Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = inner cover thickness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 30309 KiB  
Article
Ultra-Widefield Retinal Optical Coherence Tomography (OCT) and Angio-OCT Using an Add-On Lens
by Bartosz L. Sikorski
Diagnostics 2025, 15(13), 1697; https://doi.org/10.3390/diagnostics15131697 - 3 Jul 2025
Viewed by 570
Abstract
Purpose: This study aims to evaluate the clinical utility of a prototype ultra-widefield (UWF) single-capture optical coherence tomography (OCT) lens developed to image large areas of the retina. Material and Methods: This study included OCT and angio-OCT measurements performed with a REVO FC [...] Read more.
Purpose: This study aims to evaluate the clinical utility of a prototype ultra-widefield (UWF) single-capture optical coherence tomography (OCT) lens developed to image large areas of the retina. Material and Methods: This study included OCT and angio-OCT measurements performed with a REVO FC 130 (Optopol Technology, Poland) with an add-on widefield lens in a case series of 215 patients with retinal pathologies and 39 healthy subjects. The imaging width provided by the lens was 22 mm (covering a 110-degree field of view), while the scanning window height ranged from 2.8 to 6 mm. Results: The quality of the peripheral UWF OCT and angio-OCT images obtained by REVO FC 130 with the attachable lens is very good and sufficient for patient diagnosis, follow-up, and treatment planning. Both the boundaries of the non-perfusion zones and the location and extent of vascular proliferations can be accurately traced. Furthermore, the vitreoretinal interface can also be accurately assessed over a large area. The imaging quality of the macula with UWF OCT angiography is also good. The mean thickness measurement difference between a UWF and a standard 10 mm 3D retinal scan in a healthy individuals for the Central ETDRS sector was −1.37 ± 2.96 µm (the 95% limits of agreement (LoA) on Bland–Altman plots ranged from −6.82 to 2.43); for the Inferior Inner sector, it was −2.81 ± 1.09 µm (95% LoA, −4.94 to −0.68); for the Inferior Outer sector, it was −1.31 ± 2.58 µm (95% LoA, −6.38 to 3.75); for the Nasal Inner sector: −1.46 ± 1.19 µm (95% LoA, −3.79 to 0.88); for the Nasal Outer sector, it was −0.56 ± 2.61 µm (95% LoA, −5.67 to 4.55); for the Superior Inner sector, it was −2.71 ± 3.16 µm (95% LoA, −8.91 to 3.48); for the Superior Outer sector, it was −1.82 ± 1.39 µm (95% LoA, −4.55 to 0.91); for the Temporal Inner sector, it was −1.77 ± 2.24 µm (95% LoA, −6.16 to 2.62); for the Temporal Outer sector, it was −3.61 ± 1.43 µm (95% LoA, −6.41 to −0.81). Discussion: The proposed method of obtaining UWF OCT and UWF angio-OCT images using an add-on lens with the REVO FC 130 gives high-quality scans over the entire 110-degree field of view. This study also shows a high agreement of the ETDRS sector’s thickness measurements between UWF and standard retinal scans, which allows UWF to be used for quantitative macular thickness analysis. Considering its image quality, simplicity, and reliability, an add-on lens can be successfully used for the UWF OCT and OCT angiography evaluation of the retina on a daily basis. Full article
(This article belongs to the Special Issue State of the Art in Retinal Optical Coherence Tomography Images)
Show Figures

