Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,775)

Search Parameters:
Keywords = inhibited replication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3285 KB  
Article
Kv7 Channels as an Important Contributor to Alcohol-Induced Modulation of Neuronal Excitability in Neonatal Rat Superior Cervical Ganglion
by Da-Jeong Jeong, Jin-Nyeong Woo, Tery Yun, Myungin Baek and Byung-Chang Suh
Cells 2025, 14(21), 1723; https://doi.org/10.3390/cells14211723 (registering DOI) - 1 Nov 2025
Abstract
Normal alcohols (n-alcohols) exhibit contrasting effects on neuronal excitability; specifically, ethanol enhances neuronal firing, while hexanol suppresses it. Both compounds are known to inhibit sodium currents, yet the mechanisms behind their differing effects remain unclear. Our previous studies demonstrated that Kv7 [...] Read more.
Normal alcohols (n-alcohols) exhibit contrasting effects on neuronal excitability; specifically, ethanol enhances neuronal firing, while hexanol suppresses it. Both compounds are known to inhibit sodium currents, yet the mechanisms behind their differing effects remain unclear. Our previous studies demonstrated that Kv7 channels are modulated differently by alcohol chain length, prompting investigation into their role in these contrasting effects. We conducted whole-cell patch clamp recordings on neonatal (P5-P7) rat superior cervical ganglion neurons to assess alcohol impacts on action potential firing and ionic currents, utilizing tetrodotoxin (TTX), XE991, and retigabine (RTG). Ethanol (100 mM) increased action potential frequency, whereas hexanol (3 mM) decreased it, despite both inhibiting sodium currents by 12% and 45%, respectively. Notably, ethanol inhibited Kv7 currents by 16%, while hexanol enhanced them by 29%. TTX alone did not affect firing frequency until sodium current inhibition exceeded 76%, indicating moderate sodium channel blockade cannot fully explain the effects of alcohol. XE991 increased firing frequency and depolarized the resting membrane potential, while retigabine produced opposite effects. The combination of TTX with Kv7 modulators replicated the effects observed with each alcohol. These findings suggest Kv7 channel modulation plays an important role in the chain length-dependent effects of alcohol on neuronal excitability. Full article
Show Figures

Figure 1

15 pages, 2074 KB  
Article
Antiviral Activity of Essential Oils Against Avian Influenza Virus H7N3 In Vitro and In Ovo Models
by Inkar Castellanos-Huerta, Jaime A. Ángel-Isaza, Lucio Bacab-Cab, Kevin Yam-Trujillo, Alejandro Aranda, Sindi Alejandra Velandia-Cruz, Loufrantz Mendez, Victor M. Petrone-Garcia, Guadalupe Ayora-Talavera and Álvaro José Uribe
Viruses 2025, 17(11), 1464; https://doi.org/10.3390/v17111464 (registering DOI) - 31 Oct 2025
Abstract
The poultry industry is continually seeking efficient, practical strategies to control infectious diseases. Among these new alternatives are essential oils (EOs), naturally occurring compounds with antimicrobial properties. Their effectiveness has been demonstrated in various studies that focus on their broad antiviral properties. The [...] Read more.
The poultry industry is continually seeking efficient, practical strategies to control infectious diseases. Among these new alternatives are essential oils (EOs), naturally occurring compounds with antimicrobial properties. Their effectiveness has been demonstrated in various studies that focus on their broad antiviral properties. The present experiment evaluated the antiviral efficacy of an EOs formulation against the H7N3 subtype of avian influenza virus (AIV) by directly mixing virus and EOs (virus/EOs mixture) through an in vitro model in cultured Madin-Darby canine kidney cells (MDCKs). The experiment used a focus reduction neutralization test (FRNT) to determine the 50% inhibitory concentration (IC50) by virus/EOs mixture, as well as the application of EOs 24 h before infection, through a viral inhibition test using a chicken embryo (CE) in ovo model. The results demonstrated the antiviral activity of the EOs formulation against the H7N3 in vitro model (IC50 values of 20.4 and 38.3 ppm and selective index (SI) values of 9.4 and 5.1) and in ovo model (decreasing hemagglutination titers to 1 HA unit, 105.28 embryo infectious dose 50% (EID50) per mL, and viral loads to approximately 1011.4 copies/mL) when applied in CE, 24 h before viral infection, representing the lowest replication indicators recorded during the experiment. According to the results, the EOs formulation demonstrated antiviral activity against AIV H7N3 both as a virus/EOs mixture and through application in ovo 24 h before infection. Application 24 h before infection in CE showed a significant effect compared with the virus/EOs mixture, demonstrating an antiviral effect in the ovo infection model. This study demonstrates both the virucidal and antiviral capacity of the compounds in the EOs formulation against AIV H7N3 and their efficacy when applied 24 h before infection in the in ovo model. Full article
(This article belongs to the Special Issue Antiviral Agents to Influenza Virus 2025)
26 pages, 714 KB  
Review
Lumpy Skin Disease Virus Pathogenesis: Viral Protein Functions and Comparative Insights from Vaccinia Virus
by Huan Chen, Ruiyu Zhai, Chang Cai, Xiaojie Zhu, Yong-Sam Jung and Yingjuan Qian
Animals 2025, 15(21), 3176; https://doi.org/10.3390/ani15213176 (registering DOI) - 31 Oct 2025
Abstract
Lumpy Skin Disease Virus (LSDV), a member of the poxvirus family, represents a significant threat to global cattle industries. This review presents an analysis of LSDV-encoded proteins and their interactions with host systems, elucidating the molecular mechanisms governing viral life cycle progression and [...] Read more.
Lumpy Skin Disease Virus (LSDV), a member of the poxvirus family, represents a significant threat to global cattle industries. This review presents an analysis of LSDV-encoded proteins and their interactions with host systems, elucidating the molecular mechanisms governing viral life cycle progression and immune evasion strategies. We provide detailed characterization of the complex architecture of LSDV virions, including Intracellular Mature Virus (IMV), Extracellular Enveloped Virus (EEV), lateral bodies, and the core components, while summarizing the crucial functions of viral proteins throughout various stages of infection—entry, replication, transcription, translation, assembly, and egress. Particular attention is given to the immunomodulatory strategies employed by LSDV to subvert both innate and adaptive immune responses. These mechanisms encompass molecular mimicry of cytokines and chemokines, interference with antigen presentation pathways, inhibition of key immune signaling cascades, and modulation of apoptosis and autophagy processes. Through comparative analysis with homologs from related poxviruses, especially vaccinia virus, we highlight both evolutionarily conserved functions and potential unique adaptations in LSDV proteins. This review further identifies critical knowledge gaps in current understanding and proposes promising research directions. We emphasize that integrating multi-omics approaches with structural biology will be essential for advancing our understanding of LSDV pathogenesis and for developing novel preventive and therapeutic strategies against this important animal pathogen. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

