Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,976)

Search Parameters:
Keywords = influence of the concrete

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3032 KiB  
Review
The Microstructure and Modification of the Interfacial Transition Zone in Lightweight Aggregate Concrete: A Review
by Jian Zhou, Yiding Dong, Tong Qiu, Jiaojiao Lv, Peng Guo and Xi Liu
Buildings 2025, 15(15), 2784; https://doi.org/10.3390/buildings15152784 - 6 Aug 2025
Abstract
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of [...] Read more.
The interfacial transition zone (ITZ) significantly influences the mechanical properties and durability of lightweight aggregate concrete (LWAC), yet existing research on the ITZ in LWAC remains fragmented due to varied characterization techniques, inconsistent definitions of ITZ thickness and porosity, and the absence of standardized performance metrics. This review focuses primarily on structural LWAC produced with artificial and natural lightweight aggregates, with intended applications in high-performance civil engineering structures. This review systematically analyzes the microstructure, composition, and physical properties of the ITZ, including porosity, microhardness, and hydration product distribution. Quantitative data from recent studies are highlighted—for instance, incorporating 3% nano-silica increased ITZ bond strength by 134.12% at 3 days and 108.54% at 28 days, while using 10% metakaolin enhanced 28-day compressive strength by 24.6% and reduced chloride diffusion by 81.9%. The review categorizes current ITZ enhancement strategies such as mineral admixtures, nanomaterials, surface coatings, and aggregate pretreatment methods, evaluating their mechanisms, effectiveness, and limitations. By identifying key trends and research gaps—particularly the lack of predictive models and standardized characterization methods—this review aims to synthesize key findings and identify knowledge gaps to support future material design in LWAC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 1739 KiB  
Article
Study on the Shear Characteristics of the Frozen Soil–Concrete Interface at Different Roughness Levels
by Ming Xie, Mengqi Xu, Fangbo Xu, Zhangdong Wang, Lie Yin and Xiangdong Wu
Buildings 2025, 15(15), 2783; https://doi.org/10.3390/buildings15152783 - 6 Aug 2025
Abstract
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 [...] Read more.
The shear characteristics of the frozen soil–concrete interface are core parameters in frost heave resistance design in cold-region engineering, and the influence mechanism of interface roughness on these characteristics is not clear. In this study, the regulatory effect of different roughness levels (R-0 to R-4) on the interfacial freezing strength was quantitatively analyzed for the first time through direct shear tests, and the evolution characteristics of the contribution ratio of the ice cementation strength were revealed. The results show that the peak shear strength of the interface increases significantly with the roughness (when the normal stress is 400 kPa and the water content is 14%, the increase in R-4 is 47.7% compared with R-0); the ice cementation strength increases synchronously and its contribution ratio increases with the increase in roughness. Although the absolute value of the residual strength increase is small, the relative amplitude is larger (178.5% increase under the same working conditions). The peak cohesion increased significantly with the roughness (R-0 to R-4 increased by 268.6%), while the residual cohesion decreased. The peak and residual internal friction angle increased slightly with the roughness. The study clarifies the differential influence mechanism of roughness on the interface’s shear parameters and provides a key quantitative basis for the anti-frost heave design of engineering interfaces in cold regions. Full article
19 pages, 8559 KiB  
Article
Flexural Behavior of Concrete Beam and Slab with Novel Demountable Connectors
by Wei Li, Wei Chen, Huaming Jiang and Hongzhi Su
Buildings 2025, 15(15), 2776; https://doi.org/10.3390/buildings15152776 - 6 Aug 2025
Abstract
In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the [...] Read more.
In this study, a new type of novel demountable connector is proposed to enable complete dry connections between concrete beams and slabs, facilitating the full demountable design of these components. To analyze and evaluate the flexural performance of the concrete beams with the novel demountable connectors, a finite element model was developed, which was then validated by previous tests. The results indicate that bolt diameter, bolt strength, channel spacing, and concrete slab thickness have a significant impact on peak load, while concrete beam strength, concrete slab strength, and flange width have minimal influence. Similarly, flexural stiffness is strongly affected by bolt diameter, channel spacing, concrete slab strength, slab thickness, and flange width, whereas bolt strength and concrete beam strength play a lesser role. Notably, the finite element analysis confirms the absence of plastic deformation in most bolts and end plates, ensuring that the flexural components are designed for effective disassembly. A theoretical model for calculating the ultimate flexural moment of demountable concrete beams under different conditions is also proposed, and it agrees with the ultimate flexural moment from numerical analysis. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 6492 KiB  
Review
Review on Multifactorial Coupling Effects and the Time-Dependent Behavior of Lateral Pressure on Concrete Formworks
by Kekuo Yuan, Min Zhang, Yichu Lu and Hongdan Yu
Buildings 2025, 15(15), 2764; https://doi.org/10.3390/buildings15152764 - 5 Aug 2025
Abstract
This critical review synthesizes evidence on the multifactorial coupling mechanisms and time-dependent evolution of lateral pressure in concrete formworks, addressing significant limitations in current design standards (GB50666, CIRIA 108, ACI 347). Through a structured analysis of 60+ experimental and theoretical studies, we establish [...] Read more.
This critical review synthesizes evidence on the multifactorial coupling mechanisms and time-dependent evolution of lateral pressure in concrete formworks, addressing significant limitations in current design standards (GB50666, CIRIA 108, ACI 347). Through a structured analysis of 60+ experimental and theoretical studies, we establish that lateral pressure is governed by nonlinear interactions between concrete rheology, casting dynamics, thermal conditions, and formwork geometry. The key findings reveal that (1) casting rate increments >5 m/h amplify peak pressure by 15–27%, while SCC thixotropy (Athix > 0.5) reduces it by 15–27% at <5 m/h; (2) secondary vibration induces 52–61% pressure surges through liquefaction; and (3) sections with a width >2 m exhibit 40% faster pressure decay due to arching effects. (4) Temporal evolution follows three distinct phases—rapid rise (0–2 h), slow decay (2–10 h), and sharp decline (>10 h)—with the temperature critically modulating transition kinetics. Crucially, the existing codes inadequately model temperature dependencies, SCC/HPC rheology, and high-speed casting (>10 m/h). This work proposes a parameter-specific framework integrating rheological thresholds (Athix, Rstr), casting protocols, and real-time monitoring to enhance standard accuracy, enabling an optimized formwork design and risk mitigation in complex scenarios, such as water conveyance construction and slipforming. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

