Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (416)

Search Parameters:
Keywords = intelligent shipping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1241 KiB  
Article
Triplet Spatial Reconstruction Attention-Based Lightweight Ship Component Detection for Intelligent Manufacturing
by Bocheng Feng, Zhenqiu Yao and Chuanpu Feng
Appl. Sci. 2025, 15(15), 8676; https://doi.org/10.3390/app15158676 (registering DOI) - 5 Aug 2025
Abstract
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a [...] Read more.
Automatic component recognition plays a crucial role in intelligent ship manufacturing, but existing methods suffer from low recognition accuracy and high computational cost in industrial scenarios involving small samples, component stacking, and diverse categories. To address the requirements of shipbuilding industrial applications, a Triplet Spatial Reconstruction Attention (TSA) mechanism that combines threshold-based feature separation with triplet parallel processing is proposed, and a lightweight You Only Look Once Ship (YOLO-Ship) detection network is constructed. Unlike existing attention mechanisms that focus on either spatial reconstruction or channel attention independently, the proposed TSA integrates triplet parallel processing with spatial feature separation–reconstruction techniques to achieve enhanced target feature representation while significantly reducing parameter count and computational overhead. Experimental validation on a small-scale actual ship component dataset demonstrates that the improved network achieves 88.7% mean Average Precision (mAP), 84.2% precision, and 87.1% recall, representing improvements of 3.5%, 2.2%, and 3.8%, respectively, compared to the original YOLOv8n algorithm, requiring only 2.6 M parameters and 7.5 Giga Floating-point Operations per Second (GFLOPs) computational cost, achieving a good balance between detection accuracy and lightweight model design. Future research directions include developing adaptive threshold learning mechanisms for varying industrial conditions and integration with surface defect detection capabilities to enhance comprehensive quality control in intelligent manufacturing systems. Full article
(This article belongs to the Special Issue Artificial Intelligence on the Edge for Industry 4.0)
Show Figures