35 pages, 4438 KB  
Review
Camptothecin in Cancer Therapy: Current Challenges and Emerging Strategies with Nanoemulsions
by Heber Uriel Pérez-Ortega, Rubén Ricardo Córdova-Espíritu, Sebastian Cano-Serrano, Eduardo García-González, Micael Gerardo Bravo-Sánchez, Ma. del Carmen Orozco-Mosqueda, Hugo Jiménez-Islas, Gabriel Luna-Bárcenas and Francisco Villaseñor-Ortega
Pharmaceutics 2025, 17(11), 1414; https://doi.org/10.3390/pharmaceutics17111414 (registering DOI) - 31 Oct 2025
Abstract
Camptothecin (CPT) is a natural alkaloid with potent antiproliferative activity, mediated by the inhibition of Topoisomerase I (Topo I), an essential enzyme for deoxyribonucleic acid (DNA) replication. However, its clinical application has been limited by low solubility and the instability of the lactone [...] Read more.
Camptothecin (CPT) is a natural alkaloid with potent antiproliferative activity, mediated by the inhibition of Topoisomerase I (Topo I), an essential enzyme for deoxyribonucleic acid (DNA) replication. However, its clinical application has been limited by low solubility and the instability of the lactone ring under physiological conditions, both of which decrease its efficacy. Semi-synthetic analogs such as irinotecan (CPT-11) and topotecan (TPT) have been developed and approved for the treatment of various types of cancer; however, challenges related to drug resistance and side effects continue to arise. Therefore, nanomedicine and nanoparticle-based delivery systems, including nanoemulsions, liposomes, and antibody–drug conjugates (ADCs), emerge as promising strategies to improve the stability, bioavailability, and effectiveness of CPT, despite significant challenges such as scalability, pharmacokinetic variability, and regulatory requirements. This review discusses recent advances in CPT, its analogs, and these delivery platforms, highlighting its potential to optimize cancer therapy and reduce toxicity while outlining translational challenges such as scalability, pharmacokinetic variability, and regulatory requirements. Full article
Show Figures

