Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = insulin receptor isoform A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9213 KiB  
Article
Resveratrol Impairs Insulin Signaling in Hepatic Cells via Activation of PKC and PTP1B Pathways
by Karla D. Hernández-González, Monica A. Vinchira-Lamprea, Judith Hernandez-Aranda and J. Alberto Olivares-Reyes
Int. J. Mol. Sci. 2025, 26(15), 7434; https://doi.org/10.3390/ijms26157434 - 1 Aug 2025
Viewed by 412
Abstract
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, [...] Read more.
Resveratrol (RSV), a polyphenol found in a variety of berries and wines, is known for its anti-inflammatory, anticancer, and antioxidant properties. It has been suggested that RSV may play a role in the regulation of metabolic disorders, including diabetes and insulin resistance. However, in recent years, it has been reported to completely inhibit Akt kinase function in liver cells. Akt is a central protein involved in the metabolic function of insulin and is regulated by the phosphatidylinositol-3-kinase (PI3K) pathway. In this study, we examined the effect of RSV on insulin-induced insulin receptor (IR) phosphorylation and proteins involved in the PI3K/Akt pathway in a hepatic cell model, clone 9 (C9), and in hepatoma cells, Hepa 1-6 (H1-6). In both cell lines, RSV inhibited tyrosine phosphorylation of IR and insulin-induced activation of Akt. We also evaluated the effect of RSV on the activation of protein tyrosine phosphatase 1B (PTP1B), which is associated with IR dephosphorylation, and found that RSV increased PTP1B-Tyr152 phosphorylation in a time- and concentration-dependent manner. Furthermore, we found that the protein kinase C (PKC) inhibitors BIM and Gö6976 prevented the inhibition of Akt phosphorylation by RSV and increased the phosphorylation of Ser/Thr residues in IR, suggesting that PKC is involved in the inhibition of the insulin pathway by RSV. Thus, classical PKC isoforms impair the PI3K/Akt pathway at the IR and GSK3 and GS downstream levels; however, IRS-Tyr632 phosphorylation remains unaffected. These results suggest that RSV can lead to insulin resistance by activating PTP1B and PKC, consequently affecting glucose homeostasis in hepatic cells. Full article
(This article belongs to the Special Issue The Molecular and Cellular Aspects of Insulin Resistance)
Show Figures

Figure 1

23 pages, 2709 KiB  
Review
Ryanodine Receptors in Islet Cell Function: Calcium Signaling, Hormone Secretion, and Diabetes
by Md. Shahidul Islam
Cells 2025, 14(10), 690; https://doi.org/10.3390/cells14100690 - 10 May 2025
Viewed by 2481
Abstract
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling [...] Read more.
Ryanodine receptors (RyRs) are large intracellular Ca2+ release channels primarily found in muscle and nerve cells and also present at low levels in pancreatic islet endocrine cells. This review examines the role of RyRs in islet cell function, focusing on calcium signaling and hormone secretion, while addressing the ongoing debate regarding their significance due to their limited expression. We explore conflicting experimental results and their potential causes, synthesizing current knowledge on RyR isoforms in islet cells, particularly in beta and delta cells. The review discusses how RyR-mediated calcium-induced calcium release enhances, rather than drives, glucose-stimulated insulin secretion. We examine the phosphorylation-dependent regulation of beta-cell RyRs, the concept of “leaky ryanodine receptors”, and the roles of RyRs in endoplasmic reticulum stress, apoptosis, store-operated calcium entry, and beta-cell electrical activity. The relationship between RyR dysfunction and the development of impaired insulin secretion in diabetes is assessed, noting their limited role in human diabetes pathogenesis given the disease’s polygenic nature. We highlight the established role of RyR-mediated CICR in the mechanism of action of common type 2 diabetes treatments, such as glucagon-like peptide-1, which enhances insulin secretion. By integrating findings from electrophysiological, molecular, and clinical studies, this review provides a balanced perspective on RyRs in islet cell physiology and pathology, emphasizing their significance in both normal insulin secretion and current diabetes therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Signal Transduction in the Islet Cells)
Show Figures

