aug 2022
Cited by 7 | Viewed by 3790
Abstract
In advancing battery technologies, primary attention is paid to developing and optimizing low-cost electrode materials capable of fast reversible ion insertion and extraction with good cycling ability. Sodium-ion batteries stand out due to their inexpensive price and comparable operating principle to lithium-ion batteries. [...] Read more.
In advancing battery technologies, primary attention is paid to developing and optimizing low-cost electrode materials capable of fast reversible ion insertion and extraction with good cycling ability. Sodium-ion batteries stand out due to their inexpensive price and comparable operating principle to lithium-ion batteries. To achieve this target, various graphene-based nanocomposites fabricate strategies have been proposed to help realize the nanostructured electrode for high electrochemical performance sodium-ion batteries. In this review, the graphene-based nanocomposites were introduced according to the following main categories: graphene surface modification and doping, three-dimensional structured graphene, graphene coated on the surface of active materials, and the intercalation layer stacked graphene. Through one or more of the above strategies, graphene is compounded with active substances to prepare the nanocomposite electrode, which is applied as the anode or cathode to sodium-ion batteries. The recent research progress of graphene-based nanocomposites for SIBs is also summarized in this study based on the above categories, especially for nanocomposite fabricate methods, the structural characteristics of electrodes as well as the influence of graphene on the performance of the SIBs. In addition, the relevant mechanism is also within the scope of this discussion, such as synergistic effect of graphene with active substances, the insertion/deintercalation process of sodium ions in different kinds of nanocomposites, and electrochemical reaction mechanism in the energy storage. At the end of this study, a series of strategies are summarized to address the challenges of graphene-based nanocomposites and several critical research prospects of SIBs that provide insights for future investigations. Full article
Show Figures

Figure 1

10 pages, 4920 KB  
Article
Microstructure and Mechanical Properties of Composites Obtained by Spark Plasma Sintering of Ti3SiC2-15 vol.%Cu Mixtures
by Rui Zhang, Biao Chen, Fuyan Liu, Miao Sun, Huiming Zhang and Chenlong Wu
Materials 2022, 15(7), 2515; https://doi.org/10.3390/ma15072515 - 29 Mar 2022
Cited by 20 | Viewed by 2568
Abstract
Method of soft metal (Cu) strengthening of Ti3SiC2 was conducted to increase the hardness and improve the wear resistance of Ti3SiC2. Ti3SiC2/Cu composites containing 15 vol.% Cu were fabricated by Spark Plasma [...] Read more.
Method of soft metal (Cu) strengthening of Ti3SiC2 was conducted to increase the hardness and improve the wear resistance of Ti3SiC2. Ti3SiC2/Cu composites containing 15 vol.% Cu were fabricated by Spark Plasma Sintering (SPS) in a vacuum. The effect of the sintering temperature on the phase composition, microstructure and mechanical properties of the composites was investigated in detail. The as-synthesized composites were thoroughly characterized by scanning electron micrography (SEM), optical micrography (OM) and X-ray diffractometry (XRD), respectively. The results indicated that the constituent of the Ti3SiC2/Cu composites sintered at different temperatures included Ti3SiC2, Cu3Si and TiC. The formation of Cu3Si and TiC originated from the reaction between Ti3SiC2 and Cu, which was induced by the presence of Cu and the de-intercalation of Si atoms Ti3SiC2. OM analysis showed that with the increase in the sintering temperature, the reaction between Ti3SiC2 and Cu was severe, leading to the Ti3SiC2 getting smaller and smaller. SEM measurements illustrated that the uniformity of the microstructure distribution of the composites was restricted by the agglomeration of Cu, controlling the mechanical behaviors of the composites. At 1000 °C, the distribution of Cu in the composites was relatively even; thus, the composites exhibited the highest density, relatively high hardness and compressive strength. The relationships of the temperature, the current and the axial dimension with the time during the sintering process were further discussed. Additionally, a schematic illustration was proposed to explain the related sintering characteristic of the composites sintered by SPS. The as-synthesized Ti3SiC2/Cu composites were expected to improve the wear resistance of polycrystalline Ti3SiC2. Full article
(This article belongs to the Special Issue Microstructural Design and Processing Control of Advanced Ceramics)
Show Figures

Figure 1

14 pages, 3600 KB  
Article
Novel K2Ti8O17 Anode via Na+/Al3+ Co-Intercalation Mechanism for Rechargeable Aqueous Al-Ion Battery with Superior Rate Capability
by Qiangqiang Feng, Yanyan Liu, Jitong Yan, Wei Feng, Shaozheng Ji and Yongfu Tang
Nanomaterials 2021, 11(9), 2332; https://doi.org/10.3390/nano11092332 - 8 Sep 2021
Cited by 6 | Viewed by 2659
Abstract
A promising aqueous aluminum ion battery (AIB) was assembled using a novel layered K2Ti8O17 anode against an activated carbon coated on a Ti mesh cathode in an AlCl3-based aqueous electrolyte. The intercalation/deintercalation mechanism endowed the layered [...] Read more.
A promising aqueous aluminum ion battery (AIB) was assembled using a novel layered K2Ti8O17 anode against an activated carbon coated on a Ti mesh cathode in an AlCl3-based aqueous electrolyte. The intercalation/deintercalation mechanism endowed the layered K2Ti8O17 as a promising anode for rechargeable aqueous AIBs. NaAc was introduced into the AlCl3 aqueous electrolyte to enhance the cycling stability of the assembled aqueous AIB. The as-designed AIB displayed a high discharge voltage near 1.6 V, and a discharge capacity of up to 189.6 mAh g−1. The assembled AIB lit up a commercial light-emitting diode (LED) lasting more than one hour. Inductively coupled plasma–optical emission spectroscopy (ICP-OES), high-resolution transmission electron microscopy (HRTEM), and X-ray absorption near-edge spectroscopy (XANES) were employed to investigate the intercalation/deintercalation mechanism of Na+/Al3+ ions in the aqueous AIB. The results indicated that the layered structure facilitated the intercalation/deintercalation of Na+/Al3+ ions, thus providing a high-rate performance of the K2Ti8O17 anode. The diffusion-controlled electrochemical characteristics and the reduction of Ti4+ species during the discharge process illustrated the intercalation/deintercalation mechanism of the K2Ti8O17 anode. This study provides not only insight into the charge–discharge mechanism of the K2Ti8O17 anode but also a novel strategy to design rechargeable aqueous AIBs. Full article
Show Figures

Figure 1

Back to TopTop