Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,735)

Search Parameters:
Keywords = infiltrants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3451 KiB  
Article
Transcriptional Repression of CCL2 by KCa3.1 K+ Channel Activation and LRRC8A Anion Channel Inhibition in THP-1-Differentiated M2 Macrophages
by Miki Matsui, Junko Kajikuri, Hiroaki Kito, Yohei Yamaguchi and Susumu Ohya
Int. J. Mol. Sci. 2025, 26(15), 7624; https://doi.org/10.3390/ijms26157624 - 6 Aug 2025
Abstract
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful [...] Read more.
We investigated the role of the intermediate-conductance, Ca2+-activated K+ channel KCa3.1 and volume-regulatory anion channel LRRC8A in regulating C-C motif chemokine ligand 2 (CCL2) expression in THP-1-differentiated M2 macrophages (M2-MACs), which serve as a useful model for studying tumor-associated macrophages (TAMs). CCL2 is a potent chemoattractant involved in the recruitment of immunosuppressive cells and its expression is regulated through intracellular signaling pathways such as ERK, JNK, and Nrf2 in various types of cells including macrophages. The transcriptional expression of CCL2 was suppressed in M2-MACs following treatment with a KCa3.1 activator or an LRRC8A inhibitor via distinct signaling pathways: ERK–CREB2 and JNK–c-Jun pathways for KCa3.1, and the NOX2–Nrf2–CEBPB pathway for LRRC8A. Under in vitro conditions mimicking the elevated extracellular K+ concentration ([K+]e) characteristic of the tumor microenvironment (TME), CCL2 expression was markedly upregulated, and this increase was reversed by treatment with them in M2-MACs. Additionally, the WNK1–AMPK pathway was, at least in part, involved in the high [K+]e-induced upregulation of CCL2. Collectively, modulating KCa3.1 and LRRC8A activities offers a promising strategy to suppress CCL2 secretion in TAMs, potentially limiting the CCL2-induced infiltration of immunosuppressive cells (TAMs, Tregs, and MDSCs) in the TME. Full article
(This article belongs to the Special Issue Regulation of Ion Channels and Transporters)
Show Figures

Figure 1

13 pages, 1536 KiB  
Article
Gosha-Jinki-Gan Reduces Inflammation in Chronic Ischemic Stroke Mouse Models by Suppressing the Infiltration of Macrophages
by Mingli Xu, Kaori Suyama, Kenta Nagahori, Daisuke Kiyoshima, Satomi Miyakawa, Hiroshi Deguchi, Yasuhiro Katahira, Izuru Mizoguchi, Hayato Terayama, Shogo Hayashi, Takayuki Yoshimoto and Ning Qu
Biomolecules 2025, 15(8), 1136; https://doi.org/10.3390/biom15081136 - 6 Aug 2025
Abstract
Ischemic stroke is a primary cause of cerebrovascular diseases and continues to be one of the leading causes of death and disability among patients worldwide. Pathological processes caused by vascular damage due to stroke occur in a time-dependent manner and are classified into [...] Read more.
Ischemic stroke is a primary cause of cerebrovascular diseases and continues to be one of the leading causes of death and disability among patients worldwide. Pathological processes caused by vascular damage due to stroke occur in a time-dependent manner and are classified into three categories: acute, subacute, and chronic. Current treatments for ischemic stroke are limited to effectiveness in the early stages. In this study, we investigated the therapeutic effect of an oriental medicine, Gosha-jinki-gan (TJ107), on improving chronic ischemic stroke using the mouse model with middle cerebral artery occlusion (MCAO). The changes in the intracerebral inflammatory response (macrophages (F4/80), TLR24, IL-23, IL-17, TNF-α, and IL-1β) were examined using real-time RT-PCR. The MCAO mice showed the increased expression of glial fibrillary acidic protein (GFAP) and of F4/80, TLR2, TLR4, IL-1β, TNF-α, and IL-17 in the brain tissue from the MCAO region. This suggests that they contribute to the expansion of the ischemic stroke infarct area and to the worsening of the neurological symptoms of the MCAO mice in the chronic phase. On the other hand, the administration of TJ107 was proven to reduce the infarct area, with decreased GFAP expression, suppressed macrophage infiltration in the brain, and reduced TNF-α, IL-1β, and IL-17 production compared with the MCAO mice. This study first demonstrated Gosha-jinki-gan’s therapeutic effects on the chronic ischemic stroke. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Novel Treatments of Stroke)
Show Figures