Figure 1

16 pages, 8029 KiB  
Article
A Vermetid Bioconstruction at the Adriatic Coast of Apulia (Italy)
by Maria Mercurio, Isabella Coccia, Manuel Marra, Tamara Lazic, Giuseppe Corriero and Maria Flavia Gravina
Diversity 2025, 17(1), 49; https://doi.org/10.3390/d17010049 - 14 Jan 2025
Viewed by 935
Abstract
This study presents the first comprehensive data on a vermetid formation along the Apulian coast of the Adriatic Sea, representing one of the northernmost records in the Mediterranean. Surveys along the Brindisi coastline employed visual inspection to map the bioconstruction’s distribution and extension. [...] Read more.
This study presents the first comprehensive data on a vermetid formation along the Apulian coast of the Adriatic Sea, representing one of the northernmost records in the Mediterranean. Surveys along the Brindisi coastline employed visual inspection to map the bioconstruction’s distribution and extension. Detailed data on the bioconstruction inner and the outer edge length, thickness, width, slope and topographic complexity were collected at three selected sites. Moreover, photographic replicates were used to assess shell aperture density and diameters of Dendropoma sp. Associated fauna was studied using two quantitative sampling squares in each transect. The results showed that the vermetid bioconstruction consisted of a thin, encrusted monolayer (thickness < 1.5 cm) that extended for 3.273 linear kilometers, covering 17.23% of the investigated area; it had an average width of 0.5 m, with a mean density of Dendropoma sp. at 2.52 ind/cm2. The associated fauna was composed of 47 taxa dominated by crustaceans, mollusks and annelids. Species richness was correlated with the bioconstruction’s thickness and complexity. These findings underline the ecological importance of vermetid bioconstructions as biodiversity hotspots. The lack of massive mortality events along the Apulian coast, in contrast to other Mediterranean vermetid bioconstructions, underscores the necessity for targeted conservation measures. Full article
(This article belongs to the Special Issue Biodiversity and Ecology in the Mediterranean Sea)
Show Figures

Figure 1

25 pages, 12356 KiB  
Article
Efficient On-Board Compression for Arbitrary-Shaped Cloud-Covered Remote Sensing Images via Adaptive Filling and Controllable Quantization
by Keyan Wang, Jia Jia, Peicheng Zhou, Haoyi Ma, Liyun Yang, Kai Liu and Yunsong Li
Remote Sens. 2024, 16(18), 3431; https://doi.org/10.3390/rs16183431 - 15 Sep 2024
Cited by 1 | Viewed by 1261
Abstract
Due to the fact that invalid cloud-covered regions in remote sensing images consume a considerable quantity of coding bit rates under the limited satellite-to-ground transmission rate, existing image compression methods suffer from low compression efficiency and poor reconstruction quality, especially in cloud-free regions [...] Read more.
Due to the fact that invalid cloud-covered regions in remote sensing images consume a considerable quantity of coding bit rates under the limited satellite-to-ground transmission rate, existing image compression methods suffer from low compression efficiency and poor reconstruction quality, especially in cloud-free regions which are generally regarded as regions of interest (ROIs). Therefore, we propose an efficient on-board compression method for remote sensing images with arbitrary-shaped clouds by leveraging the characteristics of cloudy images. Firstly, we introduce two novel spatial preprocessing strategies, namely, the optimized adaptive filling (OAF) strategy and the controllable quantization (CQ) strategy. Specifically, the OAF strategy fills each cloudy region using the contextual information at its inner and outer edge to completely remove the information of cloudy regions and minimize their coding consumption, which is suitable for images with only thick clouds. The CQ strategy implicitly identifies thin and thick clouds and rationally quantifies the data in cloudy regions to alleviate information loss in thin cloud-covered regions, which can achieve the balance between coding efficiency and reconstructed image quality and is more suitable for images containing thin clouds. Secondly, we develop an efficient coding method for a binary cloud mask to effectively save the bit rate of the side information. Our method provides the flexibility for users to choose the desired preprocessing strategy as needed and can be embedded into existing compression framework such as JPEG2000. Experimental results on the GF-1 dataset show that our method effectively reduces the coding consumption of invalid cloud-covered regions and significantly improve the compression efficiency as well as the quality of decoded images. Full article
Show Figures