Graphical abstract

20 pages, 3749 KiB  
Review
EFR3A, an Intriguing Gene, and Protein with a Scaffolding Function
by Magdalena Trybus, Anita Hryniewicz-Jankowska, Aleksander Czogalla and Aleksander F. Sikorski
Cells 2025, 14(6), 445; https://doi.org/10.3390/cells14060445 - 17 Mar 2025
Cited by 1 | Viewed by 968
Abstract
The EFR3 (Eighty-Five Requiring 3) protein and its homologs are rather poorly understood eukaryotic plasma membrane peripheral proteins. They belong to the armadillo-like family of superhelical proteins. In higher vertebrates two paralog genes, A and B were found, each expressing at least 2–3 [...] Read more.
The EFR3 (Eighty-Five Requiring 3) protein and its homologs are rather poorly understood eukaryotic plasma membrane peripheral proteins. They belong to the armadillo-like family of superhelical proteins. In higher vertebrates two paralog genes, A and B were found, each expressing at least 2–3 protein isoforms. EFR3s are involved in several physiological functions, mostly including phosphatidyl inositide phosphates, e.g., phototransduction (insects), GPCRs, and insulin receptors regulated processes (mammals). Mutations in the EFR3A were linked to several types of human disorders, i.e., neurological, cardiovascular, and several tumors. Structural data on the atomic level indicate the extended superhelical rod-like structure of the first two-thirds of the molecule with a typical armadillo repeat motif (ARM) in the N-terminal part and a triple helical motif in its C-terminal part. EFR3s’ best-known molecular function is anchoring the giant phosphatidylinositol 4-kinase A complex to the plasma membrane crucial for cell signaling, also linked directly to the KRAS mutant oncogenic function. Another function connected to the newly uncovered interaction of EFR3A with flotillin-2 may be the participation of the former in the organization and regulation of the membrane raft domain. This review presents EFR3A as an intriguing subject of future studies. Full article
Show Figures

Figure 1

21 pages, 4995 KiB  
Article
Ontogeny of Fetal Cardiometabolic Pathways: The Potential Role of Cortisol and Thyroid Hormones in Driving the Transition from Preterm to Near-Term Heart Development in Sheep
by Reza Amanollahi, Stacey L. Holman, Melanie R. Bertossa, Ashley S. Meakin, Kent L. Thornburg, I. Caroline McMillen, Michael D. Wiese, Mitchell C. Lock and Janna L. Morrison
J. Cardiovasc. Dev. Dis. 2025, 12(2), 36; https://doi.org/10.3390/jcdd12020036 - 21 Jan 2025
Cited by 2 | Viewed by 1634
Abstract
Understanding hormonal and molecular changes during the transition from preterm to near-term gestation is essential for investigating how pregnancy complications impact fetal heart development and contribute to long-term cardiovascular risks for offspring. This study examines these cardiac changes in fetal sheep, focusing on [...] Read more.
Understanding hormonal and molecular changes during the transition from preterm to near-term gestation is essential for investigating how pregnancy complications impact fetal heart development and contribute to long-term cardiovascular risks for offspring. This study examines these cardiac changes in fetal sheep, focusing on the changes between 116 days (preterm) and 140 days (near term) of gestation (dG, term = 150) using Western blotting, LC-MS/MS, and histological techniques. We observed a strong correlation between cortisol and T3 (Triiodothyronine) in heart tissue in near-term fetuses, highlighting the role of glucocorticoid signalling in fetal heart maturation. Protein expression patterns in the heart revealed a decrease in multiple glucocorticoid receptor isoforms (GRα-A, GR-P, GR-A, GRα-D2, and GRα-D3), alongside a decrease in IGF-1R (a marker of cardiac proliferative capacity) and p-FOXO1(Thr24) but an increase in PCNA (a marker of DNA replication), indicating a shift towards cardiomyocyte maturation from preterm to near term. The increased expression of proteins regulating mitochondrial biogenesis and OXPHOS complex 4 reflects the known transition from glycolysis to oxidative phosphorylation, essential for meeting the energy demands of the postnatal heart. We also found altered glucose transporter expression, with increased pIRS-1(ser789) and GLUT-4 but decreased GLUT-1 expression, suggesting improved insulin responsiveness as the heart approaches term. Notably, the reduced protein abundance of SIRT-1 and SERCA2, along with increased phosphorylation of cardiac Troponin I(Ser23/24), indicates adaptations for more energy-efficient contraction in the near-term heart. In conclusion, these findings show the complex interplay of hormonal, metabolic, and growth changes that regulate fetal heart development, providing new insights into heart development that are crucial for understanding pathological conditions at birth and throughout life. Full article
Show Figures