Figure 1

20 pages, 5991 KB  
Article
Combinative Treatment of the PARP Inhibitor Olaparib and Antimetastasis Ruthenium(II)–Arene Compound RAPTA-T for Triple-Negative BRCA1 Wild-Type Breast Cancer Cells
by Adisorn Ratanaphan
Int. J. Mol. Sci. 2025, 26(21), 10613; https://doi.org/10.3390/ijms262110613 (registering DOI) - 31 Oct 2025
Viewed by 16
Abstract
To date, breast cancer remains one of the leading causes of death among women worldwide. Although various treatments are used in clinical settings, the efficacy and safety of such treatments are limited by tumor biology factors and patient preferences. Previous studies have shown [...] Read more.
To date, breast cancer remains one of the leading causes of death among women worldwide. Although various treatments are used in clinical settings, the efficacy and safety of such treatments are limited by tumor biology factors and patient preferences. Previous studies have shown that triple-negative BRCA1-deficient breast cancer is susceptible to DNA-damaging agents, including platinum-based drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, alone or in combination. To address whether the combinative treatment of these DNA-damaging agents can be extended to the triple-negative BRCA1-proficient breast cancer population, we investigated the anticancer activity of the well-known FDA-approved PARP inhibitor olaparib in combination with the antimetastatic ruthenium(II)–arene PTA compound RAPTA-T for triple-negative BRCA1-competent breast cancer cells (MDA-MB-468 and MDA-MB-231), with consideration of sporadic breast cancer MCF-7 cells. RAPTA-T, olaparib, and the combined agents exhibited a dose-dependent inhibition of breast cancer cell growth in selected breast cancer cells. The combination compound inhibited colony formation most effectively in MDA-MB-468 cells. Additionally, the scratch-wound assay showed that MDA-MB-468 cells migrated more slowly than MCF-7 and MDA-MB-231 cells. The results indicated that the olaparib and RAPTA-T combination can reduce or inhibit the survival, invasion, and metastasis of breast cancer cells. Moreover, the combined agents promoted apoptotic cell death, with a higher percentage of apoptosis observed in MDA-MB-468 cells than in MDA-MB-231 and MCF-7 cells. Olaparib and RAPTA-T also interfered with cell cycle progression, with the greatest inhibition observed in the S and G2/M phases of MCF-7 cells (1.6- and 3.4-fold), followed by MDA-MB-468 cells (1.6- and 1.8-fold) and MDA-MB-231 cells (1.5- and 1.4-fold). Interestingly, MDA-MB-468 cells presented the highest degree of inhibition for BRCA1 replication and BRCA1 expression. The p53, PARP, and Chk1 proteins were more strongly upregulated in MDA-MB-231 cells than in Ru-untreated control cells. Moreover, the expression levels of protein biomarkers associated with the epithelial-to-mesenchymal transition (EMT), including E-cadherin and SLUG, were remarkably reduced in all tested breast cancer cells. Together, our results show the feasibility of extending the application of PARP inhibitors beyond breast cancer with BRCA1 mutations and optimizing the combinative treatment of PARP inhibitors with antimetastasis ruthenium-based chemotherapy as new therapeutic approaches for TNBC harboring wild-type BRCA1. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

18 pages, 3703 KB  
Article
Inhibitory Effect of Transfer Factor on Avian Reticuloendotheliosis Virus Infection in Chicks
by Xinli Wang, Mengyu Song, Qingyue Wu, Zhihao Ren, Wenping Cui, Yixin Wang, Shuang Chang and Peng Zhao
Vet. Sci. 2025, 12(11), 1041; https://doi.org/10.3390/vetsci12111041 - 31 Oct 2025
Viewed by 130
Abstract
Reticuloendotheliosis virus (REV) has multiple transmission routes and can induce severe immunosuppression upon infection. Three application scenarios were set up to explore transfer factor’s (TF’s) potential in controlling REV. These scenarios involved using TF in chicks infected with REV during incubation, in 1-day-old [...] Read more.
Reticuloendotheliosis virus (REV) has multiple transmission routes and can induce severe immunosuppression upon infection. Three application scenarios were set up to explore transfer factor’s (TF’s) potential in controlling REV. These scenarios involved using TF in chicks infected with REV during incubation, in 1-day-old chicks post-infection, and in chicks prior to REV infection. The application value of TF in controlling REV was evaluated based on various indices, including weight gain, organ development, and virus replication. The results all indicate that the use of TF could effectively alleviate the developmental delay, hepatomegaly, and thymic atrophy caused by REV infection through different routes, as well as significantly reduce the mortality rate. It could also effectively inhibit REV replication in vivo and cloacal virus shedding. Notably, TF had apparent advantages in inhibiting cloacal virus shedding through the egg in the chicks infected with REV. The functions of TF are dose-dependent, where increasing the dose or frequency of use is beneficial for enhancing its effect. This study observed the role of TF in controlling REV infection under different application scenarios, providing necessary auxiliary means to reduce the harm of REV infection. Full article
Show Figures

