Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (647)

Search Parameters:
Keywords = information search cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 240 KiB  
Article
Modeling Generative AI and Social Entrepreneurial Searches: A Contextualized Optimal Stopping Approach
by Junic Kim
Adm. Sci. 2025, 15(8), 302; https://doi.org/10.3390/admsci15080302 - 5 Aug 2025
Abstract
This theoretical study rigorously investigates how generative artificial intelligence reshapes decision-making in social entrepreneurship by modeling the opportunity search process through the lens of optimal stopping theory. Social entrepreneurs often face high uncertainty and resource constraints, requiring them to strategically balance the cost [...] Read more.
This theoretical study rigorously investigates how generative artificial intelligence reshapes decision-making in social entrepreneurship by modeling the opportunity search process through the lens of optimal stopping theory. Social entrepreneurs often face high uncertainty and resource constraints, requiring them to strategically balance the cost of continued searching with the chance of identifying socially impactful opportunities. This study develops a formal model that captures two core mechanisms of generative AI: reducing search costs and increasing the probability of mission-aligned opportunity success. The theoretical analysis yields three key findings. First, generative AI accelerates the optimal stopping point, allowing social entrepreneurs to act more quickly on high-potential opportunities by lowering cognitive and resource burdens. Second, the influence of increased success probability outweighs that of reduced search costs, underscoring the strategic importance of insight quality over efficiency in socially embedded contexts. Third, the benefits of generative AI are amplified in uncertain environments, where it helps navigate complexity and mitigate information asymmetry. These insights contribute to a deeper conceptual understanding of how intelligent technologies transform the cognitive and strategic dimensions of social entrepreneurship, and they offer empirically testable propositions for future research at the intersection of AI, innovation, and mission-driven opportunity pursuit. Full article
24 pages, 3139 KiB  
Review
Social, Economic and Ecological Drivers of Tuberculosis Disparities in Bangladesh: Implications for Health Equity and Sustainable Development Policy
by Ishaan Rahman and Chris Willott
Challenges 2025, 16(3), 37; https://doi.org/10.3390/challe16030037 - 4 Aug 2025
Viewed by 100
Abstract
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to [...] Read more.
Tuberculosis (TB) remains a leading cause of death in Bangladesh, disproportionately affecting low socio-economic status (SES) populations. This review, guided by the WHO Social Determinants of Health framework and Rockefeller-Lancet Planetary Health Report, examined how social, economic, and ecological factors link SES to TB burden. The first literature search identified 28 articles focused on SES-TB relationships in Bangladesh. A second search through snowballing and conceptual mapping yielded 55 more papers of diverse source types and disciplines. Low-SES groups face elevated TB risk due to smoking, biomass fuel use, malnutrition, limited education, stigma, financial barriers, and hazardous housing or workplaces. These factors delay care-seeking, worsen outcomes, and fuel transmission, especially among women. High-SES groups more often face comorbidities like diabetes, which increase TB risk. Broader contextual drivers include urbanisation, weak labour protections, cultural norms, and poor governance. Recommendations include housing and labour reform, gender parity in education, and integrating private providers into TB programmes. These align with the WHO End TB Strategy, UN SDGs and Planetary Health Quadruple Aims, which expand the traditional Triple Aim for health system design by integrating environmental sustainability alongside improved patient outcomes, population health, and cost efficiency. Future research should explore trust in frontline workers, reasons for consulting informal carers, links between makeshift housing and TB, and integrating ecological determinants into existing frameworks. Full article
(This article belongs to the Section Human Health and Well-Being)
Show Figures