Figure 1

51 pages, 2489 KiB  
Review
Immunomodulatory Effects of Gold Nanoparticles: Impacts on Immune Cells and Mechanisms of Action
by Khadijeh Koushki, Prapannajeet Biswal, Geraldine Vidhya Vijay, Mahvash Sadeghi, Sajad Dehnavi, Ngoc Tuyet Tra, Sai Kumar Samala, Mahdieh Yousefi Taba, Arjun Balaji Vasan, Emily Han, Yuri Mackeyev and Sunil Krishnan
Nanomaterials 2025, 15(15), 1201; https://doi.org/10.3390/nano15151201 - 6 Aug 2025
Abstract
Traditional anti-inflammatory medications—such as corticosteroids, biological agents, and non-steroidal anti-inflammatory drugs—are commonly employed to mitigate inflammation, despite their potential for debilitating side effects. There is a growing need for alternative next-generation therapies for symptomatic, unchecked, and/or detrimental inflammation with more favorable adverse effect [...] Read more.
Traditional anti-inflammatory medications—such as corticosteroids, biological agents, and non-steroidal anti-inflammatory drugs—are commonly employed to mitigate inflammation, despite their potential for debilitating side effects. There is a growing need for alternative next-generation therapies for symptomatic, unchecked, and/or detrimental inflammation with more favorable adverse effect profiles. The long history of use of gold salts as anti-inflammatory agents and the more recent exploration of gold nanoparticle (AuNP) formulations for clinical indications suggest that the targeted delivery of nanoparticles to inflammatory sites may be a promising approach worth investigating. Coupled with peptides that specifically target immune cells, AuNPs could potently counteract inflammation. Here, we provide an overview of the selective infiltration of AuNPs into immune cells and summarize their interactions with and impact on these cells. Additionally, we provide a comprehensive mechanistic summary of how AuNPs exert their anti-inflammatory effects. Full article
(This article belongs to the Special Issue Roadmaps for Nanomaterials in Radiation Therapy)
Show Figures

Figure 1

17 pages, 1788 KiB  
Article
Impact of Major Pelvic Ganglion Denervation on Prostate Histology, Immune Response, and Serum Prolactin and Testosterone Levels in Rats
by Pabeli Saraí Becerra-Romero, Cynthia Fernández-Pomares, Juan Carlos Rodríguez-Alba, Jorge Manzo, Gonzalo E. Aranda-Abreu, Fausto Rojas-Durán, Deissy Herrera-Covarrubias, María Rebeca Toledo-Cárdenas, Genaro Alfonso Coria-Ávila and Maria Elena Hernández-Aguilar
Immuno 2025, 5(3), 33; https://doi.org/10.3390/immuno5030033 - 6 Aug 2025
Abstract
The prostate gland, a male accessory reproductive organ, is regulated by hormonal inputs and autonomic innervation from the major pelvic ganglion. This study examined the effects of major pelvic ganglion denervation on prostate histology, immune cell infiltration, and systemic levels of prolactin, testosterone, [...] Read more.
The prostate gland, a male accessory reproductive organ, is regulated by hormonal inputs and autonomic innervation from the major pelvic ganglion. This study examined the effects of major pelvic ganglion denervation on prostate histology, immune cell infiltration, and systemic levels of prolactin, testosterone, and cytokines in rats. Male Wistar rats (300–350 g) were divided into groups receiving bilateral axotomy of the hypogastric nerve, the pelvic nerve, or both, alongside with a sham-operated control. After 15 days, the animals were killed, and prostate tissue was dissociated in DMEM medium containing DNase I and collagenase. The dissociated cells were stained with fluorochrome-conjugated antibodies, and cell characterization was performed using a flow cytometer. Hematoxylin and eosin (H&E) staining was used to analyze histological characteristics, while testosterone, prolactin, and interleukin levels were measured via ELISA. Histological analysis revealed inflammatory atypical hypertrophy e hiperplasia. Immunological assessments demonstrated increased leukocytes, T lymphocytes (CD4+ and CD8+), B lymphocytes, and macrophages following double nerve axotomy. Serum analyses showed elevated pro-inflammatory cytokines IL-1β, IL-6, and IFN-γ, as well as anti-inflammatory IL-10, in denervated animals. Hormonal assessments revealed significant increases in serum prolactin and testosterone levels after double axotomy. Loss of neural control may promote pathological prostate changes via inflammation and hormonal dysregulation, offering insights into neuroimmune and neuroendocrine mechanisms underlying prostate pathologies. Full article
Show Figures