40 pages, 6580 KiB  
Review
Shear Behavior of Reinforced Concrete Two-Way Slabs with Openings
by Ahmed Ashteyat, Mousa Shhabat, Ahmad Al-Khreisat and Salem Aldawsari
Buildings 2025, 15(15), 2765; https://doi.org/10.3390/buildings15152765 - 5 Aug 2025
Abstract
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to [...] Read more.
Openings in two-way reinforced concrete (RC) slabs are frequently incorporated for architectural and functional purposes, such as providing pathways for mechanical, electrical, and plumbing services. While necessary, these openings can significantly compromise the structural performance of slabs, particularly by reducing their capacity to resist punching shear, an effect that is especially critical when the openings are located near column–slab connections. This paper provides a detailed review of the existing research, examining how various opening parameters such as their size, shape, and position affect key structural performance metrics including their stiffness, ductility, and failure modes. The findings highlight that opening geometry is a major determinant of a slab’s overall behavior. Notably, the proximity of openings to column faces is identified as a critical factor that can substantially influence the extent of strength degradation and failure mechanisms. Furthermore, this review identifies a significant research gap concerning the behavior of slabs with openings under non-standard loading conditions, such as seismic activity, blasts, and impact loads. It also emphasizes the need for further investigation into the long-term performance of such slabs under adverse environmental influences, including elevated temperatures, corrosion, and material degradation. By consolidating the current knowledge and identifying unresolved challenges, this review aims to guide engineers and researchers in developing more robust design strategies and performance-based solutions for RC slabs with openings, ultimately contributing to safer and more resilient structural systems. Full article
Show Figures