Figure 1

16 pages, 7108 KiB  
Article
Seismic Performance of Precast Steel Beam-Column Joint with Bolted Connection
by Yandan Chen, Yonggang Lu and Tong Liu
Buildings 2024, 14(8), 2588; https://doi.org/10.3390/buildings14082588 - 22 Aug 2024
Cited by 2 | Viewed by 2626
Abstract
This paper introduces a modular, assembled steel beam-column flange connection joint that efficiently connects prefabricated beams and columns using high-strength bolts. It enables the rapid repair of damaged joints after earthquakes by replacing flange connectors and high-strength bolt groups. Four joint specimens with [...] Read more.
This paper introduces a modular, assembled steel beam-column flange connection joint that efficiently connects prefabricated beams and columns using high-strength bolts. It enables the rapid repair of damaged joints after earthquakes by replacing flange connectors and high-strength bolt groups. Four joint specimens with varying thicknesses and lengths of the inner flange sleeve, scaled at a 1:2 ratio, were fabricated to evaluate performance. These specimens were subjected to low circumferential reciprocal loads to investigate damage modes, hysteresis curves, skeleton curves, ductility performance, energy dissipation capacity, and seismic performance, including stiffness degradation. The test and analysis results reveal that the primary failure mode is characterized by bulging of the flange jacket cover, with damage concentrated in the plastic hinge zone at the beam end. The flange connection joint exhibits excellent load-bearing, rotational, and energy dissipation capacities. The ‘secondary strengthening’ feature significantly enhances joint load-bearing capacity, ductility performance, and energy dissipation, increasing overall safety redundancy. Increasing the thickness and length of the flange connector substantially improves seismic performance and enlarges the plastic development area. Full article
(This article belongs to the Special Issue Advanced Research and Prospect of Buildings Seismic Performance)
Show Figures

Figure 1

15 pages, 3194 KiB  
Article
Axisymmetric Slow Rotation of Coaxial Soft/Porous Spheres
by Yu F. Chou and Huan J. Keh
Molecules 2024, 29(15), 3573; https://doi.org/10.3390/molecules29153573 - 29 Jul 2024
Cited by 1 | Viewed by 755
Abstract
The steady low-Reynolds-number rotation of a chain of coaxial soft spheres (each with an impermeable hard core covered by a permeable porous layer) about the axis in a viscous fluid is analyzed. The particles may be unequally spaced, and may differ in the [...] Read more.
The steady low-Reynolds-number rotation of a chain of coaxial soft spheres (each with an impermeable hard core covered by a permeable porous layer) about the axis in a viscous fluid is analyzed. The particles may be unequally spaced, and may differ in the permeability and inner and outer radii of the porous surface layer as well as angular velocity. By using a method of boundary collocation, the Stokes and Brinkman equations for the external fluid flow and flow within the surface layers, respectively, are solved semi-analytically. The particle interaction effect increases as the relative gap thickness between adjacent particles or their permeability decreases, which can be significant as the gap thickness approaches zero. A particle’s hydrodynamic torque is reduced (its rotation is enhanced) when other particles rotate in the same direction at equivalent or greater angular velocities, but increases (its rotation is hindered) when other particles rotate in the opposite direction at arbitrary angular velocities. For particles with different radii or permeabilities, the particle interaction has a greater effect on smaller or more permeable particles than on larger or less permeable particles. For the rotation of three particles, the presence of the third particle can significantly affect the hydrodynamic torques acting on the other two particles. For the rotation of numerous particles, shielding effects between particles can be substantial. When the permeability of porous layers is low, relative fluid motion is barely felt by the hard cores of the soft particles. The insights gained from this analysis on the effects of interactions among rotating soft particles may be of great importance in many physicochemical applications of colloidal suspensions. Full article
Show Figures