Graphical abstract

21 pages, 570 KiB  
Review
Healthcare Complexities in Neurodegenerative Proteinopathies: A Narrative Review
by Seyed-Mohammad Fereshtehnejad and Johan Lökk
Healthcare 2025, 13(15), 1873; https://doi.org/10.3390/healthcare13151873 - 31 Jul 2025
Viewed by 280
Abstract
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences [...] Read more.
Background/Objectives: Neurodegenerative proteinopathies, such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB), are increasingly prevalent worldwide mainly due to population aging. These conditions are marked by complex etiologies, overlapping pathologies, and progressive clinical decline, with significant consequences for patients, caregivers, and healthcare systems. This review aims to synthesize evidence on the healthcare complexities of major neurodegenerative proteinopathies to highlight current knowledge gaps, and to inform future care models, policies, and research directions. Methods: We conducted a comprehensive literature search in PubMed/MEDLINE using combinations of MeSH terms and keywords related to neurodegenerative diseases, proteinopathies, diagnosis, sex, management, treatment, caregiver burden, and healthcare delivery. Studies were included if they addressed the clinical, pathophysiological, economic, or care-related complexities of aging-related neurodegenerative proteinopathies. Results: Key themes identified include the following: (1) multifactorial and unclear etiologies with frequent co-pathologies; (2) long prodromal phases with emerging biomarkers; (3) lack of effective disease-modifying therapies; (4) progressive nature requiring ongoing and individualized care; (5) high caregiver burden; (6) escalating healthcare and societal costs; and (7) the critical role of multidisciplinary and multi-domain care models involving specialists, primary care, and allied health professionals. Conclusions: The complexity and cost of neurodegenerative proteinopathies highlight the urgent need for prevention-focused strategies, innovative care models, early interventions, and integrated policies that support patients and caregivers. Prevention through the early identification of risk factors and prodromal signs is critical. Investing in research to develop effective disease-modifying therapies and improve early detection will be essential to reducing the long-term burden of these disorders. Full article
Show Figures

Figure 1

37 pages, 406 KiB  
Review
Self-Medication as a Global Health Concern: Overview of Practices and Associated Factors—A Narrative Review
by Vedrana Aljinović-Vučić
Healthcare 2025, 13(15), 1872; https://doi.org/10.3390/healthcare13151872 - 31 Jul 2025
Viewed by 306
Abstract
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such [...] Read more.
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such appear all over the world. Inappropriate self-medication can be connected with possible serious health risks and consequences. Therefore, it represents a global health issue. It can even generate additional health problems, which will eventually become a burden to healthcare systems and can induce significant costs, which also raises socioeconomic concerns. Hence, self-medication attracts the attention of researchers and practitioners globally in efforts to clarify the current status and define feasible measures that should be implemented to address this issue. This narrative review aims to give an overview of the situation in the field of self-medication globally, including current practices and attitudes, as well as implications for actions needed to improve this problem. A PubMed/MEDLINE search was conducted for articles published in the period from 1995 up to March 2025 using keywords “self-medication” or “selfmedication” alone or in combinations with terms related to specific subthemes related to self-medication, such as COVID-19, antimicrobials, healthcare professionals, and storing habits of medicines at home. Studies were included if self-medication was their main focus. Publications that only mentioned self-medication in different contexts, but not as their main focus, were excluded. Considering the outcomes of research on self-medication in various contexts, increasing awareness of responsible self-medication through education and informing, together with surveillance of particular medicines and populations, could lead to more appropriate and beneficial self-medication in the future. Full article
28 pages, 4666 KiB  
Article
Unmanned Aerial Vehicle Path Planning Based on Sparrow-Enhanced African Vulture Optimization Algorithm
by Weixiang Zhu, Xinghong Kuang and Haobo Jiang
Appl. Sci. 2025, 15(15), 8461; https://doi.org/10.3390/app15158461 - 30 Jul 2025
Viewed by 125
Abstract
Drones can improve the efficiency of point-to-point logistics and distribution and reduce labor costs; however, the complex three-dimensional airspace environment poses significant challenges for flight paths. To address this demand, this paper proposes a hybrid algorithm that integrates the Sparrow Search Algorithm (SSA) [...] Read more.
Drones can improve the efficiency of point-to-point logistics and distribution and reduce labor costs; however, the complex three-dimensional airspace environment poses significant challenges for flight paths. To address this demand, this paper proposes a hybrid algorithm that integrates the Sparrow Search Algorithm (SSA) with the African Vulture Optimization Algorithm (AVOA). Firstly, the algorithm introduces Sobol sequences at the population initialization stage to optimize the initial population; then, we incorporate SSA’s discoverer and vigilant mechanisms to balance exploration and exploitation and enhance global exploration capabilities; finally, multi-guide differencing and dynamic rotation transformation strategies are introduced in the first exploitation phase to enhance the direction of local exploitation by fusing multiple pieces of information; the second exploitation phase achieved a dynamic balance between elite guidance and population diversity through adaptive weight adjustment and enhanced Lévy flight strategy. In this paper, a three-dimensional model is built under a variety of constraints, and SAVOA (Sparrow-Enhanced African Vulture Optimization Algorithm) is compared with a variety of popular algorithms in simulation experiments. SAVOA achieves the optimal path in all scenarios, verifying the efficiency and superiority of the algorithm in UAV logistics path planning. Full article
Show Figures