Graphical abstract

12 pages, 3155 KiB  
Article
An Insulin Upstream Open Reading Frame (INSU) Is Present in Skeletal Muscle Satellite Cells: Changes with Age
by Qing-Rong Liu, Min Zhu, Faatin Salekin, Brianah M. McCoy, Vernon Kennedy, Jane Tian, Caio H. Mazucanti, Chee W. Chia and Josephine M. Egan
Cells 2024, 13(22), 1903; https://doi.org/10.3390/cells13221903 - 18 Nov 2024
Cited by 1 | Viewed by 1256
Abstract
Insulin resistance, stem cell dysfunction, and muscle fiber dystrophy are all age-related events in skeletal muscle (SKM). However, age-related changes in insulin isoforms and insulin receptors in myogenic progenitor satellite cells have not been studied. Since SKM is an extra-pancreatic tissue that does [...] Read more.
Insulin resistance, stem cell dysfunction, and muscle fiber dystrophy are all age-related events in skeletal muscle (SKM). However, age-related changes in insulin isoforms and insulin receptors in myogenic progenitor satellite cells have not been studied. Since SKM is an extra-pancreatic tissue that does not express mature insulin, we investigated the levels of insulin receptors (INSRs) and a novel human insulin upstream open reading frame (INSU) at the mRNA, protein, and anatomical levels in Baltimore Longitudinal Study of Aging (BLSA) biopsied SKM samples of 27–89-year-old (yrs) participants. Using RT-qPCR and the MS-based selected reaction monitoring (SRM) assay, we found that the levels of INSR and INSU mRNAs and the proteins were positively correlated with the age of human SKM biopsies. We applied RNAscope fluorescence in situ hybridization (FISH) and immunofluorescence (IF) to SKM cryosections and found that INSR and INSU were co-localized with PAX7-labeled satellite cells, with enhanced expression in SKM sections from an 89 yrs old compared to a 27 yrs old. We hypothesized that the SKM aging process might induce compensatory upregulation of INSR and re-expression of INSU, which might be beneficial in early embryogenesis and have deleterious effects on proliferative and myogenic satellite cells with advanced age. Full article
(This article belongs to the Special Issue Muscle Structure and Function in Health and Disease)
Show Figures

Figure 1

30 pages, 946 KiB  
Review
Decoding the Role of Insulin-like Growth Factor 1 and Its Isoforms in Breast Cancer
by Amalia Kotsifaki, Sousanna Maroulaki, Efthymios Karalexis, Martha Stathaki and Athanasios Armakolas
Int. J. Mol. Sci. 2024, 25(17), 9302; https://doi.org/10.3390/ijms25179302 - 27 Aug 2024
Cited by 6 | Viewed by 5326
Abstract
Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits [...] Read more.
Insulin-like Growth Factor-1 (IGF-1) is a crucial mitogenic factor with important functions in the mammary gland, mainly through its interaction with the IGF-1 receptor (IGF-1R). This interaction activates a complex signaling network that promotes cell proliferation, epithelial to mesenchymal transition (EMT) and inhibits apoptosis. Despite extensive research, the precise molecular pathways and intracellular mechanisms activated by IGF-1, in cancer, remain poorly understood. Recent evidence highlights the essential roles of IGF-1 and its isoforms in breast cancer (BC) development, progression, and metastasis. The peptides that define the IGF-1 isoforms—IGF-1Ea, IGF-1Eb, and IGF-1Ec—act as key points of convergence for various signaling pathways that influence the growth, metastasis and survival of BC cells. The aim of this review is to provide a detailed exami-nation of the role of the mature IGF-1 and its isoforms in BC biology and their potential use as possible therapeutical targets. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Breast Cancer: Toward Advanced Therapy)
Show Figures