Figure 1

23 pages, 1776 KB  
Article
Cannabinoid Receptor Type 2 Agonist JWH-133 Stimulates Antiviral Factors and Decreases Proviral, Inflammatory, and Neurotoxic Proteins in HIV-Infected Macrophage Secretome
by Lester J. Rosario-Rodríguez, Yadira M. Cantres-Rosario, Ana E. Rodríguez De Jesús, Alana M. Mera-Pérez, Eduardo L. Tosado-Rodríguez, Abiel Roche Lima and Loyda M. Meléndez
Int. J. Mol. Sci. 2025, 26(21), 10596; https://doi.org/10.3390/ijms262110596 - 30 Oct 2025
Viewed by 178
Abstract
Although antiviral therapy has improved quality of life, around 50% of people with HIV (PWH) experience neurodegeneration and cognitive decline. This is prompted in part by the migration of HIV-infected monocyte-derived macrophages (MDMs) to the brain, leading to neuronal death. Previous studies in [...] Read more.
Although antiviral therapy has improved quality of life, around 50% of people with HIV (PWH) experience neurodegeneration and cognitive decline. This is prompted in part by the migration of HIV-infected monocyte-derived macrophages (MDMs) to the brain, leading to neuronal death. Previous studies in our lab have shown that HIV-infected MDMs secrete cathepsin B (CATB), which is a pro-inflammatory neurotoxic enzyme that is reduced by the addition of cannabinoid receptor-2 (CB2R) agonist JWH-133 to cell cultures. In this study, we aimed to identify the proteins secreted (secretome) by HIV-infected macrophages exposed to JWH-133 and quantify them using tandem mass tag (TMT) mass spectrometry. Frozen 13-day MDM supernatants from (1) an MDM negative control; (2) HIV+MDM, and (3) HIV+MDM-JWH-133 were compared in triplicate by mass spectrometry (LC/MS/MS) and analyzed for protein identification. Subsequently, the same samples were labeled by TMT labeling and quantified by LC/MS/MS. After a database search, 528 proteins were identified from all groups. Thereafter, proteins with more than three unique peptides and more than 10% coverage were selected for protein identification. Venn diagrams revealed one unique protein secreted by MDM-HIV, 10 unique proteins in HIV+MDM-JWH-133, and 15 common proteins in the three groups. CATB was unique to HIV+MDM. HIV+MDM exposed to JWH-133 showed proteins related to metabolism, cell organization, antiviral activity, and stress response. TMT analysis revealed 1454 proteins with abundance for statistical analysis based on FC ≥ |1.5| and p-value ≤ 0.05, of which Ruvb-like 1 and Hornerin decreased significantly with JWH-133 treatment. Both proteins stimulate HIV replication. In addition, HIV infection upregulated proteins associated with pathways of viral latency that were inhibited by JWH-133. In conclusion, JWH-133 treatment in HIV-infected macrophages leads to the secretion of antiviral host factors and decreases the secretion of proviral, inflammatory, and neurotoxic host factors. Full article
Show Figures

Figure 1

33 pages, 5710 KB  
Review
Beyond Processing: Furin as a Central Hub in Viral Pathogenesis and Genetic Susceptibility
by Adrián Alejandro Silva-Ríos, Carlos Ernesto Mora-Ornelas, Luna Galilea Flores-Medina, José Francisco Muñoz-Valle, Carlos Daniel Díaz-Palomera, Mariel García-Chagollan, Alexis Missael Vizcaíno-Quirarte and Oliver Viera-Segura
Biomolecules 2025, 15(11), 1530; https://doi.org/10.3390/biom15111530 - 30 Oct 2025
Viewed by 261
Abstract
Furin, a calcium-dependent serine endoprotease of the proprotein convertase family, plays a pivotal role in both physiological homeostasis and viral pathogenesis. By cleaving polybasic motifs within viral glycoproteins, furin enables the maturation of structural proteins essential for viral entry, fusion, and replication. This [...] Read more.
Furin, a calcium-dependent serine endoprotease of the proprotein convertase family, plays a pivotal role in both physiological homeostasis and viral pathogenesis. By cleaving polybasic motifs within viral glycoproteins, furin enables the maturation of structural proteins essential for viral entry, fusion, and replication. This mechanism has been documented across a broad spectrum of human pathogens, including SARS-CoV-2, influenza virus, human immunodeficiency virus, human papilloma virus, hepatitis B virus, flaviviruses, herpesviruses, and paramyxoviruses, highlighting furin as a conserved molecular hub in host–virus interactions. Genetic variability within the FURIN gene further modulates infection outcomes. Several single-nucleotide polymorphisms (SNPs), such as rs6226 and rs1981458, are associated with altered COVID-19 severity, whereas variants like rs17514846 confer protection against human papilloma virus infection. Conversely, mutations predicted to reduce enzymatic activity have been linked to attenuated SARS-CoV-2 pathogenesis in certain populations. These findings underscore the importance of considering population genetics when evaluating viral susceptibility and disease progression. Despite advances, unresolved questions remain regarding furin’s non-canonical roles in viral life cycles, tissue-specific regulation, and interactions with other host proteases and immune modulators. Targeted inhibition of furin and related convertases represents a promising avenue for broad-spectrum antiviral interventions. Collectively, current evidence positions furin as a central node at the intersection of viral pathogenesis, host genetic variability, and translational therapeutic potential. Full article
(This article belongs to the Section Enzymology)
Show Figures