Figure 1

21 pages, 4070 KiB  
Article
Effects of Aggregate Size and Nozzle Diameter on Printability and Mechanical Properties of 3D Printed Ferronickel Slag–GGBFS Concrete
by Suguo Wang, Xing Wang, Xueyuan Yan and Shanghong Chen
Materials 2025, 18(15), 3681; https://doi.org/10.3390/ma18153681 - 5 Aug 2025
Abstract
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of [...] Read more.
Ferronickel slag and ground granulated blast-furnace slag (GGBFS) are solid waste by-products from the metallurgical industry. When incorporated into concrete, they help promote resource utilization, reduce hydration heat, and lower both solid waste emissions and the carbon footprint. To facilitate the application of ferronickel slag–GGBFS concrete in 3D printing, this study examines how aggregate size and nozzle diameter affect its performance. The investigation involves in situ printing, rheological characterization, mechanical testing, and scanning electron microscopy (SEM) analysis. Results indicate that excessively large average aggregate size negatively impacts the smooth extrusion of concrete strips, resulting in a cross-sectional width that exceeds the preset dimension. Excessively small average aggregate size results in insufficient yield stress, leading to a narrow cross-section of the extruded strip that fails to meet printing specifications. The extrusion performance is closely related to both the average aggregate size and nozzle diameter, which can significantly influence the normal extrusion stability and print quality of 3D printed concrete strips. The thixotropic performance improves with an increase in the aggregate size. Both compressive and flexural strengths improve with increasing aggregate size but decrease with an increase in the printing nozzle size. Anisotropy in mechanical behavior decreases progressively as both parameters mentioned increase. By examining the cracks and pores at the interlayer interface, this study elucidates the influence mechanism of aggregate size as well as printing nozzle parameters on the mechanical properties of 3D printed ferronickel slag–GGBFS concrete. This study also recommends the following ranges. When the maximum aggregate size exceeds 50% of the nozzle diameter, smooth extrusion is not achievable. If it falls between 30% and 50%, extrusion is possible but shaping remains unstable. When it is below 30%, both stable extrusion and good shaping can be achieved. Full article
Show Figures

Figure 1

22 pages, 10739 KiB  
Article
Effects of Natural Seashell Presence on the Engineering Performance of Sea Sand Concrete
by Anuradha Koswaththa, Pasindu Abeyaratne, Samith Buddika, Hiran Yapa and Satheeskumar Navaratnam
Buildings 2025, 15(15), 2751; https://doi.org/10.3390/buildings15152751 - 4 Aug 2025
Abstract
Processed sea sand has emerged as a viable alternative to traditional fine aggregates in the Sri Lankan construction industry. Despite its economic and environmental advantages, concerns over residual seashell content have limited its widespread adoption by local contractors. Residual seashell content, typically ranging [...] Read more.
Processed sea sand has emerged as a viable alternative to traditional fine aggregates in the Sri Lankan construction industry. Despite its economic and environmental advantages, concerns over residual seashell content have limited its widespread adoption by local contractors. Residual seashell content, typically ranging from 1% to 3% after processing, has raised concerns about its impact on the performance of concrete. This study systematically investigates the influence of seashell fragments, with a content of up to 5%, on the fresh, mechanical, and durability properties of sea sand concrete and mortar. Experimental results indicate that workability remains stable, with minor variations across the tested range of shell content. Compressive strength remains relatively consistent from 0% to 5% seashells, indicating that seashell content does not significantly impact the strength within this range. Durability tests reveal minimal effects of shell content on concrete performance within the tested shell range, as indicated by results for water absorption, rapid chloride penetration, and acid exposure testing. Accelerated corrosion indicates that the typical shell content does not increase corrosion risk; however, high shell content (>3%) can compromise corrosion durability. Overall, these findings demonstrate that the mechanical and durability performance of sea sand concrete remains uncompromised at typical seashell content levels (1–3%), supporting the use of processed sea sand as a sustainable and viable alternative to traditional fine aggregates in Sri Lankan construction. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Graphical abstract

38 pages, 15791 KiB  
Article
Experimental and Statistical Evaluations of Recycled Waste Materials and Polyester Fibers in Enhancing Asphalt Concrete Performance
by Sara Laib, Zahreddine Nafa, Abdelghani Merdas, Yazid Chetbani, Bassam A. Tayeh and Yunchao Tang
Buildings 2025, 15(15), 2747; https://doi.org/10.3390/buildings15152747 - 4 Aug 2025
Abstract
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs [...] Read more.
This research aimed to evaluate the impact of using brick waste powder (BWP) and varying lengths of polyester fibers (PFs) on the performance properties of asphalt concrete (AC) mixtures. BWP was utilized as a replacement for traditional limestone powder (LS) filler, while PFs of three lengths (3 mm, 8 mm, and 15 mm) were introduced. The study employed the response surface methodology (RSM) for experimental design and analysis of variance (ANOVA) to identify the influence of BWP and PF on the selected performance indicators. These indicators included bulk density, air voids, voids in the mineral aggregate, voids filled with asphalt, Marshall stability, Marshall flow, Marshall quotient, indirect tensile strength, wet tensile strength, and the tensile strength ratio. The findings demonstrated that BWP improved moisture resistance and the mechanical performance of AC mixes. Moreover, incorporating PF alongside BWP further enhanced these properties, resulting in superior overall performance. Using multi-objective optimization through RSM-based empirical models, the study identified the optimal PF length of 5 mm in combination with BWP for achieving the best AC properties. Validation experiments confirmed the accuracy of the predicted results, with an error margin of less than 8%. The study emphasizes the intriguing prospect of BWP and PF as sustainable alternatives for improving the durability, mechanical characteristics, and cost-efficiency of asphalt pavements. Full article
(This article belongs to the Special Issue Advanced Studies in Asphalt Mixtures)
Show Figures