Figure 1

20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

28 pages, 1146 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

12 pages, 2363 KiB  
Article
MCC950 Alleviates Fat Embolism-Induced Acute Respiratory Distress Syndrome Through Dual Modulation of NLRP3 Inflammasome and ERK Pathways
by Chin-Kuo Lin, Zheng-Wei Chen, Yu-Hao Lin, Cheng-Ta Yang, Chung-Sheng Shi, Chieh-Mo Lin, Tzu Hsiung Huang, Justin Ching Hsien Lu, Kwok-Tung Lu and Yi-Ling Yang
Int. J. Mol. Sci. 2025, 26(15), 7571; https://doi.org/10.3390/ijms26157571 - 5 Aug 2025
Abstract
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and [...] Read more.
Fat embolism is a critical medical emergency often resulting from long bone fractures or amputations, leading to acute respiratory distress syndrome (ARDS). The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity, is activated by reactive oxygen species and tissue damage, contributing to inflammatory responses. This study examines the role of NLRP3 in fat embolism-induced ARDS and evaluates the therapeutic potential of MCC950, a selective NLRP3 antagonist. Fat embolism was induced by fatty micelle injection into the tail vein of Sprague Dawley rats. Pulmonary injury was assessed through lung weight gain as an edema indicator, NLRP3 expression via Western blot, and IL-1β levels using ELISA. Histological damage and macrophage infiltration were evaluated with hematoxylin and eosin staining. Fat embolism significantly increased pulmonary NLRP3 expression, lipid peroxidation, IL-1β release, and macrophage infiltration within four hours, accompanied by severe pulmonary edema. NLRP3 was localized in type I alveolar cells, co-localizing with aquaporin 5. Administration of MCC950 significantly reduced inflammatory responses, lipid peroxidation, pulmonary edema, and histological damage, while attenuating MAPK cascade phosphorylation of ERK and Raf. These findings suggest that NLRP3 plays a critical role in fat embolism-induced acute respiratory distress syndrome, and its inhibition by MCC950 may offer a promising therapeutic approach. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

22 pages, 2219 KiB  
Article
Numerical Modeling of Expansive Soil Behavior Using an Effective Stress-Based Constitutive Relationship for Unsaturated Soils
by Sahand Seyfi, Ali Ghassemi and Rashid Bashir
Geotechnics 2025, 5(3), 53; https://doi.org/10.3390/geotechnics5030053 - 5 Aug 2025
Abstract
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that [...] Read more.
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that links the soil void ratio to both net stress and matric suction. A large number of fitting parameters are typically needed to accurately fit a two-variable void ratio surface equation to laboratory test data. In this study, a single-stress state variable framework was adopted to describe the void ratio as a function of effective stress for unsaturated soils. The proposed approach was applied to fit void ratio–effective stress constitutive curves to laboratory test data for two different expansive clays. Additionally, a finite element model coupling variably saturated flow and stress–strain analysis was developed to simulate the volume change behavior of expansive clay subjected to moisture fluctuations. The model utilizes suction stress to compute the effective stress field and incorporates the dependency of soil modulus on volumetric water content based on the proposed void ratio–effective stress relationship. The developed numerical model was validated against a benchmark problem in which a layer of Regina expansive clay was subjected to a constant infiltration rate. The results demonstrate the effectiveness of the proposed model in simulating expansive soil deformations under varying moisture conditions over time. Full article
Show Figures

