Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,797)

Search Parameters:
Keywords = intelligent management systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 559 KiB  
Review
Interest Flooding Attacks in Named Data Networking and Mitigations: Recent Advances and Challenges
by Simeon Ogunbunmi, Yu Chen, Qi Zhao, Deeraj Nagothu, Sixiao Wei, Genshe Chen and Erik Blasch
Future Internet 2025, 17(8), 357; https://doi.org/10.3390/fi17080357 (registering DOI) - 6 Aug 2025
Abstract
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful [...] Read more.
Named Data Networking (NDN) represents a promising Information-Centric Networking architecture that addresses limitations of traditional host-centric Internet protocols by emphasizing content names rather than host addresses for communication. While NDN offers advantages in content distribution, mobility support, and built-in security features, its stateful forwarding plane introduces significant vulnerabilities, particularly Interest Flooding Attacks (IFAs). These IFA attacks exploit the Pending Interest Table (PIT) by injecting malicious interest packets for non-existent or unsatisfiable content, leading to resource exhaustion and denial-of-service attacks against legitimate users. This survey examines research advances in IFA detection and mitigation from 2013 to 2024, analyzing seven relevant published detection and mitigation strategies to provide current insights into this evolving security challenge. We establish a taxonomy of attack variants, including Fake Interest, Unsatisfiable Interest, Interest Loop, and Collusive models, while examining their operational characteristics and network performance impacts. Our analysis categorizes defense mechanisms into five primary approaches: rate-limiting strategies, PIT management techniques, machine learning and artificial intelligence methods, reputation-based systems, and blockchain-enabled solutions. These approaches are evaluated for their effectiveness, computational requirements, and deployment feasibility. The survey extends to domain-specific implementations in resource-constrained environments, examining adaptations for Internet of Things deployments, wireless sensor networks, and high-mobility vehicular scenarios. Five critical research directions are proposed: adaptive defense mechanisms against sophisticated attackers, privacy-preserving detection techniques, real-time optimization for edge computing environments, standardized evaluation frameworks, and hybrid approaches combining multiple mitigation strategies. Full article
Show Figures

Figure 1

30 pages, 1359 KiB  
Article
Enhancing Efficiency in Sustainable IoT Enterprises: Modeling Indicators Using Pythagorean Fuzzy and Interval Grey Approaches
by Mimica R. Milošević, Miloš M. Nikolić, Dušan M. Milošević and Violeta Dimić
Sustainability 2025, 17(15), 7143; https://doi.org/10.3390/su17157143 - 6 Aug 2025
Abstract
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many [...] Read more.
“The Internet of Things” is a relatively new idea that refers to objects that can connect to the Internet and exchange data. The Internet of Things (IoT) enables novel interactions between objects and people by interconnecting billions of devices. While there are many IoT-related products, challenges pertaining to their effective implementation, particularly the lack of knowledge and confidence about security, must be addressed. To provide IoT-based enterprises with a platform for efficiency and sustainability, this study aims to identify the critical elements that influence the growth of a successful company integrated with an IoT system. This study proposes a decision support tool that evaluates the influential features of IoT using the Pythagorean Fuzzy and Interval Grey approaches within the Analytical Hierarchy Process (AHP). This study demonstrates that security, value, and connectivity are more critical than telepresence and intelligence indicators. When both strategies are used, market demand and information privacy become significant indicators. Applying the Pythagorean Fuzzy approach enables the identification of sensor networks, authorization, market demand, and data management in terms of importance. The application of the Interval Grey approach underscores the importance of data management, particularly in sensor networks. The indicators that were finally ranked are compared to obtain a good coefficient of agreement. These findings offer practical insights for promoting sustainability in enterprise operations by optimizing IoT infrastructure and decision-making processes. Full article
37 pages, 1909 KiB  
Review
Research Progress on Risk Prevention and Control Technology for Lithium-Ion Battery Energy Storage Power Stations: A Review
by Weihang Pan
Batteries 2025, 11(8), 301; https://doi.org/10.3390/batteries11080301 - 6 Aug 2025
Abstract
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control [...] Read more.
Amidst the background of accelerated global energy transition, the safety risk of lithium-ion battery energy storage systems, especially the fire hazard, has become a key bottleneck hindering their large-scale application, and there is an urgent need to build a systematic prevention and control program. This paper focuses on the fire characteristics and thermal runaway mechanism of lithium-ion battery energy storage power stations, analyzing the current situation of their risk prevention and control technology across the dimensions of monitoring and early warning technology, thermal management technology, and fire protection technology, and comparing and analyzing the characteristics of each technology from multiple angles. Building on this analysis, this paper summarizes the limitations of the existing technologies and puts forward prospective development paths, including the development of multi-parameter coupled monitoring and warning technology, integrated and intelligent thermal management technology, clean and efficient extinguishing agents, and dynamic fire suppression strategies, aiming to provide solid theoretical support and technical guidance for the precise risk prevention and control of lithium-ion battery storage power stations. Full article
(This article belongs to the Special Issue Advanced Battery Safety Technologies: From Materials to Systems)
Show Figures