Figure 1

26 pages, 6084 KiB  
Article
Intelligent Route Planning for Transport Ship Formations: A Hierarchical Global–Local Optimization and Collaborative Control Framework
by Zilong Guo, Mei Hong, Yunying Li, Longxia Qian, Yongchui Zhang and Hanlin Li
J. Mar. Sci. Eng. 2025, 13(8), 1503; https://doi.org/10.3390/jmse13081503 - 5 Aug 2025
Abstract
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive [...] Read more.
Multi-vessel formation shipping demonstrates significant potential for enhancing maritime transportation efficiency and economy. However, existing route planning systems inadequately address the unique challenges of formations, where traditional methods fail to integrate global optimality, local dynamic obstacle avoidance, and formation coordination into a cohesive system. Global planning often neglects multi-ship collaborative constraints, while local methods disregard vessel maneuvering characteristics and formation stability. This paper proposes GLFM, a three-layer hierarchical framework (global optimization–local adjustment-formation collaboration module) for intelligent route planning of transport ship formations. GLFM integrates an improved multi-objective A* algorithm for global path optimization under dynamic meteorological and oceanographic (METOC) conditions and International Maritime Organization (IMO) safety regulations, with an enhanced Artificial Potential Field (APF) method incorporating ship safety domains for dynamic local obstacle avoidance. Formation, structural stability, and coordination are achieved through an improved leader–follower approach. Simulation results demonstrate that GLFM-generated trajectories significantly outperform conventional routes, reducing average risk level by 38.46% and voyage duration by 12.15%, while maintaining zero speed and period violation rates. Effective obstacle avoidance is achieved, with the leader vessel navigating optimized global waypoints and followers maintaining formation structure. The GLFM framework successfully balances global optimality with local responsiveness, enhances formation transportation efficiency and safety, and provides a comprehensive solution for intelligent route optimization in multi-constrained marine convoy operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 2918 KiB  
Article
Machine Learning-Powered KPI Framework for Real-Time, Sustainable Ship Performance Management
by Christos Spandonidis, Vasileios Iliopoulos and Iason Athanasopoulos
J. Mar. Sci. Eng. 2025, 13(8), 1440; https://doi.org/10.3390/jmse13081440 - 28 Jul 2025
Viewed by 347
Abstract
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics [...] Read more.
The maritime sector faces escalating demands to minimize emissions and optimize operational efficiency under tightening environmental regulations. Although technologies such as the Internet of Things (IoT), Artificial Intelligence (AI), and Digital Twins (DT) offer substantial potential, their deployment in real-time ship performance analytics is at an emerging state. This paper proposes a machine learning-driven framework for real-time ship performance management. The framework starts with data collected from onboard sensors and culminates in a decision support system that is easily interpretable, even by non-experts. It also provides a method to forecast vessel performance by extrapolating Key Performance Indicator (KPI) values. Furthermore, it offers a flexible methodology for defining KPIs for every crucial component or aspect of vessel performance, illustrated through a use case focusing on fuel oil consumption. Leveraging Artificial Neural Networks (ANNs), hybrid multivariate data fusion, and high-frequency sensor streams, the system facilitates continuous diagnostics, early fault detection, and data-driven decision-making. Unlike conventional static performance models, the framework employs dynamic KPIs that evolve with the vessel’s operational state, enabling advanced trend analysis, predictive maintenance scheduling, and compliance assurance. Experimental comparison against classical KPI models highlights superior predictive fidelity, robustness, and temporal consistency. Furthermore, the paper delineates AI and ML applications across core maritime operations and introduces a scalable, modular system architecture applicable to both commercial and naval platforms. This approach bridges advanced simulation ecosystems with in situ operational data, laying a robust foundation for digital transformation and sustainability in maritime domains. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 6143 KiB  
Article
Optical Character Recognition Method Based on YOLO Positioning and Intersection Ratio Filtering
by Kai Cui, Qingpo Xu, Yabin Ding, Jiangping Mei, Ying He and Haitao Liu
Symmetry 2025, 17(8), 1198; https://doi.org/10.3390/sym17081198 - 27 Jul 2025
Viewed by 240
Abstract
Driven by the rapid development of e-commerce and intelligent logistics, the volume of express delivery services has surged, making the efficient and accurate identification of shipping information a core requirement for automatic sorting systems. However, traditional Optical Character Recognition (OCR) technology struggles to [...] Read more.
Driven by the rapid development of e-commerce and intelligent logistics, the volume of express delivery services has surged, making the efficient and accurate identification of shipping information a core requirement for automatic sorting systems. However, traditional Optical Character Recognition (OCR) technology struggles to meet the accuracy and real-time demands of complex logistics scenarios due to challenges such as image distortion, uneven illumination, and field overlap. This paper proposes a three-level collaborative recognition method based on deep learning that facilitates structured information extraction through regional normalization, dual-path parallel extraction, and a dynamic matching mechanism. First, the geometric distortion associated with contour detection and the lightweight direction classification model has been improved. Second, by integrating the enhanced YOLOv5s for key area localization with the upgraded PaddleOCR for full-text character extraction, a dual-path parallel architecture for positioning and recognition has been constructed. Finally, a dynamic space–semantic joint matching module has been designed that incorporates anti-offset IoU metrics and hierarchical semantic regularization constraints, thereby enhancing matching robustness through density-adaptive weight adjustment. Experimental results indicate that the accuracy of this method on a self-constructed dataset is 89.5%, with an F1 score of 90.1%, representing a 24.2% improvement over traditional OCR methods. The dynamic matching mechanism elevates the average accuracy of YOLOv5s from 78.5% to 89.7%, surpassing the Faster R-CNN benchmark model while maintaining a real-time processing efficiency of 76 FPS. This study offers a lightweight and highly robust solution for the efficient extraction of order information in complex logistics scenarios, significantly advancing the intelligent upgrading of sorting systems. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 3116 KiB  
Article
Deep Learning for Visual Leading of Ships: AI for Human Factor Accident Prevention
by Manuel Vázquez Neira, Genaro Cao Feijóo, Blanca Sánchez Fernández and José A. Orosa
Appl. Sci. 2025, 15(15), 8261; https://doi.org/10.3390/app15158261 - 24 Jul 2025
Viewed by 362
Abstract
Traditional navigation relies on visual alignment with leading lights, a task typically monitored by bridge officers over extended periods. This process can lead to fatigue-related human factor errors, increasing the risk of maritime accidents and environmental damage. To address this issue, this study [...] Read more.
Traditional navigation relies on visual alignment with leading lights, a task typically monitored by bridge officers over extended periods. This process can lead to fatigue-related human factor errors, increasing the risk of maritime accidents and environmental damage. To address this issue, this study explores the use of convolutional neural networks (CNNs), evaluating different training strategies and hyperparameter configurations to assist officers in identifying deviations from proper visual leading. Using video data captured from a navigation simulator, we trained a lightweight CNN capable of advising bridge personnel with an accuracy of 86% during night-time operations. Notably, the model demonstrated robustness against visual interference from other light sources, such as lighthouses or coastal lights. The primary source of classification error was linked to images with low bow deviation, largely influenced by human mislabeling during dataset preparation. Future work will focus on refining the classification scheme to enhance model performance. We (1) propose a lightweight CNN based on SqueezeNet for night-time ship navigation, (2) expand the traditional binary risk classification into six operational categories, and (3) demonstrate improved performance over human judgment in visually ambiguous conditions. Full article
Show Figures