Figure 1

13 pages, 7452 KiB  
Article
Exploring Cellular Dynamics in the Goldfish Bulbus Arteriosus: A Multifaceted Perspective
by Doaa M. Mokhtar, Enas A. Abd-Elhafez, Marco Albano, Giacomo Zaccone and Manal T. Hussein
Fishes 2024, 9(6), 203; https://doi.org/10.3390/fishes9060203 - 29 May 2024
Cited by 2 | Viewed by 1408
Abstract
The bulbus arteriosus of goldfish, Carassius auratus, possesses unique structural features. The wall of the bulbus arteriosus is exceptionally thick, with an inner surface characterized by longitudinally arranged finger-like ridges, resulting in an uneven luminal appearance. These ridges are covered by endocardium [...] Read more.
The bulbus arteriosus of goldfish, Carassius auratus, possesses unique structural features. The wall of the bulbus arteriosus is exceptionally thick, with an inner surface characterized by longitudinally arranged finger-like ridges, resulting in an uneven luminal appearance. These ridges are covered by endocardium and encased in an amorphous extracellular matrix. The inner surface of the bulbus arteriosus also contains rodlet cells at different developmental stages, often clustered beneath the endothelium lining the bulbar lumen. Ruptured rodlet cells release their contents via a holocrine secretion process. The high abundance of rodlet cells in the bulbus arteriosus suggests that this is the site of origin for these cells. Within the middle layer of the bulbus arteriosus, smooth muscle cells, branched telocytes (TCs), and collagen bundles coexist. TCs and their telopodes form complex connections within a dense collagen matrix, extending to rodlet cells and macrophages. Moreover, the endothelium makes direct contact with telopodes. The endocardial cells within the bulbus arteriosus display irregular, stellate shapes and numerous cell processes that establish direct contact with TCs. TEM reveals that they contain moderately dense bodies and membrane-bound vacuoles, suggesting a secretory activity. TCs exhibit robust secretory activity, evident from their telopodes containing numerous secretory vesicles. Furthermore, TCs release excretory vesicles containing bioactive molecules into the extracellular matrix, which strengthens evidence for telocytes as promising candidates for cellular therapies and regeneration in various heart pathologies. Full article
Show Figures

Figure 1

11 pages, 2869 KiB  
Article
Evaluation of the Microbial Profile on the Polydioxanone Membrane and the Collagen Membrane Exposed to Multi-Species Subgingival Biofilm: An In Vitro Study
by Marcus Vinícius Cintra Moreira, Luciene C. Figueiredo, Marcelo Augusto Ruiz da Cunha Melo, Fabio Hideaki Uyeda, Lucas Daylor Aguiar da Silva, Tatiane Tiemi Macedo, Roberto Sacco, Carlos Fernando Mourão, Jamil A. Shibli and Bruno Bueno-Silva
Membranes 2023, 13(12), 907; https://doi.org/10.3390/membranes13120907 - 14 Dec 2023
Cited by 1 | Viewed by 2148
Abstract
Dehiscence in surgeries involving membranes often leads to bacterial contamination, hindering the healing process. This study assessed bacterial colonization on various membrane materials. Polydioxanone (PDO) membranes, with thicknesses of 0.5 mm and 1 mm, and a collagen membrane were examined. Packages containing polystyrene [...] Read more.
Dehiscence in surgeries involving membranes often leads to bacterial contamination, hindering the healing process. This study assessed bacterial colonization on various membrane materials. Polydioxanone (PDO) membranes, with thicknesses of 0.5 mm and 1 mm, and a collagen membrane were examined. Packages containing polystyrene pins were crafted using these membranes, attached to 24-well plates, and exposed to oral bacteria from supra and subgingival biofilm. After a week’s anaerobic incubation, biofilm formation was evaluated using the DNA–DNA hybridization test. Statistical analysis employed the Kruskal–Wallis test with Dunn’s post hoc test. The biofilm on the polystyrene pins covered by the 0.5 mm PDO membrane showed a higher count of certain pathogens. The collagen membrane had a greater total biofilm count on its inner surface compared to both PDO membranes. The external collagen membrane face had a higher total biofilm count than the 0.5 mm PDO membrane. Furthermore, the 1 mm PDO membrane exhibited a greater count of specific pathogens than its 0.5 mm counterpart. In conclusion, the collagen membrane presented more biofilm and pathogens both internally and on its inner surface. Full article
Show Figures