Figure 1

20 pages, 5586 KiB  
Article
Impact of Serotonin Transporter Absence on Brain Insulin Receptor Expression, Plasma Metabolome Changes, and ADHD-like Behavior in Mice fed a Western Diet
by Daniel C. Anthony, Fay Probert, Anna Gorlova, Jenna Hebert, Daniel Radford-Smith, Zlata Nefedova, Aleksei Umriukhin, Andrey Nedorubov, Raymond Cespuglio, Boris Shulgin, Aleksey Lyundup, Klaus Peter Lesch and Tatyana Strekalova
Biomolecules 2024, 14(8), 884; https://doi.org/10.3390/biom14080884 - 23 Jul 2024
Cited by 3 | Viewed by 2434
Abstract
The impaired function of the serotonin transporter (SERT) in humans has been linked to a higher risk of obesity and type 2 diabetes, especially as people age. Consuming a “Western diet” (WD), which is high in saturated fats, cholesterol, and sugars, can induce [...] Read more.
The impaired function of the serotonin transporter (SERT) in humans has been linked to a higher risk of obesity and type 2 diabetes, especially as people age. Consuming a “Western diet” (WD), which is high in saturated fats, cholesterol, and sugars, can induce metabolic syndrome. Previous research indicated that mice carrying a targeted inactivation of the Sert gene (knockout, KO) and fed a WD display significant metabolic disturbances and behaviors reminiscent of ADHD. These abnormalities might be mediated via a dysfunction in insulin receptor (IR) signaling, which is also associated with adult ADHD. However, the impact of Sert deficiency on IR signaling and systemic metabolic changes has not been thoroughly explored. In this study, we conducted a detailed analysis of locomotor behavior in wild-type (WT) and KO mice fed a WD or control diet. We investigated changes in the blood metabolome and examined, via PCR, the expression of insulin receptor A and B isoforms and key regulators of their function in the brain. Twelve-month-old KO mice and their WT littermates were fed a WD for three weeks. Nuclear magnetic resonance spectroscopy analysis of plasma samples showed that KO mice on a WD had higher levels of lipids and lipoproteins and lower levels of glucose, lactate, alanine, valine, and isoleucine compared to other groups. SERT-KO mice on the control diet exhibited increased brain levels of both IR A and B isoforms, accompanied by a modest increase in the negative regulator ENPP. The KO mice also displayed anxiety-like behavior and reduced exploratory activity in an open field test. However, when the KO animals were fed a WD, the aberrant expression levels of IR isoforms in the KO mice and locomotor behavior were ameliorated indicating a complex interaction between genetic and dietary factors that might contribute to ADHD-like symptoms. Overall, our findings suggest that the lack of Sert leads to a unique metabolic phenotype in aged mice, characterized by dysregulated IR-related pathways. These changes are exacerbated by WD in the blood metabolome and are associated with behavioral abnormalities. Full article
Show Figures