Graphical abstract

32 pages, 1435 KiB  
Review
Smart Safety Helmets with Integrated Vision Systems for Industrial Infrastructure Inspection: A Comprehensive Review of VSLAM-Enabled Technologies
by Emmanuel A. Merchán-Cruz, Samuel Moveh, Oleksandr Pasha, Reinis Tocelovskis, Alexander Grakovski, Alexander Krainyukov, Nikita Ostrovenecs, Ivans Gercevs and Vladimirs Petrovs
Sensors 2025, 25(15), 4834; https://doi.org/10.3390/s25154834 - 6 Aug 2025
Abstract
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused [...] Read more.
Smart safety helmets equipped with vision systems are emerging as powerful tools for industrial infrastructure inspection. This paper presents a comprehensive state-of-the-art review of such VSLAM-enabled (Visual Simultaneous Localization and Mapping) helmets. We surveyed the evolution from basic helmet cameras to intelligent, sensor-fused inspection platforms, highlighting how modern helmets leverage real-time visual SLAM algorithms to map environments and assist inspectors. A systematic literature search was conducted targeting high-impact journals, patents, and industry reports. We classify helmet-integrated camera systems into monocular, stereo, and omnidirectional types and compare their capabilities for infrastructure inspection. We examine core VSLAM algorithms (feature-based, direct, hybrid, and deep-learning-enhanced) and discuss their adaptation to wearable platforms. Multi-sensor fusion approaches integrating inertial, LiDAR, and GNSS data are reviewed, along with edge/cloud processing architectures enabling real-time performance. This paper compiles numerous industrial use cases, from bridges and tunnels to plants and power facilities, demonstrating significant improvements in inspection efficiency, data quality, and worker safety. Key challenges are analyzed, including technical hurdles (battery life, processing limits, and harsh environments), human factors (ergonomics, training, and cognitive load), and regulatory issues (safety certification and data privacy). We also identify emerging trends, such as semantic SLAM, AI-driven defect recognition, hardware miniaturization, and collaborative multi-helmet systems. This review finds that VSLAM-equipped smart helmets offer a transformative approach to infrastructure inspection, enabling real-time mapping, augmented awareness, and safer workflows. We conclude by highlighting current research gaps, notably in standardizing systems and integrating with asset management, and provide recommendations for industry adoption and future research directions. Full article
Show Figures

Figure 1

29 pages, 3542 KiB  
Review
Digital Twins, AI, and Cybersecurity in Additive Manufacturing: A Comprehensive Review of Current Trends and Challenges
by Md Sazol Ahmmed, Laraib Khan, Muhammad Arif Mahmood and Frank Liou
Machines 2025, 13(8), 691; https://doi.org/10.3390/machines13080691 - 6 Aug 2025
Abstract
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their [...] Read more.
The development of Industry 4.0 has accelerated the adoption of sophisticated technologies, including Digital Twins (DTs), Artificial Intelligence (AI), and cybersecurity, within Additive Manufacturing (AM). Enabling real-time monitoring, process optimization, predictive maintenance, and secure data management can redefine conventional manufacturing paradigms. Although their individual importance is increasing, a consistent understanding of how these technologies interact and collectively improve AM procedures is lacking. Focusing on the integration of digital twins (DTs), modular AI, and cybersecurity in AM, this review presents a comprehensive analysis of over 137 research publications from Scopus, Web of Science, Google Scholar, and ResearchGate. The publications are categorized into three thematic groups, followed by an analysis of key findings. Finally, the study identifies research gaps and proposes detailed recommendations along with a framework for future research. The study reveals that traditional AM processes have undergone significant transformations driven by digital threads, digital threads (DTs), and AI. However, this digitalization introduces vulnerabilities, leaving AM systems prone to cyber-physical attacks. Emerging advancements in AI, Machine Learning (ML), and Blockchain present promising solutions to mitigate these challenges. This paper is among the first to comprehensively summarize and evaluate the advancements in AM, emphasizing the integration of DTs, Modular AI, and cybersecurity strategies. Full article
(This article belongs to the Special Issue Neural Networks Applied in Manufacturing and Design)
Show Figures