Figure 1

18 pages, 4883 KiB  
Article
Analytical Solution for Longitudinal Response of Tunnel Structures Under Strike-Slip Fault Dislocation Considering Tangential Soil–Tunnel Contact Effect and Fault Width
by Helin Zhao, Qingzi Wu, Yao Zeng, Liangkun Zhou and Yumin Wen
Buildings 2025, 15(15), 2748; https://doi.org/10.3390/buildings15152748 - 4 Aug 2025
Viewed by 11
Abstract
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and [...] Read more.
The existence of fault zones in high-intensity earthquake areas has a serious impact on engineering structures, and the longitudinal response of tunnels crossing faults needs further in-depth research. To analyze the tangential contact effect between the surrounding rock and the tunnel lining, and the axial deformation characteristics of the tunnel structure, tangential foundation springs were introduced and a theoretical model for the longitudinal response of the tunnel under fault dislocation was established. Firstly, the tunnel was simplified as a finite-length beam. The normal and tangential springs were taken to represent the interaction between the soil and the lining. The fault’s free-field displacement was applied at the end of the normal foundation spring to simulate fault dislocation, and the differential equation for the longitudinal response of the tunnel structure was obtained. The analytical solution of the structural response was obtained using the Green’s function method. Then, the three-dimensional finite difference method was used to verify the effectiveness of the analytical model in this paper. The results show that the tangential contact effect between the surrounding rock and the lining has a significant impact on the longitudinal response of the tunnel structure. Ignoring this effect leads to an error of up to 35.33% in the peak value of the structural bending moment. Finally, the influences of the width of the fault zone, the soil stiffness of the fault zone, and the stiffness of the tunnel lining on the longitudinal response of the tunnel were explored. As the fault width increases, the internal force of the tunnel structure decreases. Increasing the lining concrete grade leads to an increase in the internal force of the structure. The increase in the elastic modulus of the surrounding rock in the fault area reduces the bending moment and shear force of the structure and increases the axial force. The research results can provide a theoretical basis for the anti-dislocation design of tunnels crossing faults. Full article
(This article belongs to the Special Issue New Challenges of Underground Structures in Earthquake Engineering)
Show Figures