Figure 1

36 pages, 7335 KiB  
Article
COLREGs-Compliant Distributed Stochastic Search Algorithm for Multi-Ship Collision Avoidance
by Bohan Zhang, Jinichi Koue, Tenda Okimoto and Katsutoshi Hirayama
J. Mar. Sci. Eng. 2025, 13(8), 1402; https://doi.org/10.3390/jmse13081402 - 23 Jul 2025
Viewed by 229
Abstract
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex [...] Read more.
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex multi-ship environments remain insufficiently investigated. To address this gap, this study proposes a novel collision-avoidance framework that integrates a quantitative COLREGs analysis with a distributed stochastic search mechanism. The framework consists of three core components: encounter identification, safety assessment, and stage classification. A cost function is employed to balance safety, COLREGs compliance, and navigational efficiency, incorporating a distance-based weighting factor to modulate the influence of each target vessel. The use of a distributed stochastic search algorithm enables decentralized decision-making through localized information sharing and probabilistic updates. Extensive simulations conducted across a variety of scenarios demonstrate that the proposed method can rapidly generate effective collision-avoidance strategies that fully comply with COLREGs. Comprehensive evaluations in terms of safety, navigational efficiency, COLREGs adherence, and real-time computational performance further validate the method’s strong adaptability and its promising potential for practical application in complex multi-ship environments. Full article
(This article belongs to the Special Issue Maritime Security and Risk Assessments—2nd Edition)
Show Figures

Figure 1

35 pages, 2044 KiB  
Review
Overview of Sustainable Maritime Transport Optimization and Operations
by Lang Xu and Yalan Chen
Sustainability 2025, 17(14), 6460; https://doi.org/10.3390/su17146460 - 15 Jul 2025
Viewed by 669
Abstract
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, [...] Read more.
With the continuous expansion of global trade, achieving sustainable maritime transport optimization and operations has become a key strategic direction for transforming maritime transport companies. To summarize the current state of research and identify emerging trends in sustainable maritime transport optimization and operations, this study systematically examines representative studies from the past decade, focusing on three dimensions, technology, management, and policy, using data sourced from the Web of Science (WOS) database. Building on this analysis, potential avenues for future research are suggested. Research indicates that the technological field centers on the integrated application of alternative fuels, improvements in energy efficiency, and low-carbon technologies in the shipping and port sectors. At the management level, green investment decisions, speed optimization, and berth scheduling are emphasized as core strategies for enhancing corporate sustainable performance. From a policy perspective, attention is placed on the synergistic effects between market-based measures (MBMs) and governmental incentive policies. Existing studies primarily rely on multi-objective optimization models to achieve a balance between emission reductions and economic benefits. Technological innovation is considered a key pathway to decarbonization, while support from governments and organizations is recognized as crucial for ensuring sustainable development. Future research trends involve leveraging blockchain, big data, and artificial intelligence to optimize and streamline sustainable maritime transport operations, as well as establishing a collaborative governance framework guided by environmental objectives. This study contributes to refining the existing theoretical framework and offers several promising research directions for both academia and industry practitioners. Full article
(This article belongs to the Special Issue The Optimization of Sustainable Maritime Transportation System)
Show Figures