Figure 1

18 pages, 2688 KiB  
Article
Generalized Hierarchical Co-Saliency Learning for Label-Efficient Tracking
by Jie Zhao, Ying Gao, Chunjuan Bo and Dong Wang
Sensors 2025, 25(15), 4691; https://doi.org/10.3390/s25154691 - 29 Jul 2025
Viewed by 129
Abstract
Visual object tracking is one of the core techniques in human-centered artificial intelligence, which is very useful for human–machine interaction. State-of-the-art tracking methods have shown their robustness and accuracy on many challenges. However, a large amount of videos with precisely dense annotations are [...] Read more.
Visual object tracking is one of the core techniques in human-centered artificial intelligence, which is very useful for human–machine interaction. State-of-the-art tracking methods have shown their robustness and accuracy on many challenges. However, a large amount of videos with precisely dense annotations are required for fully supervised training of their models. Considering that annotating videos frame-by-frame is a labor- and time-consuming workload, reducing the reliance on manual annotations during the tracking models’ training is an important problem to be resolved. To make a trade-off between the annotating costs and the tracking performance, we propose a weakly supervised tracking method based on co-saliency learning, which can be flexibly integrated into various tracking frameworks to reduce annotation costs and further enhance the target representation in current search images. Since our method enables the model to explore valuable visual information from unlabeled frames, and calculate co-salient attention maps based on multiple frames, our weakly supervised methods can obtain competitive performance compared to fully supervised baseline trackers, using only 3.33% of manual annotations. We integrate our method into two CNN-based trackers and a Transformer-based tracker; extensive experiments on four general tracking benchmarks demonstrate the effectiveness of our method. Furthermore, we also demonstrate the advantages of our method on egocentric tracking task; our weakly supervised method obtains 0.538 success on TREK-150, which is superior to prior state-of-the-art fully supervised tracker by 7.7%. Full article
Show Figures

Figure 1

21 pages, 7202 KiB  
Article
Monocular Vision-Based Swarm Robot Localization Using Equilateral Triangular Formations
by Taewon Kang, Ji-Wook Kwon, Il Bae and Jin Hyo Kim
Machines 2025, 13(8), 667; https://doi.org/10.3390/machines13080667 - 29 Jul 2025
Viewed by 277
Abstract
Localization of mobile robots is crucial for deploying robots in real-world applications such as search and rescue missions. This work aims to develop an accurate localization system applicable to swarm robots equipped only with low-cost monocular vision sensors and visual markers. The system [...] Read more.
Localization of mobile robots is crucial for deploying robots in real-world applications such as search and rescue missions. This work aims to develop an accurate localization system applicable to swarm robots equipped only with low-cost monocular vision sensors and visual markers. The system is designed to operate in fully open spaces, without landmarks or support from positioning infrastructures. To achieve this, we propose a localization method based on equilateral triangular formations. By leveraging the geometric properties of equilateral triangles, the accurate two-dimensional position of each participating robot is estimated using one-dimensional lateral distance information between robots, which can be reliably and accurately obtained with a low-cost monocular vision sensor. Experimental and simulation results demonstrate that, as travel time increases, the positioning error of the proposed method becomes significantly smaller than that of a conventional dead-reckoning system, another low-cost localization approach applicable to open environments. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

36 pages, 7335 KiB  
Article
COLREGs-Compliant Distributed Stochastic Search Algorithm for Multi-Ship Collision Avoidance
by Bohan Zhang, Jinichi Koue, Tenda Okimoto and Katsutoshi Hirayama
J. Mar. Sci. Eng. 2025, 13(8), 1402; https://doi.org/10.3390/jmse13081402 - 23 Jul 2025
Viewed by 229
Abstract
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex [...] Read more.
The increasing complexity of maritime traffic imposes growing demands on the safety and rationality of ship-collision-avoidance decisions. While most existing research focuses on simple encounter scenarios, autonomous collision-avoidance strategies that comply with the International Regulations for Preventing Collisions at Sea (COLREGs) in complex multi-ship environments remain insufficiently investigated. To address this gap, this study proposes a novel collision-avoidance framework that integrates a quantitative COLREGs analysis with a distributed stochastic search mechanism. The framework consists of three core components: encounter identification, safety assessment, and stage classification. A cost function is employed to balance safety, COLREGs compliance, and navigational efficiency, incorporating a distance-based weighting factor to modulate the influence of each target vessel. The use of a distributed stochastic search algorithm enables decentralized decision-making through localized information sharing and probabilistic updates. Extensive simulations conducted across a variety of scenarios demonstrate that the proposed method can rapidly generate effective collision-avoidance strategies that fully comply with COLREGs. Comprehensive evaluations in terms of safety, navigational efficiency, COLREGs adherence, and real-time computational performance further validate the method’s strong adaptability and its promising potential for practical application in complex multi-ship environments. Full article
(This article belongs to the Special Issue Maritime Security and Risk Assessments—2nd Edition)
Show Figures