Figure 1

35 pages, 8516 KiB  
Article
Study on Stress Monitoring and Risk Early Warning of Flexible Mattress Deployment in Deep-Water Sharp Bend Reaches
by Chu Zhang, Ping Li, Zebang Cui, Kai Wu, Tianyu Chen, Zhenjia Tian, Jianxin Hao and Sudong Xu
Water 2025, 17(15), 2333; https://doi.org/10.3390/w17152333 - 6 Aug 2025
Abstract
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 [...] Read more.
This study addresses the complex challenges associated with flexible mattress (soft mattress) installation in the sharply curved and deep-water sections of the Yangtze River, particularly in the Yaozui revetment reconstruction project. Under extreme hydrodynamic conditions—water depths exceeding 30 m and velocities over 2.5 m/s—the risk of structural failures such as displacement, flipping, or tearing of the mattress becomes significant. To improve construction safety and stability, the study integrates numerical modeling and on-site strain monitoring to analyze the mechanical response of flexible mattresses during deployment. A three-dimensional finite element model based on the catenary theory was developed to simulate stress distributions under varying flow velocities and angles, revealing stress concentrations at the mattress’s upper edge and reinforcement junctions. Concurrently, a real-time monitoring system using high-precision strain sensors was deployed on critical shipboard components, with collected data analyzed through a remote IoT platform. The results demonstrate strong correlations between mattress strain, flow velocity, and water depth, enabling the identification of high-risk operational thresholds. The proposed monitoring and early-warning framework offers a practical solution for managing construction risks in extreme riverine environments and contributes to the advancement of intelligent construction management for underwater revetment works. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

17 pages, 926 KiB  
Review
Advancing Heart Failure Care Through Disease Management Programs: A Comprehensive Framework to Improve Outcomes
by Maha Inam, Robert M. Sangrigoli, Linda Ruppert, Pooja Saiganesh and Eman A. Hamad
J. Cardiovasc. Dev. Dis. 2025, 12(8), 302; https://doi.org/10.3390/jcdd12080302 - 5 Aug 2025
Abstract
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure [...] Read more.
Heart failure (HF) is a major global health challenge, characterized by high morbidity, mortality, and frequent hospital readmissions. Despite the advent of guideline-directed medical therapies (GDMTs), the burden of HF continues to grow, necessitating a shift toward comprehensive, multidisciplinary care models. Heart Failure Disease Management Programs (HF-DMPs) have emerged as structured frameworks that integrate evidence-based medical therapy, patient education, telemonitoring, and support for social determinants of health to optimize outcomes and reduce healthcare costs. This review outlines the key components of HF-DMPs, including patient identification and risk stratification, pharmacologic optimization, team-based care, transitional follow-up, remote monitoring, performance metrics, and social support systems. Incorporating tools such as artificial intelligence, pharmacist-led titration, and community health worker support, HF-DMPs represent a scalable approach to improving care delivery. The success of these programs depends on tailored interventions, interdisciplinary collaboration, and health equity-driven strategies. Full article
Show Figures

Graphical abstract

42 pages, 14160 KiB  
Article
Automated Vehicle Classification and Counting in Toll Plazas Using LiDAR-Based Point Cloud Processing and Machine Learning Techniques
by Alexander Campo-Ramírez, Eduardo F. Caicedo-Bravo and Bladimir Bacca-Cortes
Future Transp. 2025, 5(3), 105; https://doi.org/10.3390/futuretransp5030105 - 5 Aug 2025
Abstract
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, [...] Read more.
This paper presents the design and implementation of a high-precision vehicle detection and classification system for toll stations on national highways in Colombia, leveraging LiDAR-based 3D point cloud processing and supervised machine learning. The system integrates a multi-sensor architecture, including a LiDAR scanner, high-resolution cameras, and Doppler radars, with an embedded computing platform for real-time processing and on-site inference. The methodology covers data preprocessing, feature extraction, descriptor encoding, and classification using Support Vector Machines. The system supports eight vehicular categories established by national regulations, which present significant challenges due to the need to differentiate categories by axle count, the presence of lifted axles, and vehicle usage. These distinctions affect toll fees and require a classification strategy beyond geometric profiling. The system achieves 89.9% overall classification accuracy, including 96.2% for light vehicles and 99.0% for vehicles with three or more axles. It also incorporates license plate recognition for complete vehicle traceability. The system was deployed at an operational toll station and has run continuously under real traffic and environmental conditions for over eighteen months. This framework represents a robust, scalable, and strategic technological component within Intelligent Transportation Systems and contributes to data-driven decision-making for road management and toll operations. Full article
Show Figures