Figure 1

16 pages, 2609 KiB  
Article
MicroRNA210 Suppresses Mitochondrial Metabolism and Promotes Microglial Activation in Neonatal Hypoxic–Ischemic Brain Injury
by Shirley Hu, Yanelly Lopez-Robles, Guofang Shen, Elena Liu, Lubo Zhang and Qingyi Ma
Cells 2025, 14(15), 1202; https://doi.org/10.3390/cells14151202 - 5 Aug 2025
Abstract
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms [...] Read more.
Neuroinflammation is the major contributor to the pathology of neonatal hypoxic–ischemic (HI) brain injury. Our previous studies have demonstrated that microRNA210 (miR210) inhibition with antisense locked nucleic acid (LNA) inhibitor mitigates neuroinflammation and provides neuroprotection after neonatal HI insult. However, the underlying mechanisms remain elusive. In the present study, using miR210 knockout (KO) mice and microglial cultures, we tested the hypothesis that miR210 promotes microglial activation and neuroinflammation through suppressing mitochondrial function in microglia after HI. Neonatal HI brain injury was conducted on postnatal day 9 (P9) wild-type (WT) and miR210 knockout (KO) mouse pups. We found that miR210 KO significantly reduced brain infarct size at 48 h and improved long-term locomotor functions assessed by an open field test three weeks after HI. Moreover, miR210 KO mice exhibited reduced IL1β levels, microglia activation and immune cell infiltration after HI. In addition, in vitro studies of microglia exposed to oxygen–glucose deprivation (OGD) revealed that miR210 inhibition with LNA reduced OGD-induced expression of Il1β and rescued OGD-mediated downregulation of mitochondrial iron–sulfur cluster assembly enzyme (ISCU) and mitochondrial oxidative phosphorylation activity. To validate the link between miR210 and microglia activation, isolated primary murine microglia were transfected with miR210 mimic or negative control. The results showed that miR210 mimic downregulated the expression of mitochondrial ISCU protein abundance and induced the expression of proinflammatory cytokines similar to the effect observed with ISCU silencing RNA. In summary, our results suggest that miR210 is a key regulator of microglial proinflammatory activation through reprogramming mitochondrial function in neonatal HI brain injury. Full article
(This article belongs to the Special Issue Non-Coding RNAs as Regulators of Cellular Function and Disease)
Show Figures

Figure 1

11 pages, 1311 KiB  
Case Report
Multisystemic Tuberculosis Masquerading as Aggressive Cardiac Tumor Causing Budd–Chiari Syndrome Disseminated to the Brain Resulting in Death of a Six-Year-Old Boy
by Eman S. Al-Akhali, Sultan Abdulwadoud Alshoabi, Halah Fuad Muslem, Fahad H. Alhazmi, Amirah F. Alsaedi, Kamal D. Alsultan, Amel F. Alzain, Awatif M. Omer, Maisa Elzaki and Abdullgabbar M. Hamid
Pathogens 2025, 14(8), 772; https://doi.org/10.3390/pathogens14080772 - 5 Aug 2025
Abstract
Tuberculosis (TB) is an ancient and re-emerging granulomatous infectious disease that continues to challenge public health. Early diagnosis and prompt effective treatment are crucial for preventing disease progression and reducing both morbidity and mortality. These steps play a vital role in infection control [...] Read more.
Tuberculosis (TB) is an ancient and re-emerging granulomatous infectious disease that continues to challenge public health. Early diagnosis and prompt effective treatment are crucial for preventing disease progression and reducing both morbidity and mortality. These steps play a vital role in infection control and in lowering death rates at both individual and population levels. Although diagnostic methods have improved sufficiently in recent decades, TB can still present with ambiguous laboratory and imaging features. This ambiguity can lead to diagnostic pitfalls and potentially disastrous outcomes due to delayed diagnosis. In this article, we present a case of TB that was difficult to diagnose. The disease had invaded the mediastinum, right atrium, right coronary artery, and inferior vena cava (IVC), resulting in Budd–Chiari syndrome. This rare presentation created clinical, laboratory, and radiological confusion, resulting in a diagnostic dilemma that ultimately led to open cardiac surgery. The patient initially presented with progressive shortness of breath on exertion and fatigue, which suggested possible heart disease. This suspicion was reinforced by computed tomography (CT) imaging, which showed infiltrative mass lesions predominantly in the right side of the heart, invading the right coronary artery and IVC, with imaging features mimicking angiosarcoma. Although laboratory findings revealed an exudative effusion with lymphocyte predominance and elevated adenosine deaminase (ADA), the Gram stain was negative for bacteria, and an acid-fast bacilli (AFB) smear was also negative. These findings contributed to diagnostic uncertainty and delayed the confirmation of TB. Open surgery with excisional biopsy and histopathological analysis ultimately confirmed TB. We conclude that TB should not be ruled out solely based on negative Mycobacterium bacteria in pericardial effusion or AFB smear. TB can mimic aggressive tumors such as angiosarcoma or lymphoma with invasion of the surrounding tissues and blood vessels. Awareness of the clinical presentation, imaging findings, and potential diagnostic pitfalls of TB is essential, especially in endemic regions. Full article
Show Figures