Figure 1

15 pages, 651 KiB  
Article
The Antecedents and Consequences of Strategic Renewal in Digital Transformation in the Context of Sustainability: An Empirical Analysis
by Jianying Xiao, Yitong Lu and Hui Zhang
Sustainability 2025, 17(15), 7055; https://doi.org/10.3390/su17157055 - 4 Aug 2025
Viewed by 36
Abstract
Sustainability has emerged as a critical issue in development. Digital transformation functions as both an enabler and an effective tool for promoting sustainability. Strategy plays a pivotal role in the process of digital transformation. However, there is a paucity of existing research focused [...] Read more.
Sustainability has emerged as a critical issue in development. Digital transformation functions as both an enabler and an effective tool for promoting sustainability. Strategy plays a pivotal role in the process of digital transformation. However, there is a paucity of existing research focused on strategic renewal in digital transformation within the context of China. This study employs organizational learning theory to examine the antecedents and consequences of strategic renewal in digital transformation. Data were collected from 389 government employees through a questionnaire survey and a quantitative analysis was performed to evaluate four hypotheses using structural equation modeling (SEM). The results indicate that knowledge acquisition and organizational memory significantly influence strategic renewal, which in turn affects government performance. The findings of this study could serve as a guide and provide concrete practical approaches for successful digital transformation among governments, thereby laying a foundation for sustainable development. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Exploring the Influence of NaOH Catalyst on the Durability of Liquid Calcium Aluminate Cement Concrete
by Chung-Lin Lin, Chia-Jung Tsai, Leila Fazeldehkordi, Wen-Shinn Shyu, Chih-Wei Lu and Jin-Chen Hsu
Materials 2025, 18(15), 3655; https://doi.org/10.3390/ma18153655 - 4 Aug 2025
Viewed by 56
Abstract
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC [...] Read more.
Liquid calcium aluminate cement (LCAC) is an innovative material technology with significant potential for varied applications in civil engineering. However, despite its promising results, a significant gap remains in the direct application of LCAC as a concrete binder. The primary catalysts for LCAC are sodium hydroxide (NaOH) and potassium hydroxide (KOH). Therefore, it is crucial to investigate the effects of sodium and potassium ions on alkali–aggregate reactions in concrete structures. This study evaluated the durability of liquid calcium aluminate cement concrete catalyzed using four different concentrations of NaOH (0.5%, 1.0%, 1.5%, and 2.0%) as experimental variables, incorporating a control group of traditional concrete with a water–cement ratio of 0.64. The findings indicate that NaOH catalysis in the concrete significantly trigger alkali–aggregate reactions, leading to volume expansion. Furthermore, it increased chloride ion penetration and porosity in the concrete. These effects were more notable with the increase in NaOH concentration. The results suggested that NaOH catalysis can enhance certain chemical reactions within the concrete matrix; however, its concentration must be carefully controlled to mitigate adverse effects. The NaOH dosage should be limited to 0.5% to ensure optimal durability of the concrete. This study emphasizes the crucial importance of precisely balancing catalyst concentration to maintain the long-term durability and performance of liquid calcium aluminate cement concrete in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

44 pages, 6212 KiB  
Article
A Hybrid Deep Reinforcement Learning Architecture for Optimizing Concrete Mix Design Through Precision Strength Prediction
by Ali Mirzaei and Amir Aghsami
Math. Comput. Appl. 2025, 30(4), 83; https://doi.org/10.3390/mca30040083 - 3 Aug 2025
Viewed by 182
Abstract
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework [...] Read more.
Concrete mix design plays a pivotal role in ensuring the mechanical performance, durability, and sustainability of construction projects. However, the nonlinear interactions among the mix components challenge traditional approaches in predicting compressive strength and optimizing proportions. This study presents a two-stage hybrid framework that integrates deep learning with reinforcement learning to overcome these limitations. First, a Convolutional Neural Network–Long Short-Term Memory (CNN–LSTM) model was developed to capture spatial–temporal patterns from a dataset of 1030 historical concrete samples. The extracted features were enhanced using an eXtreme Gradient Boosting (XGBoost) meta-model to improve generalizability and noise resistance. Then, a Dueling Double Deep Q-Network (Dueling DDQN) agent was used to iteratively identify optimal mix ratios that maximize the predicted compressive strength. The proposed framework outperformed ten benchmark models, achieving an MAE of 2.97, RMSE of 4.08, and R2 of 0.94. Feature attribution methods—including SHapley Additive exPlanations (SHAP), Elasticity-Based Feature Importance (EFI), and Permutation Feature Importance (PFI)—highlighted the dominant influence of cement content and curing age, as well as revealing non-intuitive effects such as the compensatory role of superplasticizers in low-water mixtures. These findings demonstrate the potential of the proposed approach to support intelligent concrete mix design and real-time optimization in smart construction environments. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