Figure 1

14 pages, 8114 KiB  
Article
The Ultimate Strength of Fully Transparent Pressure-Resistant Spherical Cabins
by Fang Wang, Youjie Li, Zhihao He, Bingxiong Zhao, Jinfei Zhang and Yu Wu
Appl. Sci. 2023, 13(22), 12229; https://doi.org/10.3390/app132212229 - 10 Nov 2023
Cited by 1 | Viewed by 1224
Abstract
The fully transparent cabin used in a manned submersible is typically made of the viscoelastic material polymethyl methacrylate (PMMA). The pressure-bearing capacity of a PMMA-manned cabin was investigated considering the effects of initial geometrical imperfections and large openings. Three types of cabins were [...] Read more.
The fully transparent cabin used in a manned submersible is typically made of the viscoelastic material polymethyl methacrylate (PMMA). The pressure-bearing capacity of a PMMA-manned cabin was investigated considering the effects of initial geometrical imperfections and large openings. Three types of cabins were studied within the failure mode of nonlinear buckling, including an intact spherical cabin, a spherical cabin with a single opening, and a spherical cabin with double openings. The initial geometrical imperfection ranges from 0.1% to 0.5% of the inner diameter. The ultimate strength decreasing tendency for the different types of cabins with increasing initial imperfection was obtained and the thickness of the hatch cover determined based on the principle of equivalence differed its effects on the strength of the cabin. The influence of the hatch cover stiffness was not linear and indicated the necessity of exploring the coordinated design between the PMMA shell and the metal hatch cover for the transparent cabin. Full article
Show Figures

Figure 1

17 pages, 17806 KiB  
Article
Corrosion Behaviors of Outdoor Bronze Sculptures in an Urban–Industrial Environment: Corrosion Experiment on Artificial Sulfide Patina
by Heehong Kwon and Namchul Cho
Metals 2023, 13(6), 1101; https://doi.org/10.3390/met13061101 - 11 Jun 2023
Cited by 11 | Viewed by 3928
Abstract
Copper alloys interact with air pollutants to form corrosion products and, consequently, a patina on outdoor bronze sculptures. In this study, corrosion experiments were conducted to clarify the corrosion behaviors of artificial sulfide patina in an urban–industrial environment on a quaternary bronze alloy [...] Read more.
Copper alloys interact with air pollutants to form corrosion products and, consequently, a patina on outdoor bronze sculptures. In this study, corrosion experiments were conducted to clarify the corrosion behaviors of artificial sulfide patina in an urban–industrial environment on a quaternary bronze alloy (Cu–Zn–Sn–Pb) with a composition and metallurgical properties similar to those of outdoor bronze sculptures. The correlation between the chromaticity and reflectance of the patina revealed increasing brochantite with the corrosion of the patina and an association between the chromaticity a* and patina growth. Cuprite and brochantite were distinguished, and the point at which brochantite covered the patina surface was determined. The quantitative changes in brochantite were mainly influenced by physical causes such as the crystal size and patina layer thickness as well as by Cu2+ ions working as color formation ions moving to the outermost layer. Atmospheric corrosion of the alloy resulted in reduced Cu and Zn contents and increased Sn and Pb contents. The patina consisted of brochantite in the outermost layer and cuprite and cassiterite in the inner layers. These findings should clarify corrosion characteristics such as the surface color, composition, and changes in corrosion products of outdoor bronze sculptures and contribute toward their preservation. Full article
(This article belongs to the Special Issue Metals for Art and Cultural Heritage)
Show Figures