Figure 1

29 pages, 3288 KiB  
Article
Non-Vertical Well Trajectory Design Based on Multi-Objective Optimization
by Xiaowei Li, Yu Li, Yang Wu, Zhaokai Hou and Haipeng Gu
Appl. Sci. 2025, 15(14), 7862; https://doi.org/10.3390/app15147862 - 14 Jul 2025
Viewed by 172
Abstract
The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory [...] Read more.
The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory optimization mathematical model is established, which takes into account the five factors of wellbore trajectory length, friction, torque, trajectory complexity, and target accuracy. A DR-NSGA-III-MGA algorithm (dynamic reference NSGA-III with multi-granularity adaptation) is proposed. By introducing multi-granularity reference vector generation and an information entropy-guided search direction adaptation mechanism, the performance of the algorithm in the complex target space is improved, and the three-stage wellbore trajectory is optimized. Simulation experiments show that the DR-NSGA-III-MGA algorithm is stable in a variety of complex problems, while maintaining good convergence, and has good generalization ability and practical application value. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

22 pages, 1199 KiB  
Article
Less Is More: Analyzing Text Abstraction Levels for Gender and Age Recognition Across Question-Answering Communities
by Alejandro Figueroa
Information 2025, 16(7), 602; https://doi.org/10.3390/info16070602 - 13 Jul 2025
Viewed by 186
Abstract
In social networks like community Question-Answering (cQA) services, members interact with each other by asking and answering each other’s questions. This way they find counsel and solutions to very specific real-life situations. Thus, it is safe to say that community fellows log into [...] Read more.
In social networks like community Question-Answering (cQA) services, members interact with each other by asking and answering each other’s questions. This way they find counsel and solutions to very specific real-life situations. Thus, it is safe to say that community fellows log into this kind of social network with the goal of satisfying information needs that cannot be readily resolved via traditional web searches. And in order to expedite this process, these platforms also allow registered, and many times unregistered, internauts to browse their archives. As a means of encouraging fruitful interactions, these websites need to be efficient when displaying contextualized/personalized material and when connecting unresolved questions to people willing to help. Here, demographic factors (i.e., gender) together with frontier deep neural networks have proved to be instrumental in adequately overcoming these challenges. In fact, current approaches have demonstrated that it is perfectly plausible to achieve high gender classification rates by inspecting profile images or textual interactions. This work advances this body of knowledge by leveraging lexicalized dependency paths to control the level of abstraction across texts. Our qualitative results suggest that cost-efficient approaches exploit distilled frontier deep architectures (i.e., DistillRoBERTa) and coarse-grained semantic information embodied in the first three levels of the respective dependency tree. Our outcomes also indicate that relative/prepositional clauses conveying geographical locations, relationships, and finance yield a marginal contribution when they show up deep in dependency trees. Full article
(This article belongs to the Section Information Applications)
Show Figures

Figure 1

15 pages, 16898 KiB  
Article
Cross-Scale Hypergraph Neural Networks with Inter–Intra Constraints for Mitosis Detection
by Jincheng Li, Danyang Dong, Yihui Zhan, Guanren Zhu, Hengshuo Zhang, Xing Xie and Lingling Yang
Sensors 2025, 25(14), 4359; https://doi.org/10.3390/s25144359 - 12 Jul 2025
Viewed by 423
Abstract
Mitotic figures in tumor tissues are an important criterion for diagnosing malignant lesions, and physicians often search for the presence of mitosis in whole slide imaging (WSI). However, prolonged visual inspection by doctors may increase the likelihood of human error. With the advancement [...] Read more.
Mitotic figures in tumor tissues are an important criterion for diagnosing malignant lesions, and physicians often search for the presence of mitosis in whole slide imaging (WSI). However, prolonged visual inspection by doctors may increase the likelihood of human error. With the advancement of deep learning, AI-based automatic cytopathological diagnosis has been increasingly applied in clinical settings. Nevertheless, existing diagnostic models often suffer from high computational costs and suboptimal detection accuracy. More importantly, when assessing cellular abnormalities, doctors frequently compare target cells with their surrounding cells—an aspect that current models fail to capture due to their lack of intercellular information modeling, leading to the loss of critical medical insights. To address these limitations, we conducted an in-depth analysis of existing models and propose an Inter–Intra Hypergraph Neural Network (II-HGNN). Our model introduces a block-based feature extraction mechanism to efficiently capture deep representations. Additionally, we leverage hypergraph convolutional networks to process both intracellular and intercellular information, leading to more precise diagnostic outcomes. We evaluate our model on publicly available datasets under varying imaging conditions, and experimental results demonstrate that our approach consistently outperforms baseline models in terms of accuracy. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Imaging Sensors and Processing)
Show Figures