Figure 1

28 pages, 6861 KiB  
Article
Data-Driven Simulation of Navigator Stress in Close-Quarter Ship Encounters: Insights for Maritime Risk Assessment and Intelligent Training Design
by Joe Ronald Kurniawan Bokau, Youngsoo Park and Daewon Kim
Appl. Sci. 2025, 15(14), 7630; https://doi.org/10.3390/app15147630 - 8 Jul 2025
Viewed by 275
Abstract
This study presents a data-driven analysis of navigator stress and workload levels in simulated ship encounters within restricted waters, leveraging real-world automatic identification system (AIS) data from Makassar Port, Indonesia. Six close-quarter scenarios were recreated to reflect critical encounter geometries, and 24 Indonesian [...] Read more.
This study presents a data-driven analysis of navigator stress and workload levels in simulated ship encounters within restricted waters, leveraging real-world automatic identification system (AIS) data from Makassar Port, Indonesia. Six close-quarter scenarios were recreated to reflect critical encounter geometries, and 24 Indonesian seafarers were evaluated using heart rate variability (HRV), perceived stress scale (PSS), and task load index (NASA-TLX) workload assessments. The results indicate that crossing angles, particularly 135° port and starboard encounters, significantly influence physiological stress levels, with age being a moderating factor. Although no consistent relationship was found between workload and HRV metrics, the findings underscore key human factors that may impair navigational performance under cognitively demanding conditions. By integrating AIS-derived traffic data with simulation-based human performance monitoring, this study supports the development of intelligent maritime training frameworks and adaptive decision support systems. The research contributes to broader efforts toward enhancing navigational safety and situational awareness amid increasing automation and traffic densities at sea. Full article
Show Figures

Figure 1

25 pages, 5231 KiB  
Article
Using AI for Optimizing Packing Design and Reducing Cost in E-Commerce
by Hayder Zghair and Rushi Ganesh Konathala
AI 2025, 6(7), 146; https://doi.org/10.3390/ai6070146 - 4 Jul 2025
Viewed by 866
Abstract
This research explores how artificial intelligence (AI) can be leveraged to optimize packaging design, reduce operational costs, and enhance sustainability in e-commerce. As packaging waste and shipping inefficiencies grow alongside global online retail demand, traditional methods for determining box size, material use, and [...] Read more.
This research explores how artificial intelligence (AI) can be leveraged to optimize packaging design, reduce operational costs, and enhance sustainability in e-commerce. As packaging waste and shipping inefficiencies grow alongside global online retail demand, traditional methods for determining box size, material use, and logistics planning have become economically and environmentally inadequate. Using a three-phase framework, this study integrates data-driven diagnostics, AI modeling, and real-world validation. In the first phase, a systematic analysis of current packaging inefficiencies was conducted through secondary data, benchmarking, and cost modeling. Findings revealed significant waste caused by over-packaging, suboptimal box-sizing, and poor alignment between product characteristics and logistics strategy. In the second phase, a random forest (RF) machine learning model was developed to predict optimal packaging configurations using key product features: weight, volume, and fragility. This model was supported by AI simulation tools that enabled virtual testing of material performance, space efficiency, and damage risk. Results demonstrated measurable improvements in packaging optimization, cost reduction, and emission mitigation. The third phase validated the AI framework using practical case studies—ranging from a college textbook to a fragile kitchen dish set and a high-volume children’s bicycle. The model successfully recommended right-sized packaging for each product, resulting in reduced material usage, improved shipping density, and enhanced protection. Simulated cost-saving scenarios further confirmed that smart packaging and AI-generated configurations can drive efficiency. The research concludes that AI-based packaging systems offer substantial strategic value, including cost savings, environmental benefits, and alignment with regulatory and consumer expectations—providing scalable, data-driven solutions for e-commerce enterprises such as Amazon and others. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