Figure 1

21 pages, 4067 KB  
Article
HDAC5 Inhibition as a Therapeutic Strategy for Titin Deficiency-Induced Cardiac Remodeling: Insights from Human iPSC Models
by Arif Ul Hasan, Sachiko Sato, Mami Obara, Yukiko Kondo and Eiichi Taira
Medicines 2025, 12(4), 26; https://doi.org/10.3390/medicines12040026 - 27 Oct 2025
Viewed by 187
Abstract
Background/Objectives: Dilated cardiomyopathy (DCM) is a prevalent and life-threatening heart muscle disease often caused by titin (TTN) truncating variants (TTNtv). While TTNtvs are the most common genetic cause of heritable DCM, the precise downstream regulatory mechanisms linking TTN [...] Read more.
Background/Objectives: Dilated cardiomyopathy (DCM) is a prevalent and life-threatening heart muscle disease often caused by titin (TTN) truncating variants (TTNtv). While TTNtvs are the most common genetic cause of heritable DCM, the precise downstream regulatory mechanisms linking TTN deficiency to cardiac dysfunction and maladaptive fibrotic remodeling remain incompletely understood. This study aimed to identify key epigenetic regulators of TTN-mediated gene expression and explore their potential as therapeutic targets, utilizing human patient data and in vitro models. Methods: We analyzed RNA sequencing (RNA-seq) data from left ventricles of non-failing donors and cardiomyopathy patients (DCM, HCM, PPCM) (GSE141910). To model TTN deficiency, we silenced TTN in human iPSC-derived cardiomyocytes (iPSC-CMs) and evaluated changes in cardiac function genes (MYH6, NPPA) and fibrosis-associated genes (COL1A1, COL3A1, COL14A1). We further tested the effects of TMP-195, a class IIa histone deacetylase (HDAC) inhibitor, and individual knockdowns of HDAC4/5/7/9. Results: In both human patient data and the TTN knockdown iPSC-CM model, TTN deficiency suppressed MYH6 and NPPA while upregulating fibrosis-associated genes. Treatment with TMP-195 restored NPPA and MYH6 expression and suppressed collagen genes, without altering TTN expression. Among the HDACs tested, HDAC5 knockdown was most consistently associated with improved cardiac markers and reduced fibrotic gene expression. Co-silencing TTN and HDAC5 replicated these beneficial effects. Furthermore, the administration of TMP-195 enhanced the modulation of NPPA and COL1A1, though its impact on COL3A1 and COL14A1 was not similarly enhanced. Conclusions: Our findings identify HDAC5 as a key epigenetic regulator of maladaptive gene expression in TTN deficiency. Although the precise mechanisms remain to be clarified, the ability of pharmacological HDAC5 inhibition with TMP-195 to reverse TTN-deficiency-induced gene dysregulation highlights its promising translational potential for TTN-related cardiomyopathies. Full article
Show Figures

Graphical abstract

30 pages, 3105 KB  
Article
Sumac Polyphenols as Pan-Herpesvirus Inhibitors
by Shavkat I. Salikhov, Yuliya I. Oshchepkova, Jamolitdin F. Ziyavitdinov, Jamshid M. Ashurov, Nodir S. Berdiev, Mikhail S. Kolundin, Akhmed O. Gaidarov, Ali S. Turgiev, Kirill I. Yurlov, Victor F. Larichev, Irina T. Fedyakina, Valeria L. Andronova, Natalia E. Fedorova, Alla A. Kushch, Alexander V. Ivanov and Eduard V. Karamov
Int. J. Mol. Sci. 2025, 26(21), 10398; https://doi.org/10.3390/ijms262110398 - 26 Oct 2025
Viewed by 345
Abstract
Pandemic preparedness is a complex of threat-agnostic countermeasures developed in advance which would be efficient against a future outbreak regardless of its causative agent, and broad-spectrum antivirals constitute a critical component of this complex. Plant polyphenols are known to suppress viruses of unrelated [...] Read more.
Pandemic preparedness is a complex of threat-agnostic countermeasures developed in advance which would be efficient against a future outbreak regardless of its causative agent, and broad-spectrum antivirals constitute a critical component of this complex. Plant polyphenols are known to suppress viruses of unrelated families by acting on multiple viral and cellular structures. We therefore searched for broad-spectrum antivirals among polyphenols that have been confirmed as safe to humans. The ellagitannin geraniin and galloylglucose constituents of the drug Rutan (1,2,3,4,6-penta-O-galloyl-β-D-glucose [R5], 3-bis-O-galloyl-1,2,4,6-tetra-O-galloyl-β-D-glucose [R6], 2,4-bis-O-galloyl-1,3,6-tri-O-galloyl-β-D-glucose [R7], 2,3,4-bis-O-galloyl-1,6-di-O-galloyl-β-D-glucose [R8]) were isolated from Geranium sanguineum and sumac (Rhus coriaria), respectively. We revealed their activity towards herpes simplex viruses (HSV-1 and HSV-2), human cytomegalovirus (CMV), and the Epstein–Barr virus (EBV). R5 suppressed HSV-1 and HSV-2 with equal efficiency, while Rutan and R7 were more active against HSV-1, and geraniin against HSV-2. Rutan and R5 also inhibited the intracellular replication of CMV and EBV (contrary to our expectations, geraniin and polyphenols R6–R8 showed no activity). Thus, we have shown for the first time that sumac polyphenols are capable of suppressing—in addition to HIV, influenza virus, and SARS-CoV-2—the reproduction of representatives of all three Orthoherpesviridae subfamilies, meeting the criteria for further development as broad-spectrum antivirals. Full article
(This article belongs to the Special Issue Molecular View of Natural Products with Antiviral Effects)
Show Figures