Figure 1

20 pages, 3609 KiB  
Article
Beyond the Grid: GLRT-Based TomoSAR Fast Detection for Retrieving Height and Thermal Dilation
by Nabil Haddad, Karima Hadj-Rabah, Alessandra Budillon and Gilda Schirinzi
Remote Sens. 2025, 17(14), 2334; https://doi.org/10.3390/rs17142334 - 8 Jul 2025
Viewed by 316
Abstract
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building [...] Read more.
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building management and maintenance. Nevertheless, accurately extracting it from TomoSAR data poses several challenges, particularly the presence of outliers due to uneven and limited baseline distributions. One way to address these issues is through statistical detection approaches such as the Generalized Likelihood Ratio Test, which ensures a Constant False Alarm Rate. While effective, these methods face two primary limitations: high computational complexity and the off-grid problem caused by the discretization of the search space. To overcome these drawbacks, we propose an approach that combines a quick initialization process using Fast-Sup GLRT with local descent optimization. This method operates directly in the continuous domain, bypassing the limitations of grid-based search while significantly reducing computational costs. Experiments conducted on both simulated and real datasets acquired with the TerraSAR-X satellite over the Spanish city of Barcelona demonstrate the ability of the proposed approach to maintain computational efficiency while improving scatterer localization accuracy in the third and fourth dimensions. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Graphical abstract

27 pages, 1630 KiB  
Article
NNG-Based Secure Approximate k-Nearest Neighbor Query for Large Language Models
by Heng Zhou, Yuchao Wang, Yi Qiao and Jin Huang
Mathematics 2025, 13(13), 2199; https://doi.org/10.3390/math13132199 - 5 Jul 2025
Viewed by 291
Abstract
Large language models (LLMs) have driven transformative progress in artificial intelligence, yet critical challenges persist in data management and privacy protection during model deployment and training. The approximate nearest neighbor (ANN) search, a core operation in LLMs, faces inherent trade-offs between efficiency and [...] Read more.
Large language models (LLMs) have driven transformative progress in artificial intelligence, yet critical challenges persist in data management and privacy protection during model deployment and training. The approximate nearest neighbor (ANN) search, a core operation in LLMs, faces inherent trade-offs between efficiency and security when implemented through conventional locality-sensitive hashing (LSH)-based secure ANN (SANN) methods, which often compromise either query accuracy due to false positives. To address these limitations, this paper proposes a novel secure ANN scheme based on nearest neighbor graph (NNG-SANN), which is designed to ensure the security of approximate k-nearest neighbor queries for vector data commonly used in LLMs. Specifically, a secure indexing structure and subset partitioning method are proposed based on LSH and NNG. The approach utilizes neighborhood information stored in the NNG to supplement subset data, significantly reducing the impact of false positive points generated by LSH on query results, thereby effectively improving query accuracy. To ensure data privacy, we incorporate a symmetric encryption algorithm that encrypts the data subsets obtained through greedy partitioning before storing them on the server, providing robust security guarantees. Furthermore, we construct a secure index table that enables complete candidate set retrieval through a single query, ensuring our solution completes the search process in one interaction while minimizing communication costs. Comprehensive experiments conducted on two datasets of different scales demonstrate that our proposed method outperforms existing state-of-the-art algorithms in terms of both query accuracy and security, effectively meeting the precision and security requirements for nearest neighbor queries in LLMs. Full article
(This article belongs to the Special Issue Privacy-Preserving Machine Learning in Large Language Models (LLMs))
Show Figures