17 pages, 2514 KiB  
Article
Forecasting Transient Fuel Consumption Spikes in Ships: A Hybrid DGM-SVR Approach
by Junhao Chen and Yan Peng
Eng 2025, 6(7), 151; https://doi.org/10.3390/eng6070151 - 3 Jul 2025
Viewed by 261
Abstract
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient [...] Read more.
Accurate prediction of ship fuel consumption is essential for improving energy efficiency, optimizing mission planning, and ensuring operational integrity at sea. However, during complex tasks such as high-speed maneuvers, fuel consumption exhibits complex dynamics characterized by the coexistence of baseline drift and transient peaks that conventional models often fail to capture accurately, particularly the abrupt peaks. In this study, a hybrid prediction model, DGM-SVR, is presented, combining a rolling dynamic grey model (DGM (1,1)) with support vector regression (SVR). The DGM (1,1) adapts to the dynamic fuel consumption baseline and trends via a rolling window mechanism, while the SVR learns and predicts the residual sequence generated by the DGM, specifically addressing the high-amplitude fuel spikes triggered by maneuvers. Validated on a simulated dataset reflecting typical fuel spike characteristics during high-speed maneuvers, the DGM-SVR model demonstrated superior overall prediction accuracy (MAPE and RMSE) compared to standalone DGM (1,1), moving average (MA), and SVR models. Notably, DGM-SVR reduced the test set’s MAPE and RMSE by approximately 21% and 34%, respectively, relative to the next-best DGM model, and significantly improved the predictive accuracy, magnitude, and responsiveness in predicting fuel consumption spikes. The findings indicate that the DGM-SVR hybrid strategy effectively fuses DGM’s trend-fitting strength with SVR’s proficiency in capturing spikes from the residual sequence, offering a more reliable and precise method for dynamic ship fuel consumption forecasting, with considerable potential for ship energy efficiency management and intelligent operational support. This study lays a foundation for future validation on real-world operational data. Full article
Show Figures