Figure 1

20 pages, 3346 KiB  
Perspective
Autocrine IGF-II-Associated Cancers: From a Rare Paraneoplastic Event to a Hallmark in Malignancy
by Pierluigi Scalia, Ignazio R. Marino, Salvatore Asero, Giuseppe Pandini, Adda Grimberg, Wafik S. El-Deiry and Stephen J. Williams
Biomedicines 2024, 12(1), 40; https://doi.org/10.3390/biomedicines12010040 - 22 Dec 2023
Cited by 3 | Viewed by 2617
Abstract
The paraneoplastic syndrome referred in the literature as non-islet-cell tumor hypoglycemia (NICTH) and extra-pancreatic tumor hypoglycemia (EPTH) was first reported almost a century ago, and the role of cancer-secreted IGF-II in causing this blood glucose-lowering condition has been widely established. The landscape emerging [...] Read more.
The paraneoplastic syndrome referred in the literature as non-islet-cell tumor hypoglycemia (NICTH) and extra-pancreatic tumor hypoglycemia (EPTH) was first reported almost a century ago, and the role of cancer-secreted IGF-II in causing this blood glucose-lowering condition has been widely established. The landscape emerging in the last few decades, based on molecular and cellular findings, supports a broader role for IGF-II in cancer biology beyond its involvement in the paraneoplastic syndrome. In particular, a few key findings are constantly observed during tumorigenesis, (a) a relative and absolute increase in fetal insulin receptor isoform (IRA) content, with (b) an increase in IGF-II high-molecular weight cancer-variants (big-IGF-II), and (c) a stage-progressive increase in the IGF-II autocrine signal in the cancer cell, mostly during the transition from benign to malignant growth. An increasing and still under-exploited combinatorial pattern of the IGF-II signal in cancer is shaping up in the literature with respect to its transducing receptorial system and effector intracellular network. Interestingly, while surgical and clinical reports have traditionally restricted IGF-II secretion to a small number of solid malignancies displaying paraneoplastic hypoglycemia, a retrospective literature analysis, along with publicly available expression data from patient-derived cancer cell lines conveyed in the present perspective, clearly suggests that IGF-II expression in cancer is a much more common event, especially in overt malignancy. These findings strengthen the view that (1) IGF-II expression/secretion in solid tumor-derived cancer cell lines and tissues is a broader and more common event compared to the reported IGF-II association to paraneoplastic hypoglycemia, and (2) IGF-II associates to the commonly observed autocrine loops in cancer cells while IGF-I cancer-promoting effects may be linked to its paracrine effects in the tumor microenvironment. Based on these evidence-centered considerations, making the autocrine IGF-II loop a hallmark for malignant cancer growth, we here propose the functional name of IGF-II secreting tumors (IGF-IIsT) to overcome the view that IGF-II secretion and pro-tumorigenic actions affect only a clinical sub-group of rare tumors with associated hypoglycemic symptoms. The proposed scenario provides an updated logical frame towards biologically sound therapeutic strategies and personalized therapeutic interventions for currently unaccounted IGF-II-producing cancers. Full article
Show Figures

Figure 1

3 pages, 180 KiB  
Editorial
Role of the Insulin-like Growth Factor (IGF) Axis in Diseases
by Claire M. Perks
Int. J. Mol. Sci. 2023, 24(23), 16969; https://doi.org/10.3390/ijms242316969 - 30 Nov 2023
Cited by 5 | Viewed by 2013
Abstract
The insulin-like growth factor axis is a multifaceted, complex system that comprises two ligands, IGF-I and IGF-II, receptors (IGF-1R, IGF-IIR, insulin receptor isoforms IR-A and B, and hybrid receptors) six high affinity IGF-binding proteins (IGFBPs 1–6), and IGFBP proteases [...] Full article
(This article belongs to the Special Issue The Role of the IGF Axis in the Disease)
34 pages, 3227 KiB  
Review
Insulin Receptor Isoforms and Insulin Growth Factor-like Receptors: Implications in Cell Signaling, Carcinogenesis, and Chemoresistance
by Mariam Ahmed Galal, Samhar Samer Alouch, Buthainah Saad Alsultan, Huda Dahman, Nouf Abdullah Alyabis, Sarah Ammar Alammar and Ahmad Aljada
Int. J. Mol. Sci. 2023, 24(19), 15006; https://doi.org/10.3390/ijms241915006 - 9 Oct 2023
Cited by 16 | Viewed by 4799
Abstract
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving [...] Read more.
This comprehensive review thoroughly explores the intricate involvement of insulin receptor (IR) isoforms and insulin-like growth factor receptors (IGFRs) in the context of the insulin and insulin-like growth factor (IGF) signaling (IIS) pathway. This elaborate system encompasses ligands, receptors, and binding proteins, giving rise to a wide array of functions, including aspects such as carcinogenesis and chemoresistance. Detailed genetic analysis of IR and IGFR structures highlights their distinct isoforms, which arise from alternative splicing and exhibit diverse affinities for ligands. Notably, the overexpression of the IR-A isoform is linked to cancer stemness, tumor development, and resistance to targeted therapies. Similarly, elevated IGFR expression accelerates tumor progression and fosters chemoresistance. The review underscores the intricate interplay between IRs and IGFRs, contributing to resistance against anti-IGFR drugs. Consequently, the dual targeting of both receptors could present a more effective strategy for surmounting chemoresistance. To conclude, this review brings to light the pivotal roles played by IRs and IGFRs in cellular signaling, carcinogenesis, and therapy resistance. By precisely modulating these receptors and their complex signaling pathways, the potential emerges for developing enhanced anti-cancer interventions, ultimately leading to improved patient outcomes. Full article
(This article belongs to the Special Issue The Role of the IGF Axis in Disease, 3nd Edition)
Show Figures