22 pages, 337 KiB  
Review
Contract Mechanisms for Value-Based Technology Adoption in Healthcare Systems
by Aydin Teymourifar
Systems 2025, 13(8), 655; https://doi.org/10.3390/systems13080655 - 3 Aug 2025
Viewed by 92
Abstract
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and [...] Read more.
Although technological innovations are often intended to improve quality and efficiency, they can exacerbate systemic challenges when not aligned with the principles of value-based care. As a result, healthcare systems in many countries face persistent inefficiencies stemming from the overuse, underuse, misuse, and waste associated with the adoption of health technology. This narrative review examines the dual impact of healthcare technology and evaluates how contract mechanisms can serve as strategic tools for promoting cost-effective, outcome-oriented integration. Drawing from healthcare management, and supply chain literature, this paper analyzes various payment and contract models, including performance-based, bundled, cost-sharing, and revenue-sharing agreements, through the lens of stakeholder alignment. It explores how these mechanisms influence provider behavior, patient access, and system sustainability. The study contends that well-designed contract mechanisms can align stakeholder incentives, reduce inefficiencies, and support the delivery of high-value care across diverse healthcare settings. We provide concrete examples to illustrate how various contract mechanisms impact the integration of health technologies in practice. Full article
(This article belongs to the Special Issue Operations Management in Healthcare Systems)
23 pages, 1032 KiB  
Article
Performance Optimization of Grounding System for Multi-Voltage Electrical Installation
by Md Tanjil Sarker, Marran Al Qwaid, Md Sabbir Hossen and Gobbi Ramasamy
Appl. Sci. 2025, 15(15), 8600; https://doi.org/10.3390/app15158600 (registering DOI) - 2 Aug 2025
Viewed by 130
Abstract
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, [...] Read more.
Grounding systems are critical for ensuring electrical safety, fault current dissipation, and electromagnetic compatibility in power installations across different voltage levels. This research presents a comparative study on the optimization of grounding configurations for 400 V, 10 kV, and 35 kV electrical installations, focusing on key performance parameters such as grounding resistance, step and touch voltages, and fault current dissipation efficiency. The study employs computational simulations using the finite element method (FEM) alongside empirical field measurements to evaluate the influence of soil resistivity, electrode materials, and grounding configurations, including rod electrodes, grids, deep-driven rods, and hybrid grounding systems. Results indicate that soil resistivity significantly affects grounding efficiency, with deep-driven rods providing superior performance in high-resistivity conditions, while grounding grids demonstrate enhanced fault current dissipation in substations. The integration of conductive backfill materials, such as bentonite and conductive concrete, further reduces grounding resistance and enhances system reliability. This study provides engineering insights into optimizing grounding systems based on installation voltage levels, cost considerations, and compliance with IEEE Std 80-2013 and IEC 60364-5-54. The findings contribute to the development of more resilient and cost-effective grounding strategies for electrical installations. Full article
Show Figures

Figure 1

23 pages, 5280 KiB  
Article
Seismic Damage Pattern Analysis of Long-Span CFST Arch Bridges Based on Damper Configuration Strategies
by Bin Zhao, Longhua Zeng, Qingyun Chen, Chao Gan, Lueqin Xu and Guosi Cheng
Buildings 2025, 15(15), 2728; https://doi.org/10.3390/buildings15152728 - 2 Aug 2025
Viewed by 184
Abstract
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. [...] Read more.
Variations in damper configuration strategies have a direct impact on the seismic damage patterns of long-span deck-type concrete-filled steel tube (CFST) arch bridges. This study developed an analysis and evaluation framework to identify the damage category, state, and progression sequence of structural components. The framework aims to investigate the influence of viscous dampers on the seismic response and damage patterns of long-span deck-type CFST arch bridges under near-fault pulse-like ground motions. The effects of different viscous damper configuration strategies and design parameters on seismic responses of long-span deck-type CFST arch bridges were systematically investigated, and the preferred configuration and parameter set were identified. The influence of preferred viscous damper configurations on seismic damage patterns of long-span deck-type CFST arch bridges was systematically analyzed through the established analysis and evaluation frameworks. The results indicate that a relatively optimal reduction in bridge response can be achieved when viscous dampers are simultaneously installed at both the abutments and the approach piers. Minimum seismic responses were attained at a damping exponent α = 0.2 and damping coefficient C = 6000 kN/(m/s), demonstrating stability in mitigating vibration effects on arch rings and bearings. In the absence of damper implementation, the lower chord arch foot section is most likely to experience in-plane bending failure. The piers, influenced by the coupling effect between the spandrel construction and the main arch ring, are more susceptible to damage as their height decreases. Additionally, the end bearings are more prone to failure compared to the central-span bearings. Implementation of the preferred damper configuration strategy maintains essentially consistent sequences in seismic-induced damage patterns of the bridge, but the peak ground motion intensity causing damage to the main arch and spandrel structure is significantly increased. This strategy enhances the damage-initiation peak ground acceleration (PGA) for critical sections of the main arch, while concurrently reducing transverse and longitudinal bending moments in pier column sections. The proposed integrated analysis and evaluation framework has been validated for its applicability in capturing the seismic damage patterns of long-span deck-type CFST arch bridges. Full article
Show Figures

Figure 1

Back to TopTop