Figure 1

19 pages, 7851 KiB  
Article
Ship Plate Detection Algorithm Based on Improved RT-DETR
by Lei Zhang and Liuyi Huang
J. Mar. Sci. Eng. 2025, 13(7), 1277; https://doi.org/10.3390/jmse13071277 - 30 Jun 2025
Cited by 1 | Viewed by 394
Abstract
To address the challenges in ship plate detection under complex maritime scenarios—such as small target size, extreme aspect ratios, dense arrangements, and multi-angle rotations—this paper proposes a multi-module collaborative detection algorithm, RT-DETR-HPA, based on an enhanced RT-DETR framework. The proposed model integrates three [...] Read more.
To address the challenges in ship plate detection under complex maritime scenarios—such as small target size, extreme aspect ratios, dense arrangements, and multi-angle rotations—this paper proposes a multi-module collaborative detection algorithm, RT-DETR-HPA, based on an enhanced RT-DETR framework. The proposed model integrates three core components: an improved High-Frequency Enhanced Residual Block (HFERB) embedded in the backbone to strengthen multi-scale high-frequency feature fusion, with deformable convolution added to handle occlusion and deformation; a Pinwheel-shaped Convolution (PConv) module employing multi-directional convolution kernels to achieve rotation-adaptive local detail extraction and accurately capture plate edges and character features; and an Adaptive Sparse Self-Attention (ASSA) mechanism incorporated into the encoder to automatically focus on key regions while suppressing complex background interference, thereby enhancing feature discriminability. Comparative experiments conducted on a self-constructed dataset of 20,000 ship plate images show that, compared to the original RT-DETR, RT-DETR-HPA achieves a 3.36% improvement in mAP@50 (up to 97.12%), a 3.23% increase in recall (reaching 94.88%), and maintains real-time detection speed at 40.1 FPS. Compared with mainstream object detection models such as the YOLO series and Faster R-CNN, RT-DETR-HPA demonstrates significant advantages in high-precision localization, adaptability to complex scenarios, and real-time performance. It effectively reduces missed and false detections caused by low resolution, poor lighting, and dense occlusion, providing a robust and high-accuracy solution for intelligent ship supervision. Future work will focus on lightweight model design and dynamic resolution adaptation to enhance its applicability on mobile maritime surveillance platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 1982 KiB  
Article
Semantic Interoperability of Multi-Agent Systems in Autonomous Maritime Domains
by Marko Rosic, Dean Sumic and Lada Males
Electronics 2025, 14(13), 2630; https://doi.org/10.3390/electronics14132630 - 29 Jun 2025
Viewed by 290
Abstract
The maritime domain is experiencing significant transformation, driven by the integration of autonomous technologies. Autonomous ships and smart maritime systems depend on the sophisticated interplay of artificial intelligence, sensor infrastructures, and communication protocols to achieve safe, reliable, and efficient operations. Central to this [...] Read more.
The maritime domain is experiencing significant transformation, driven by the integration of autonomous technologies. Autonomous ships and smart maritime systems depend on the sophisticated interplay of artificial intelligence, sensor infrastructures, and communication protocols to achieve safe, reliable, and efficient operations. Central to this evolution is the imperative for seamless interoperability among agents operating within heterogeneous maritime environments. Semantic interoperability, which ensures that information is interpreted and exchanged consistently and meaningfully across systems, emerges as a critical enabler of coordinated multi-agent cooperation. This paper explores the role of semantic interoperability in the coordination of multi-agent systems, the challenges involved, and the technological frameworks that facilitate its implementation. Full article
(This article belongs to the Special Issue Research on Cooperative Control of Multi-agent Unmanned Systems)
Show Figures

Figure 1

43 pages, 15728 KiB  
Article
A Hybrid Data-Cleansing Framework Integrating Physical Constraints and Anomaly Detection for Ship Maintenance-Cost Prediction via Enhanced Ant Colony–Random Forest Optimization
by Chen Zhu, Shengxiang Sun, Li Xie, Yang Wang, Kai Li and Jing Li
Processes 2025, 13(7), 2035; https://doi.org/10.3390/pr13072035 - 26 Jun 2025
Viewed by 559
Abstract
To address the challenge of multimodal anomaly data governance in ship maintenance-cost prediction, this study proposes a three-stage hybrid data-cleansing framework integrating physical constraints and intelligent optimization. First, we construct a multi-dimensional engineering physical constraints rule base to identify contradiction-type anomalies through ship [...] Read more.
To address the challenge of multimodal anomaly data governance in ship maintenance-cost prediction, this study proposes a three-stage hybrid data-cleansing framework integrating physical constraints and intelligent optimization. First, we construct a multi-dimensional engineering physical constraints rule base to identify contradiction-type anomalies through ship hydrodynamics validation and business logic verification. Second, we develop a Feature-Weighted Isolation Forest Algorithm (W-iForest) algorithm that dynamically optimizes feature selection strategies by incorporating rule triggering frequency and expert knowledge, thereby enhancing detection efficiency for discrete-type anomalies. Finally, we create a Genetic Algorithm-Ant Colony Optimization Collaborative Random Forest (GA-ACO-RF) to resolve local optima issues in high-dimensional missing data imputation. Experimental results demonstrate that the proposed method achieves a physical compliance rate of 88.2% on ship-maintenance datasets, with a 25% reduction in RMSE compared to conventional prediction methods, validating its superior data governance capability and prediction accuracy under complex operating conditions. This research establishes a reliable data preprocessing paradigm for maritime operational assurance, exhibiting substantial engineering applicability in real-world maintenance scenarios. Full article
(This article belongs to the Special Issue Transfer Learning Methods in Equipment Reliability Management)
Show Figures