Figure 1

22 pages, 4887 KiB  
Article
Novel Isoform DTX3c Associates with UBE2N-UBA1 and Cdc48/p97 as Part of the EphB4 Degradation Complex Regulated by the Autocrine IGF-II/IRA Signal in Malignant Mesothelioma
by Pierluigi Scalia, Carmen Merali, Carlos Barrero, Antonio Suma, Vincenzo Carnevale, Salim Merali and Stephen J. Williams
Int. J. Mol. Sci. 2023, 24(8), 7380; https://doi.org/10.3390/ijms24087380 - 17 Apr 2023
Cited by 4 | Viewed by 2589
Abstract
EphB4 angiogenic kinase over-expression in Mesothelioma cells relies upon a degradation rescue signal provided by autocrine IGF-II activation of Insulin Receptor A. However, the identity of the molecular machinery involved in EphB4 rapid degradation upon IGF-II signal deprivation are unknown. Using targeted proteomics, [...] Read more.
EphB4 angiogenic kinase over-expression in Mesothelioma cells relies upon a degradation rescue signal provided by autocrine IGF-II activation of Insulin Receptor A. However, the identity of the molecular machinery involved in EphB4 rapid degradation upon IGF-II signal deprivation are unknown. Using targeted proteomics, protein–protein interaction methods, PCR cloning, and 3D modeling approaches, we identified a novel ubiquitin E3 ligase complex recruited by the EphB4 C tail upon autocrine IGF-II signal deprivation. We show this complex to contain a previously unknown N-Terminal isoform of Deltex3 E3-Ub ligase (referred as “DTX3c”), along with UBA1(E1) and UBE2N(E2) ubiquitin ligases and the ATPase/unfoldase Cdc48/p97. Upon autocrine IGF-II neutralization in cultured MSTO211H (a Malignant Mesothelioma cell line that is highly responsive to the EphB4 degradation rescue IGF-II signal), the inter-molecular interactions between these factors were enhanced and their association with the EphB4 C-tail increased consistently with the previously described EphB4 degradation pattern. The ATPase/unfoldase activity of Cdc48/p97 was required for EphB4 recruitment. As compared to the previously known isoforms DTX3a and DTX3b, a 3D modeling analysis of the DTX3c Nt domain showed a unique 3D folding supporting isoform-specific biological function(s). We shed light on the molecular machinery associated with autocrine IGF-II regulation of oncogenic EphB4 kinase expression in a previously characterized IGF-II+/EphB4+ Mesothelioma cell line. The study provides early evidence for DTX3 Ub-E3 ligase involvement beyond the Notch signaling pathway. Full article
(This article belongs to the Special Issue Ephrin Receptors and Cancer 2.0)
Show Figures