Figure 1

13 pages, 845 KB  
Article
Characterization of the SARS-CoV-2 Mutation Pattern Generated In Vitro by the Antiviral Action of Lycorine
by Silvina Soledad Maidana, Sonia Alejandra Romera, Ana Marandino, Rocío Lucia Tau, Juan Mauel Shammas, Yanina Panzera and Ruben Pérez
COVID 2025, 5(11), 181; https://doi.org/10.3390/covid5110181 - 23 Oct 2025
Viewed by 224
Abstract
SARS-CoV-2 persists worldwide, driving the demand for effective antivirals that inhibit replication and limit the emergence of resistant variants. Lycorine, a non-nucleoside inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase, exhibits antiviral activity without direct mutagenic effects. Here, we examine the occurrence of single-nucleotide variants [...] Read more.
SARS-CoV-2 persists worldwide, driving the demand for effective antivirals that inhibit replication and limit the emergence of resistant variants. Lycorine, a non-nucleoside inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase, exhibits antiviral activity without direct mutagenic effects. Here, we examine the occurrence of single-nucleotide variants (SNVs) and insertions/deletions (indels) in SARS-CoV-2 B.1.499 strain during serial passages in Vero cells, comparing lycorine-treated cultures (2.5 and 5 µg/mL) with untreated controls. Whole-genome sequencing was used to assess mutation patterns and frequencies. Lycorine-treated passages displayed greater variant diversity than controls, with fixed mutations mainly affecting non-structural proteins (Nsp3-F1375A, Nsp5-L50F, and Nsp14-G265D) and the envelope protein (E-S6L). A 15-nucleotide deletion in the spike gene (QTQTN motif) occurred in both groups but became fixed only in untreated passages, suggesting negative selection under lycorine pressure. Notably, the L50F mutation in Nsp5, previously linked to nirmatrelvir resistance, was found exclusively in lycorine-treated passages. Additionally, a 1-nucleotide deletion in the accessory gene ORF8, detected only under lycorine treatment, resulted in a frameshift mutation that added four amino acids, potentially altering the protein’s function. Overall, lycorine induces a distinct mutation profile, favoring replication-related variants while suppressing deleterious deletions. These findings suggest potential mechanisms of cross-resistance and highlight the importance of monitoring resistance during clinical use. Full article
Show Figures