Figure 1

24 pages, 4468 KiB  
Article
Cross-Modal Behavioral Intelligence in Regard to a Ship Bridge: A Rough Set-Driven Framework with Enhanced Spatiotemporal Perception and Object Semantics
by Chen Chen, Yuenan Wei, Feng Ma and Zhongcheng Shu
Appl. Sci. 2025, 15(13), 7220; https://doi.org/10.3390/app15137220 - 26 Jun 2025
Viewed by 255
Abstract
Aberrant or non-standard operations by ship drivers are a leading cause of water traffic accidents, making the development of real-time and reliable behavior detection systems critically important. However, the environment within a ship’s bridge is significantly more complex than typical scenarios, such as [...] Read more.
Aberrant or non-standard operations by ship drivers are a leading cause of water traffic accidents, making the development of real-time and reliable behavior detection systems critically important. However, the environment within a ship’s bridge is significantly more complex than typical scenarios, such as vehicle driving or general security monitoring, which results in poor performance when applying generic algorithms. In such settings, both the accuracy and efficiency of existing methods are notably limited. To address these challenges, this paper proposes a cross-modal behavioral intelligence framework designed specifically for a ship’s bridge, integrating multi-target tracking, behavior recognition, and feature object association. The framework employs ByteTrack, a high-performance multi-object tracker that maintains stable tracking even when subject to occlusions or motion blur through its novel association mechanism, using both high and low confidence detection boxes, for multi-driver tracking. Combined with an improved Temporal Shift Module (TSM) algorithm for behavior recognition, which effectively resolves issues concerning target association and action ambiguity in complex environments, the proposed framework achieves a Top-1 accuracy of 82.1%, based on the SCA dataset. Furthermore, the method incorporates a multi-modal decision optimization strategy, based on spatiotemporal correlation rules, leveraging YOLOv7-e6 for simultaneous personnel and small object detection, and introduces the Accuracy of Focused Anomaly Recognition (AFAR) metric to enhance the anomaly detection performance. This approach improves the anomaly detection rate, up to 81.37%, with an overall accuracy of 80.66%, significantly outperforming single-modality solutions. Full article
Show Figures

Figure 1

17 pages, 938 KiB  
Article
Status Quo and Future Prospects of China’s Weather Routing Services for Ocean-Going Business Vessels
by Hao Zhang, Guanjun Niu, Tao Liu, Chuanhai Qian, Wei Zhao, Xiaojun Mei and Hao Wu
Oceans 2025, 6(3), 38; https://doi.org/10.3390/oceans6030038 - 23 Jun 2025
Viewed by 543
Abstract
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This [...] Read more.
The global shipping industry is evolving towards deep integration of digital transformation, intelligent upgrading, and green development. Meanwhile, recent geopolitical shifts have introduced heightened uncertainties into international shipping, compounding the challenges and escalating the demands for weather routing services for ocean-going ships. This paper provides a systematic review and expert perspective on China’s current status and key challenges in ocean-going weather routing services. Based on operational insights from China’s national meteorological service synthesized with a review of current trends and the literature, it further explores the future development of China’s ocean-going weather routing services and technologies from multiple dimensions: enhancing maritime weather observation capabilities, developing advanced weather routing service models, upgrading autonomous and controllable global satellite communication systems, promoting intelligent navigation technologies to facilitate shipping’s low-carbon transition, and expanding meteorological support capabilities for Arctic shipping routes. The analysis identifies critical gaps and proposes strategic directions, offering a unique contribution to understanding the trajectory of weather routing services within China’s specific national context from the perspective of its primary national service provider. Full article
Show Figures

Figure 1

Back to TopTop