Figure 1

51 pages, 4099 KiB  
Review
Artificial Intelligence and Digital Twin Technologies for Intelligent Lithium-Ion Battery Management Systems: A Comprehensive Review of State Estimation, Lifecycle Optimization, and Cloud-Edge Integration
by Seyed Saeed Madani, Yasmin Shabeer, Michael Fowler, Satyam Panchal, Hicham Chaoui, Saad Mekhilef, Shi Xue Dou and Khay See
Batteries 2025, 11(8), 298; https://doi.org/10.3390/batteries11080298 - 5 Aug 2025
Abstract
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery [...] Read more.
The rapid growth of electric vehicles (EVs) and new energy systems has put lithium-ion batteries at the center of the clean energy change. Nevertheless, to achieve the best battery performance, safety, and sustainability in many changing circumstances, major innovations are needed in Battery Management Systems (BMS). This review paper explores how artificial intelligence (AI) and digital twin (DT) technologies can be integrated to enable the intelligent BMS of the future. It investigates how powerful data approaches such as deep learning, ensembles, and models that rely on physics improve the accuracy of predicting state of charge (SOC), state of health (SOH), and remaining useful life (RUL). Additionally, the paper reviews progress in AI features for cooling, fast charging, fault detection, and intelligible AI models. Working together, cloud and edge computing technology with DTs means better diagnostics, predictive support, and improved management for any use of EVs, stored energy, and recycling. The review underlines recent successes in AI-driven material research, renewable battery production, and plans for used systems, along with new problems in cybersecurity, combining data and mass rollout. We spotlight important research themes, existing problems, and future drawbacks following careful analysis of different up-to-date approaches and systems. Uniting physical modeling with AI-based analytics on cloud-edge-DT platforms supports the development of tough, intelligent, and ecologically responsible batteries that line up with future mobility and wider use of renewable energy. Full article
Show Figures

Figure 1

13 pages, 238 KiB  
Perspective
Leveraging and Harnessing Generative Artificial Intelligence to Mitigate the Burden of Neurodevelopmental Disorders (NDDs) in Children
by Obinna Ositadimma Oleribe
Healthcare 2025, 13(15), 1898; https://doi.org/10.3390/healthcare13151898 - 4 Aug 2025
Viewed by 16
Abstract
Neurodevelopmental disorders (NDDs) significantly impact children’s health and development. They pose a substantial burden to families and the healthcare system. Challenges in early identification, accurate and timely diagnosis, and effective treatment persist due to overlapping symptoms, lack of appropriate diagnostic biomarkers, significant stigma [...] Read more.
Neurodevelopmental disorders (NDDs) significantly impact children’s health and development. They pose a substantial burden to families and the healthcare system. Challenges in early identification, accurate and timely diagnosis, and effective treatment persist due to overlapping symptoms, lack of appropriate diagnostic biomarkers, significant stigma and discrimination, and systemic barriers. Generative Artificial Intelligence (GenAI) offers promising solutions to these challenges by enhancing screening, diagnosis, personalized treatment, and research. Although GenAI is already in use in some aspects of NDD management, effective and strategic leveraging of evolving AI tools and resources will enhance early identification and screening, reduce diagnostic processing by up to 90%, and improve clinical decision support. Proper use of GenAI will ensure individualized therapy regimens with demonstrated 36% improvement in at least one objective attention measure compared to baseline and 81–84% accuracy relative to clinician-generated plans, customize learning materials, and deliver better treatment monitoring. GenAI will also accelerate NDD-specific research and innovation with significant time savings, as well as provide tailored family support systems. Finally, it will significantly reduce the mortality and morbidity associated with NDDs. This article explores the potential of GenAI in transforming NDD management and calls for policy initiatives to integrate GenAI into NDD management systems. Full article
28 pages, 1795 KiB  
Article
From Policy to Prices: How Carbon Markets Transmit Shocks Across Energy and Labor Systems
by Cristiana Tudor, Aura Girlovan, Robert Sova, Javier Sierra and Georgiana Roxana Stancu
Energies 2025, 18(15), 4125; https://doi.org/10.3390/en18154125 - 4 Aug 2025
Viewed by 42
Abstract
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log [...] Read more.
This paper examines the changing role of emissions trading systems (ETSs) within the macro-financial framework of energy markets, emphasizing price dynamics and systemic spillovers. Utilizing monthly data from seven ETS jurisdictions spanning January 2021 to December 2024 (N = 287 observations after log transformation and first differencing), which includes four auction-based markets (United States, Canada, United Kingdom, South Korea), two secondary markets (China, New Zealand), and a government-set fixed-price scheme (Germany), this research estimates a panel vector autoregression (PVAR) employing a Common Correlated Effects (CCE) model and augments it with machine learning analysis utilizing XGBoost and explainable AI methodologies. The PVAR-CEE reveals numerous unexpected findings related to carbon markets: ETS returns exhibit persistence with an autoregressive coefficient of −0.137 after a four-month lag, while increasing inflation results in rising ETS after the same period. Furthermore, ETSs generate spillover effects in the real economy, as elevated ETSs today forecast a 0.125-point reduction in unemployment one month later and a 0.0173 increase in inflation after two months. Impulse response analysis indicates that exogenous shocks, including Brent oil prices, policy uncertainty, and financial volatility, are swiftly assimilated by ETS pricing, with effects dissipating completely within three to eight months. XGBoost models ascertain that policy uncertainty and Brent oil prices are the most significant predictors of one-month-ahead ETSs, whereas ESG factors are relevant only beyond certain thresholds and in conditions of low policy uncertainty. These findings establish ETS markets as dynamic transmitters of macroeconomic signals, influencing energy management, labor changes, and sustainable finance under carbon pricing frameworks. Full article
Show Figures