Figure 1

16 pages, 3266 KiB  
Article
Multilayered Polyurethane/Poly(vinyl alcohol) Nanofibrous Mats for Local Topotecan Delivery as a Potential Retinoblastoma Treatment
by Radka Hobzova, Jakub Sirc, Kusum Shrestha, Barbora Mudrova, Zuzana Bosakova, Miroslav Slouf, Marcela Munzarova, Jan Hrabeta, Tereza Feglarova and Ana-Irina Cocarta
Pharmaceutics 2023, 15(5), 1398; https://doi.org/10.3390/pharmaceutics15051398 - 3 May 2023
Cited by 2 | Viewed by 3142
Abstract
Local chemotherapy using polymer drug delivery systems has the potential to treat some cancers, including intraocular retinoblastoma, which is difficult to treat with systemically delivered drugs. Well-designed carriers can provide the required drug concentration at the target site over a prolonged time, reduce [...] Read more.
Local chemotherapy using polymer drug delivery systems has the potential to treat some cancers, including intraocular retinoblastoma, which is difficult to treat with systemically delivered drugs. Well-designed carriers can provide the required drug concentration at the target site over a prolonged time, reduce the overall drug dose needed, and suppress severe side effects. Herein, nanofibrous carriers of the anticancer agent topotecan (TPT) with a multilayered structure composed of a TPT-loaded inner layer of poly(vinyl alcohol) (PVA) and outer covering layers of polyurethane (PUR) are proposed. Scanning electron microscopy showed homogeneous incorporation of TPT into the PVA nanofibers. HPLC-FLD proved the good loading efficiency of TPT (≥85%) with a content of the pharmacologically active lactone TPT of more than 97%. In vitro release experiments demonstrated that the PUR cover layers effectively reduced the initial burst release of hydrophilic TPT. In a 3-round experiment with human retinoblastoma cells (Y-79), TPT showed prolonged release from the sandwich-structured nanofibers compared with that from a PVA monolayer, with significantly enhanced cytotoxic effects as a result of an increase in the PUR layer thickness. The presented PUR-PVA/TPT-PUR nanofibers appear to be promising carriers of active TPT lactone that could be useful for local cancer therapy. Full article
(This article belongs to the Special Issue Advances in Ocular Drug Delivery)
Show Figures

Graphical abstract

19 pages, 3873 KiB  
Article
Mechanical Stability of the Heterogenous Bilayer Solid Electrolyte Interphase in the Electrodes of Lithium–Ion Batteries
by Yasir Ali, Noman Iqbal, Imran Shah and Seungjun Lee
Mathematics 2023, 11(3), 543; https://doi.org/10.3390/math11030543 - 19 Jan 2023
Cited by 3 | Viewed by 2721
Abstract
Mechanical stability of the solid electrolyte interphase (SEI) is crucial to mitigate the capacity fade of lithium–ion batteries because the rupture of the SEI layer results in further consumption of lithium ions in newly generated SEI layers. The SEI is known as a [...] Read more.
Mechanical stability of the solid electrolyte interphase (SEI) is crucial to mitigate the capacity fade of lithium–ion batteries because the rupture of the SEI layer results in further consumption of lithium ions in newly generated SEI layers. The SEI is known as a heterogeneous bilayer and consists of an inner inorganic layer connecting the particle and an outer organic layer facing the electrolyte. The growth of the bilayer SEI over cycles alters the stress generation and failure possibility of both the organic and inorganic layers. To investigate the probability of mechanical failure of the bilayer SEI, we developed the electrochemical-mechanical coupled model with the core–double-shell particle/SEI layer model. The growth of the bilayer SEI is considered over cycles. Our results show that during charging, the stress of the particle changes from tensile to compressive as the thickness of bilayer SEI increases. On the other hand, in the SEI layers, large compressive radial and tensile tangential stress are generated. During discharging, the compressive radial stress of the bilayer SEI transforms into tensile radial stress. The tensile tangential and radial stresses are responsible for the fracture and debonding of the bilayer SEI, respectively. As the thickness ratio of the inorganic to organic layers increases, the fracture probability of the inorganic layer increases, while that of the organic layer decreases. However, the debonding probability of both layers is decreased. In addition, the SEI covering large particles is more vulnerable to fracture, while that covering small particles is more susceptible to debonding. Therefore, tailoring the thickness ratio of the inorganic to organic layers and particle size is important to reduce the fracture and debonding of the heterogeneous bilayer SEI. Full article
Show Figures