Figure 1

29 pages, 3253 KiB  
Article
Green Infrastructure: Opinion Mining and Construction Material Reuse Optimization Portal
by Arturas Kaklauskas, Elisabete Teixeira, Yiannis Xenidis, Anastasia Tzioutziou, Lorcan Connolly, Sarunas Skuodis, Kestutis Dauksys, Natalija Lepkova, Laura Tupenaite, Loreta Kaklauskiene, Simona Kildiene, Jurgita Zidoniene, Virginijus Milevicius and Saulius Naimavicius
Buildings 2025, 15(13), 2362; https://doi.org/10.3390/buildings15132362 - 5 Jul 2025
Viewed by 377
Abstract
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short [...] Read more.
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short supply. To address this gap, one of the main objectives of the present study is to propose the GREEN method for opinion analysis to support the development of green infrastructure. Google Search was used to gather substantial amounts of information reflecting the views of both ordinary individuals and professionals regarding the benefits, drawbacks, challenges, and limitations of green infrastructure. Previously, however, such data have not been employed to improve green infrastructure by means of opinion analytics. The GREEN method was developed for the analysis of green infrastructure (GI) and its context, enabling multiple-criteria, neural network, correlation, and regression analyses across micro-, meso-, and macro-environmental scales. A total of 788 global regression (R2 = 0.997) and neural network (R2 = 0.596) GREEN models were developed and tested. In addition, 34 regression models for 12 (R2 = 0.817) and 20 (R2 = 0.511) cities were created for the world and separate cities (Munich (R2 aver = 0.801) and London (R2 aver = 0.817)). The GREEN method is a new way to analyze stakeholder opinions on sustainable green infrastructure and its context. With the objective of making green infrastructure more efficient and reducing carbon emissions, the Construction Material Reuse Optimization (SOLUTION) Portal was created as part of this research. The portal generates multiple options and proposes optimal alternatives for reused construction products. The results show that the GREEN method and SOLUTION Portal are reliable tools for evidence-based and rational green infrastructure development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

12 pages, 489 KiB  
Systematic Review
Technologies and Auditory Rehabilitation Beyond Hearing Aids: An Exploratory Systematic Review
by María Camila Pinzón-Díaz, Oswal Martínez-Moreno, Natalia Marcela Castellanos-Gómez, Viviana Cardona-Posada, Frank Florez-Montes, Johnatan Vallejo-Cardona and Luis Carlos Correa-Ortiz
Audiol. Res. 2025, 15(4), 80; https://doi.org/10.3390/audiolres15040080 - 3 Jul 2025
Viewed by 590
Abstract
Background: Traditionally, auditory rehabilitation in people with hearing loss has sought training in auditory skills to achieve an understanding of sound messages for communication. Assistive or supportive technology is limited to hearing aids that transmit sound through the air or bone to be [...] Read more.
Background: Traditionally, auditory rehabilitation in people with hearing loss has sought training in auditory skills to achieve an understanding of sound messages for communication. Assistive or supportive technology is limited to hearing aids that transmit sound through the air or bone to be used by the individual, and only in recent times have technologies for rehabilitation, of high cost and difficult access, begun to be used, employed by audiology professionals. Objective: The objective of this study was to compile the evidence reported in the literature on the use of technology in auditory rehabilitation for the improvement of hearing skills in people with hearing loss, beyond hearing aids and cochlear implants. Method: A systematic review of the literature was conducted between 2018 and 2024 in PubMed, Scopus, and Web of Science databases, using as search terms Technology AND “Auditory Rehabilitation” validated in DeCS and MeSH thesauri; the PICO method was used to propose the research question, and the PRISMA strategy was used for the inclusion or exclusion of the articles to be reviewed. Results: In the first search, 141 documents were obtained. Subsequently, inclusion criteria, such as development with vibrotactile stimulation, Information and Communication Technologies (ICTs), among others, and exclusion criteria, such as those related to cochlear implants and air conduction hearing aids, were applied, and finally, articles related to natural language processing, and other systematic reviews were excluded so that the database was reduced to 14 documents. To this set, due to their relevance, two papers were added, for a total of sixteen analyzed. Conclusions: There are solutions ranging from the use of smartphones for telehealth to solutions with multiple technologies, such as the development of virtual environments with vibrotactile feedback. Hearing-impaired people and even professionals in this area of healthcare have a high level of acceptance of the use of technology in rehabilitation. Finally, this article highlights the crucial role of technology in auditory rehabilitation, with solutions that improve hearing skills and the positive acceptance of these tools by patients and audiology professionals. Full article
Show Figures

Figure 1

Back to TopTop