Figure 1

19 pages, 338 KiB  
Review
Harnessing Artificial Intelligence and Human Resource Management for Circular Economy and Sustainability: A Conceptual Integration
by Rubee Singh, Amit Joshi, Hiranya Dissanayake, Deshika Nainanayake and Vikas Kumar
Sustainability 2025, 17(15), 7054; https://doi.org/10.3390/su17157054 - 4 Aug 2025
Viewed by 55
Abstract
In response to global sustainability challenges and digital transformation, this conceptual paper explores the intersection of Artificial Intelligence (AI), Human Resource Management (HRM), and Circular Economy (CE). Drawing on Resource-Based View, Stakeholder Theory, Institutional Theory, and the Socio-Technical Systems perspective, we propose an [...] Read more.
In response to global sustainability challenges and digital transformation, this conceptual paper explores the intersection of Artificial Intelligence (AI), Human Resource Management (HRM), and Circular Economy (CE). Drawing on Resource-Based View, Stakeholder Theory, Institutional Theory, and the Socio-Technical Systems perspective, we propose an integrated framework in which AI and HRM function as complementary enablers of sustainable, circular transformation. The framework identifies enablers (e.g., green HRM, digital infrastructure), barriers (e.g., ethical concerns, skill gaps), and contextual mediators. This study contributes to sustainability and digital innovation literature and suggests practical pathways for ethically aligning workforce and AI capabilities in CE adoption. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

22 pages, 4943 KiB  
Article
Predicting De-Handing Point in Bananas Using Crown Morphology and Interpretable Machine Learning
by Lei Zhao, Zhou Yang, Chunxia Wang, Mohui Jin and Jieli Duan
Agronomy 2025, 15(8), 1880; https://doi.org/10.3390/agronomy15081880 - 3 Aug 2025
Viewed by 100
Abstract
Banana de-handing is a critical yet labor-intensive step in postharvest processing, with current manual methods resulting in high costs and occupational risks. This study addresses the automation of de-handing point localization by integrating high-resolution 3D scanning and morphometric analysis of banana crowns with [...] Read more.
Banana de-handing is a critical yet labor-intensive step in postharvest processing, with current manual methods resulting in high costs and occupational risks. This study addresses the automation of de-handing point localization by integrating high-resolution 3D scanning and morphometric analysis of banana crowns with machine learning techniques. A total of 210 crown samples were analyzed to extract key morphological features, including inner arc length (Li), inner arc radius (Ri), outer arc radius (Ro), and the distance between inner and outer arcs (Doi), among others. Four machine learning algorithms, namely, Multi-Layer Perceptron (MLP), Gradient Boosted Decision Trees (GBDT), Extreme Gradient Boosting (XGBoost), and Random Forest (RF), were developed to predict the target radius (Rt) and target distance (Dti) of the de-handing point. The RF models achieved the optimal predictive performance on the testing set, with the following results: for Rt, R2 = 0.95, MAE = 1.50, and RMSE = 1.94; for Dti, R2 = 0.91, MAE = 1.33, and RMSE = 1.66. A Shapley Additive Explanations (SHAP) analysis revealed that Li, Ri, and Ro were the most influential features for Rt, while Doi was the most important for Dti. Notably, feature threshold effects were observed, with limited gains in prediction accuracy beyond specific morphological values. These results provide a quantitative foundation for vision-guided automated de-handing systems, advancing intelligent and efficient banana postharvest management. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 - 2 Aug 2025
Viewed by 203
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 250
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

Back to TopTop