Figure 1

33 pages, 3225 KB  
Article
Discovery of N-Hydroxypyridinedione-Based Inhibitors of HBV RNase H: Design, Synthesis, and Extended SAR Studies
by Dea Chotzalli, Vasiliki Pardali, Holly M. Walden, Dimitrios Perivolaris, Dimitrios Moianos, Maria Makri, Antonios Drakopoulos, Erofili Giannakopoulou, Razia Tajwar, Molly E. Woodson, John E. Tavis and Grigoris Zoidis
Int. J. Mol. Sci. 2025, 26(20), 10239; https://doi.org/10.3390/ijms262010239 - 21 Oct 2025
Viewed by 433
Abstract
Hepatitis B Virus (HBV) continues to pose a significant global health challenge, with over 254 million chronic infections and current therapies being non-curative, necessitating lifelong treatment. The HBV ribonuclease H (RNase H) is essential during HBV reverse transcription by cleaving the viral pregenomic [...] Read more.
Hepatitis B Virus (HBV) continues to pose a significant global health challenge, with over 254 million chronic infections and current therapies being non-curative, necessitating lifelong treatment. The HBV ribonuclease H (RNase H) is essential during HBV reverse transcription by cleaving the viral pregenomic RNA after it has been copied into the (−) polarity DNA strand, enabling the viral polymerase to synthesize the (+) DNA strand. Although RNase H inhibition terminates viral replication and thus viral infectiveness, its targeting as an HBV treatment is unexploited. Its catalytic site contains four carboxylates that bind to two Mg2+ ions essential for RNA hydrolysis. As part of our ongoing research on RNase H inhibitors, we developed 23 novel N-hydroxypyridinedione (HPD) analogues. Specifically, 17 HPD imines, 4 HPD oximes, 1 2,6-diamino-4-((substituted)oxy)pyrimidine 1-oxide derivative, and 1 barbituric acid analogue were designed, synthesized, and tested for their anti-HBV activity. The HPD derivatives could be docked in the RNase H active site to coordinate the two Mg2+ ions and effectively inhibited viral replication in cellular assays. The 50% effective concentration (EC50) values of these HPD compounds ranged from 0.5 to 73 μM, while the 50% cytotoxic concentration (CC50) values ranged from 15 to 100 μM, resulting in selectivity indexes (SIs) up to 112. Furthermore, the novel HPD derivatives exhibited favourable pharmacokinetic-relevant characteristics, including high cellular permeability, good aqueous solubility, and overall drug-like properties. These findings indicate that HPD imines and oximes possess substantial antiviral potency and selectivity against HBV, underscoring the potential of the HPD scaffold as a promising framework for the development of next-generation anti-HBV agents. Full article
Show Figures

Graphical abstract

36 pages, 3191 KB  
Review
The Interplay Between lncRNAs–microRNAs Network Dysregulation and Cellular Hallmarks of Thyroid Cancer
by Maryam Hejazi, Ramin Heshmat, Gita Shafiee, Bagher Larijani, Amir Ali Mokhtarzadeh, Vida Ebrahimi and Seyed Mohammad Tavangar
Cancers 2025, 17(20), 3373; https://doi.org/10.3390/cancers17203373 - 18 Oct 2025
Viewed by 373
Abstract
Background/Objectives: Thyroid cancer (TC) is the most common type of endocrine neoplasm and is increasing in incidence, particularly papillary thyroid carcinoma (PTC). Early-stage disease has a favorable prognosis; however, advanced forms, such as anaplastic thyroid carcinoma, complicate treatment. Long non-coding RNAs (lncRNAs), [...] Read more.
Background/Objectives: Thyroid cancer (TC) is the most common type of endocrine neoplasm and is increasing in incidence, particularly papillary thyroid carcinoma (PTC). Early-stage disease has a favorable prognosis; however, advanced forms, such as anaplastic thyroid carcinoma, complicate treatment. Long non-coding RNAs (lncRNAs), longer than 200 nucleotides and non-coding, together with microRNAs, have emerged as major regulators of TC pathogenesis. This review summarizes data on how dysregulated lncRNAs influence the hallmarks of cancer in thyroid malignancies. Methods: We reviewed the literature on the role of lncRNAs and microRNAs in TC, focusing on their functions as competing endogenous RNAs (ceRNAs), regulators of PI3K/AKT and Wnt/β-catenin pathways, and controllers of epigenetic alterations. Results: Dysregulated lncRNAs contribute to hallmarks including sustained growth, evading suppressors, resisting death, replicative immortality, angiogenesis, invasion, metabolic reprogramming, immune evasion, genomic instability, and tumor-promoting inflammation. ceRNA mechanisms amplify immune evasion by regulating checkpoint proteins and cytokines, altering immune cell activity. Altered lncRNA profiles correlate with aggressiveness, metastasis, and prognosis. Notable lncRNAs, such as H19, MALAT1, and DOCK9-AS2, dysregulate oncogenic pathways and represent potential biomarkers. Conclusions: Advances in therapeutics suggest inhibiting oncogenic lncRNAs or restoring tumor-suppressive lncRNAs via RNA interference, antisense oligonucleotides, or CRISPR/Cas9 editing. New technologies, including single-cell RNA sequencing and spatial transcriptomics, will improve understanding of heterogeneous lncRNA–microRNA networks in TC and support precision medicine. LncRNAs signify both molecular drivers and clinical targets for thyroid cancer. Full article
(This article belongs to the Special Issue MicroRNA and Cancer Immunology)
Show Figures