Figure 1

27 pages, 15564 KiB  
Article
The Construction and Functional Technology of Scythian Greaves: A Recent Find from the Elite Kurgan 6 near the Village Vodoslavka, Southern Ukraine
by Sergei Polin and Marina Daragan
Arts 2023, 12(1), 18; https://doi.org/10.3390/arts12010018 - 18 Jan 2023
Cited by 4 | Viewed by 3621
Abstract
In the North Pontic region, bronze greaves appeared among the Scythians and noble members of the tribal world of the eastern European steppe in the middle of the fifth century BC and were used until the end of the fourth. Both the “classic” [...] Read more.
In the North Pontic region, bronze greaves appeared among the Scythians and noble members of the tribal world of the eastern European steppe in the middle of the fifth century BC and were used until the end of the fourth. Both the “classic” full-length Greek greaves and greaves without knee pads were in use. Surviving greaves and fragments thereof from different Scythian burials allow for analysis of the peculiarities of their construction. A distinct feature of the greaves from the burial in Barrow 6 near the village Vodoslavka, Ukraine, is a series of large openings made on the inner side of both greaves, in the area where the muscles of the calves protrude most prominently. These holes are covered (both from the inside and from the outside) with sewn-on pads made of thick leather. Similar holes can also be seen on the greaves from Kerch in eastern Crimea and were likely cut to make these greaves more suited for horse riding. The greaves from Soboleva Mogyla were additionally modified for horse riding in that the parts that covered the knees were shortened and the side parts had deep cuts (more than a half-height) on the inside of the calf muscles. Thanks to this cut, the rider’s leg (around the medial gastrocnemius in particular) fitted snugly to the horse’s side. Full article
Show Figures

Figure 1

26 pages, 10618 KiB  
Article
High-Sensitivity Slot-Loaded Microstrip Patch Antenna for Sensing Microliter-Volume Liquid Chemicals with High Relative Permittivity and High Loss Tangent
by Junho Yeo and Jong-Ig Lee
Sensors 2022, 22(24), 9748; https://doi.org/10.3390/s22249748 - 12 Dec 2022
Cited by 10 | Viewed by 3343
Abstract
This paper proposes a microwave sensor based on a high-sensitivity slot-loaded rectangular microstrip patch antenna (MPA) for measuring microliter-volume liquid chemicals with high relative permittivity and high loss tangent. A rectangular single-ring complementary split ring resonator (SR-CSRR) slot with a bottom-edge center split [...] Read more.
This paper proposes a microwave sensor based on a high-sensitivity slot-loaded rectangular microstrip patch antenna (MPA) for measuring microliter-volume liquid chemicals with high relative permittivity and high loss tangent. A rectangular single-ring complementary split ring resonator (SR-CSRR) slot with a bottom-edge center split (BCS) was inserted along the upper radiating edge of the patch to enhance the relative permittivity sensitivity of the MPA. The first resonant frequency of the proposed SR-CSRR-BCS slot-loaded MPA showed the highest sensitivity compared to the resonant frequencies of the MPAs with other commonly used slots for varying the relative permittivity of the planar substrate type material under test from 1 to 10 when placed above the patch. After designing the scaled SR-CSRR-BCS slot-loaded MPA with the unloaded first resonant frequency at 2.5 GHz, a hollow acrylic cylindrical liquid container with an inner volume of approximately 18.6 μL was placed at the top-edge center of the SR-CSRR-BCS slot to achieve maximum sensitivity. A quarter-wavelength transformer was applied between the patch and the feed line of the MPA to improve the impedance mismatch that occurs when liquid chemicals with a high loss tangent are placed in the container. Water, methanol, and ethanol were carefully selected for test liquids to cover a broad range of relative permittivity and high loss tangents. The proposed SR-CSRR-BCS slot-loaded MPA was designed and fabricated on a 0.76 mm-thick RF-35 substrate, and a reference RS-loaded MPA was designed and fabricated for comparison. The shift in the first resonant frequency of the input reflection coefficient characteristic was used for the sensitivity comparison, and the container was filled with 15 μL of the liquids at 25 °C. The measured sensitivity (%) of the proposed SR-CSRR-BCS slot-loaded MPA for water was 0.45%, which was higher than other antenna-based microwave sensors in the literature. Full article
(This article belongs to the Special Issue Wireless Chemical and Biosensing Devices)
Show Figures