Figure 1

2 pages, 177 KiB  
Abstract
Interleukin (IL)-11 Is Involved in the Functional Liaison between Breast Tumor Cells and the Surrounding Stroma
by Marianna Talia, Francesca Cirillo, Domenica Scordamaglia, Maria Francesca Santolla, Asia Spinelli, Salvatore De Rosis, Lucia Muglia, Azzurra Zicarelli, Anna Maria Miglietta, Marcello Maggiolini and Rosamaria Lappano
Biol. Life Sci. Forum 2023, 21(1), 23; https://doi.org/10.3390/blsf2023021023 - 27 Mar 2023
Viewed by 1447
Abstract
Current advances in molecular profiling methodologies and the accessibility of multi-omics datasets are paving the way toward a better understanding of heterogeneous diseases, including breast cancer (BC). In this regard, we sought to uncover the transcriptional changes triggered by estrogen and insulin in [...] Read more.
Current advances in molecular profiling methodologies and the accessibility of multi-omics datasets are paving the way toward a better understanding of heterogeneous diseases, including breast cancer (BC). In this regard, we sought to uncover the transcriptional changes triggered by estrogen and insulin in a primary BC cell line (BCAHC-1), which expresses the 46kDa isoform of the estrogen receptor (ER)α and the insulin receptor, as we have previously ascertained. Raw data from RNA sequencing of BCAHC-1 cells were processed by the Bcl2Fastq 2.20 version of the Illumina pipeline, while in silico analyses were performed in R Studio using the TCGA dataset. Real-time PCR, immunoblotting, ELISA and chromatin immunoprecipitation experiments were used to identify the molecular events triggered by estrogen and insulin in BCAHC-1 cells and cancer-associated fibroblasts (CAFs). Furthermore, migration and invasion assays allowed us to ascertain the mechanisms triggering these biological responses in the presence of the aforementioned hormone treatments. First, we determined that 17β-estradiol (E2) and insulin stimulate a peculiar IL-11 expression and IL-11 secretion in BCAHC-1 cells. Thereafter, bioinformatics analyses confirmed the up-regulation of IL-11 in ER-positive BCs, with respect to adjacent normal tissues, and its association with worse survival. Next, the involvement of IL-11 in pro-metastatic transduction signaling was established via pathway enrichment analyses. Notably, we found that the secretion of IL-11 by BCAHC-1 cells prompts an invasive phenotype of CAFs through the up-regulation of genes belonging to the extracellular matrix organization pathway, namely, the intercellular adhesion molecule 1 and integrin alpha 5. Overall, our findings indicate that IL-11 secretion by BC cells may elicit a paracrine action on the surrounding stroma and introduce invasive properties, suggesting that IL-11 could be considered a valuable target in comprehensive treatments of ER-positive BC patients. Full article
13 pages, 3255 KiB  
Article
The Insulin Receptor Substrate 2 Mediates the Action of Insulin on HeLa Cell Migration via the PI3K/Akt Signaling Pathway
by Anabel Martínez Báez, Ivone Castro Romero, Lilia Chihu Amparan, Jose Ramos Castañeda and Guadalupe Ayala
Curr. Issues Mol. Biol. 2023, 45(3), 2296-2308; https://doi.org/10.3390/cimb45030148 - 9 Mar 2023
Cited by 10 | Viewed by 2901
Abstract
Insulin signaling plays an important role in the development and progression of cancer since it is involved in proliferation and migration processes. It has been shown that the A isoform of the insulin receptor (IR-A) is often overexpressed, and its stimulation induces changes [...] Read more.
Insulin signaling plays an important role in the development and progression of cancer since it is involved in proliferation and migration processes. It has been shown that the A isoform of the insulin receptor (IR-A) is often overexpressed, and its stimulation induces changes in the expression of the insulin receptor substrates (IRS-1 and IRS-2), which are expressed differently in the different types of cancer. We study the participation of the insulin substrates IRS-1 and IRS-2 in the insulin signaling pathway in response to insulin and their involvement in the proliferation and migration of the cervical cancer cell line. Our results showed that under basal conditions, the IR-A isoform was predominantly expressed. Stimulation of HeLa cells with 50 nM insulin led to the phosphorylation of IR-A, showing a statistically significant increase at 30 min (p ≤ 0.05). Stimulation of HeLa cells with insulin induces PI3K and AKT phosphorylation through the activation of IRS2, but not IRS1. While PI3K reached the highest level at 30 min after treatment (p ≤ 0.05), AKT had the highest levels from 15 min (p ≤ 0.05) and remained constant for 6 h. ERK1 and ERK2 expression was also observed, but only ERK2 was phosphorylated in a time-dependent manner, reaching a maximum peak 5 min after insulin stimulation. Although no effect on cell proliferation was observed, insulin stimulation of HeLa cells markedly promoted cell migration. Full article
(This article belongs to the Special Issue Adhesion, Metastasis and Inhibition of Cancer Cells)
Show Figures