Graphical abstract

17 pages, 8320 KB  
Article
ROS-Mediated Necroptosis Promotes Coxsackievirus B3 Replication and Myocardial Injury
by Junbo Huang, Yanjun Di, Qing Song, Zhiyun Cheng, Hao Wu, Mei Wu, Minjian He, Genrui Zhang, Fucai Wang and Lei Tong
Microorganisms 2025, 13(10), 2389; https://doi.org/10.3390/microorganisms13102389 - 17 Oct 2025
Viewed by 378
Abstract
Coxsackievirus B3 (CVB3) is a primary causative agent of viral myocarditis (VMC), which can lead to both acute and chronic cardiac inflammation accompanied by progressive heart failure and arrhythmias. Although CVB3 has been implicated in various forms of programmed cell death, whether it [...] Read more.
Coxsackievirus B3 (CVB3) is a primary causative agent of viral myocarditis (VMC), which can lead to both acute and chronic cardiac inflammation accompanied by progressive heart failure and arrhythmias. Although CVB3 has been implicated in various forms of programmed cell death, whether it triggers necroptosis and the underlying mechanisms remains unclear. This study aimed to investigate the role and mechanism of CVB3-induced necroptosis and its effect on viral replication. Using both in vitro and in vivo models, we demonstrated that CVB3 infection significantly upregulates the expression of key necroptotic markers RIP1 and RIP3 in HeLa cells and mouse myocardial tissues. This upregulation was accompanied by elevated intracellular reactive oxygen species (ROS) levels and suppression of the Nrf2/HO-1 antioxidant pathway. Intervention with the necroptosis inhibitor Necrostatin-1 (Nec-1) or the ROS scavenger N-acetylcysteine (NAC) markedly attenuated cell death, suppressed viral replication, and ameliorated myocardial injury and inflammatory responses in infected mice. Mechanistically, CVB3 inhibits the Nrf2/HO-1 pathway, thereby inducing substantial ROS accumulation that promotes necroptosis. This effect can be reversed by NAC treatment. Our study reveals a novel mechanism through which CVB3 induces ROS-dependent necroptosis via the suppression of the Nrf2/HO-1 pathway, providing new insights into the pathogenesis of viral myocarditis and suggesting potential therapeutic strategies. Full article
(This article belongs to the Special Issue Viral Proteases in Viral Infection and Drug Development)
Show Figures

Figure 1

13 pages, 1530 KB  
Article
GPX4 Inhibition Enhances the Pro-Oxidant and ER Stress Effects of Tempol in Colon and Gastric Cancer Cell Lines
by Gorkem Ozdemir and Halil Mahir Kaplan
Curr. Issues Mol. Biol. 2025, 47(10), 856; https://doi.org/10.3390/cimb47100856 - 16 Oct 2025
Viewed by 377
Abstract
Tempol, a synthetic nitroxide, exhibits dual antioxidant and pro-oxidant activity, requiring millimolar concentrations to induce oxidative stress, which limits its therapeutic use. Glutathione Peroxidase 4 (GPX4) is a critical lipid peroxidase that prevents ferroptosis, and its inhibition has emerged as a strategy to [...] Read more.
Tempol, a synthetic nitroxide, exhibits dual antioxidant and pro-oxidant activity, requiring millimolar concentrations to induce oxidative stress, which limits its therapeutic use. Glutathione Peroxidase 4 (GPX4) is a critical lipid peroxidase that prevents ferroptosis, and its inhibition has emerged as a strategy to sensitize cancer cells to oxidative stress. To enhance Tempol’s efficacy, we investigated its interaction with ML210, a GPX4 inhibitor, in human colon (HT29) and gastric (CRL-1739) cancer cell lines. We quantified cell viability, oxidative stress markers (H2O2, Total Oxidant Status (TOS), and Total Antioxidant Status (TAS)) and endoplasmic reticulum (ER) stress proteins (ATF6, GRP78, and IRE1α) in in vitro assays. Synergy was assessed using Bliss independence analysis. The combination of Tempol (2 mM) and ML210 (0.05 μM) markedly reduced viability in both cell lines. Bliss analysis revealed slight/moderate synergy for cytotoxicity (Δ = +0.15 in HT29; Δ = +0.26 in CRL-1739) and strong synergy for H2O2 accumulation (Δ = +1.92–2.23 across replicates). In contrast, TOS showed moderate-to-strong antagonism across both cell lines, and TAS demonstrated slight synergistic or antagonistic effects. ER stress markers exhibited marker and cell line specific synergy: ATF6 showed strong synergy, IRE1α slight synergy in both lines, and GRP78 activation was highly variable, showing strong synergy in CRL-1739 cells but moderate antagonism in HT29 cells. These findings indicate that the cooperative action of Tempol and ML210 is ROS-pool–specific and pathway-selective in the ER. These findings demonstrate that ML210 potentiates Tempol’s pro-oxidant pressure by targeting GPX4, selectively amplifying H2O2 accumulation and ER stress engagement without collapsing global redox balance. This study provides mechanistic rationale for redox–proteostasis co-targeting in gastric and colon cancers and establishes a foundation for in vivo validation. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

Back to TopTop