Figure 1

16 pages, 4786 KiB  
Article
Electrochemical Deposition of Ferromagnetic Ni Nanoparticles in InP Nanotemplates Fabricated by Anodic Etching Using Environmentally Friendly Electrolyte
by Călin Constantin Moise, Geanina Valentina Mihai, Liana Anicăi, Eduard V. Monaico, Veaceslav V. Ursaki, Marius Enăchescu and Ion M. Tiginyanu
Nanomaterials 2022, 12(21), 3787; https://doi.org/10.3390/nano12213787 - 27 Oct 2022
Cited by 4 | Viewed by 1830
Abstract
Porous InP templates possessing a thickness of up to 100 µm and uniformly distributed porosity were prepared by anodic etching of InP substrates exhibiting different electrical conductivities, involving an environmentally friendly electrolyte. Ni nanoparticles were successfully directly deposited by pulsed electroplating into prefabricated [...] Read more.
Porous InP templates possessing a thickness of up to 100 µm and uniformly distributed porosity were prepared by anodic etching of InP substrates exhibiting different electrical conductivities, involving an environmentally friendly electrolyte. Ni nanoparticles were successfully directly deposited by pulsed electroplating into prefabricated InP templates without any additional deposition of intermediary layers. The parameters of electrodeposition, including the pulse amplitude, pulse width and interval between pulses, were optimized to reach a uniform metal deposition covering the inner surface of the nanopores. The electrochemical dissolution of n-InP single crystals was investigated by measuring the current–voltage dependences, while the Ni-decorated n-InP templates have been characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The proposed technology is expected to be of interest for sensing and photocatalytic applications, as well as for the exploration of their plasmonic and magnetic properties. Full article
(This article belongs to the Special Issue Design, Fabrication and Applications of Nanoporous Materials)
Show Figures

Figure 1

16 pages, 5180 KiB  
Article
Optical and Mechanical Properties of Layered Infrared Interference Filters
by Michał Bembenek, Mykola Makoviichuk, Ivan Shatskyi, Liubomyr Ropyak, Igor Pritula, Leonid Gryn and Volodymyr Belyakovskyi
Sensors 2022, 22(21), 8105; https://doi.org/10.3390/s22218105 - 22 Oct 2022
Cited by 27 | Viewed by 2758
Abstract
The design and manufacturing technology of interference-absorbing short-wave filters based on a layered composition of Si–SiO on a sapphire substrate of various shapes was developed. A transition layer of SiO was applied to the surface of the substrate, alternating with layers of Si–SiO [...] Read more.
The design and manufacturing technology of interference-absorbing short-wave filters based on a layered composition of Si–SiO on a sapphire substrate of various shapes was developed. A transition layer of SiO was applied to the surface of the substrate, alternating with layers of Si–SiO with an odd number of quarter-wave layers of materials with high (Si) and low refractive indices (SiO), and the application of an outer layer of SiO as an appropriate control of the materials’ thickness. The optical properties of the infrared light filter were studied. It was established that the created design of the light filter provides the minimum light transmission in the visible region of the spectrum from 0.38 to 0.78 µm and the maximum in the near infrared region from 1.25 to 5 µm and has stable optical indicators. A method for studying the stress–strain state and strength of a multilayer coating of a light filter under the action of a local arbitrarily oriented load was developed. For simplicity in the analysis and for obtaining results in the analytical form, the one-dimensional model of the configuration “multilayer covering—firm substrate” constructed earlier by authors was used. From a mechanical point of view, the upper protective layer of the multilayer coating was modeled by a flexible plate, and the inner operational composite N-layer was subjected to Winkler’s hypothesis about the proportionality of stresses and elastic displacements. Full article
(This article belongs to the Special Issue Temperature Sensors 2021-2023)
Show Figures

Figure 1

Back to TopTop