Figure 1

22 pages, 1127 KiB  
Review
The Yin and Yang Effect of the Apelinergic System in Oxidative Stress
by Benedetta Fibbi, Giada Marroncini, Laura Naldi and Alessandro Peri
Int. J. Mol. Sci. 2023, 24(5), 4745; https://doi.org/10.3390/ijms24054745 - 1 Mar 2023
Cited by 10 | Viewed by 3679
Abstract
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin [...] Read more.
Apelin is an endogenous ligand for the G protein-coupled receptor APJ and has multiple biological activities in human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. This article reviews the crucial role of apelin in regulating oxidative stress-related processes by promoting prooxidant or antioxidant mechanisms. Following the binding of APJ to different active apelin isoforms and the interaction with several G proteins according to cell types, the apelin/APJ system is able to modulate different intracellular signaling pathways and biological functions, such as vascular tone, platelet aggregation and leukocytes adhesion, myocardial activity, ischemia/reperfusion injury, insulin resistance, inflammation, and cell proliferation and invasion. As a consequence of these multifaceted properties, the role of the apelinergic axis in the pathogenesis of degenerative and proliferative conditions (e.g., Alzheimer’s and Parkinson’s diseases, osteoporosis, and cancer) is currently investigated. In this view, the dual effect of the apelin/APJ system in the regulation of oxidative stress needs to be more extensively clarified, in order to identify new potential strategies and tools able to selectively modulate this axis according to the tissue-specific profile. Full article
Show Figures

Figure 1

19 pages, 1435 KiB  
Review
IGF2: A Role in Metastasis and Tumor Evasion from Immune Surveillance?
by Antonino Belfiore, Rosaria Valentina Rapicavoli, Rosario Le Moli, Rosamaria Lappano, Andrea Morrione, Ernestina Marianna De Francesco and Veronica Vella
Biomedicines 2023, 11(1), 229; https://doi.org/10.3390/biomedicines11010229 - 16 Jan 2023
Cited by 39 | Viewed by 6289
Abstract
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of [...] Read more.
Insulin-like growth factor 2 (IGF2) is upregulated in both childhood and adult malignancies. Its overexpression is associated with resistance to chemotherapy and worse prognosis. However, our understanding of its physiological and pathological role is lagging behind what we know about IGF1. Dysregulation of the expression and function of IGF2 receptors, insulin receptor isoform A (IR-A), insulin growth factor receptor 1 (IGF1R), and their downstream signaling effectors drive cancer initiation and progression. The involvement of IGF2 in carcinogenesis depends on its ability to link high energy intake, increase cell proliferation, and suppress apoptosis to cancer risk, and this is likely the key mechanism bridging insulin resistance to cancer. New aspects are emerging regarding the role of IGF2 in promoting cancer metastasis by promoting evasion from immune destruction. This review provides a perspective on IGF2 and an update on recent research findings. Specifically, we focus on studies providing compelling evidence that IGF2 is not only a major factor in primary tumor development, but it also plays a crucial role in cancer spread, immune evasion, and resistance to therapies. Further studies are needed in order to find new therapeutic approaches to target IGF2 action. Full article
Show Figures

Figure 1

Back to TopTop