Figure 1

23 pages, 9844 KiB  
Article
Mechanistic Exploration of Aristolochic Acid I-Induced Hepatocellular Carcinoma: Insights from Network Toxicology, Machine Learning, Molecular Docking, and Molecular Dynamics Simulation
by Tiantaixi Tu, Tongtong Zheng, Hangqi Lin, Peifeng Cheng, Ye Yang, Bolin Liu, Xinwang Ying and Qingfeng Xie
Toxins 2025, 17(8), 390; https://doi.org/10.3390/toxins17080390 - 5 Aug 2025
Abstract
This study explores how aristolochic acid I (AAI) drives hepatocellular carcinoma (HCC). We first employ network toxicology and machine learning to map the key molecular target genes. Next, our research utilizes molecular docking to evaluate how AAI binds to these targets, and finally [...] Read more.
This study explores how aristolochic acid I (AAI) drives hepatocellular carcinoma (HCC). We first employ network toxicology and machine learning to map the key molecular target genes. Next, our research utilizes molecular docking to evaluate how AAI binds to these targets, and finally confirms the stability and dynamics of the resulting complexes through molecular dynamics simulations. We identified 193 overlapping target genes between AAI and HCC through databases such as PubChem, OMIM, and ChEMBL. Machine learning algorithms (SVM-RFE, random forest, and LASSO regression) were employed to screen 11 core genes. LASSO serves as a rapid dimension-reduction tool, SVM-RFE recursively eliminates the features with the smallest weights, and Random Forest achieves ensemble learning through decision trees. Protein–protein interaction networks were constructed using Cytoscape 3.9.1, and key genes were validated through GO and KEGG enrichment analyses, an immune infiltration analysis, a drug sensitivity analysis, and a survival analysis. Molecular-docking experiments showed that AAI binds to each of the core targets with a binding affinity stronger than −5 kcal mol−1, and subsequent molecular dynamics simulations verified that these complexes remain stable over time. This study determined the potential molecular mechanisms underlying AAI-induced HCC and identified key genes (CYP1A2, ESR1, and AURKA) as potential therapeutic targets, providing valuable insights for developing targeted strategies to mitigate the health risks associated with AAI exposure. Full article
(This article belongs to the Section Plant Toxins)
Show Figures

Graphical abstract

8 pages, 675 KiB  
Case Report
A Case of Pediatric Subcutaneous Panniculitis-like T-Cell Lymphoma Successfully Treated with Immunosuppressive Therapy
by Min Chong Kim, Dong Hoon Shin and Jae Min Lee
Children 2025, 12(8), 1029; https://doi.org/10.3390/children12081029 - 5 Aug 2025
Abstract
Introduction: Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a very rare subtype of cutaneous T-cell lymphoma. It is characterized by the neoplastic infiltration of subcutaneous adipose tissue. Its clinical presentation, including subcutaneous nodules, fever, and systemic symptoms, often mimics inflammatory panniculitis, making diagnosis difficult. [...] Read more.
Introduction: Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a very rare subtype of cutaneous T-cell lymphoma. It is characterized by the neoplastic infiltration of subcutaneous adipose tissue. Its clinical presentation, including subcutaneous nodules, fever, and systemic symptoms, often mimics inflammatory panniculitis, making diagnosis difficult. Case Presentation: This case report describes a 14-year-old female presenting with fever, limb pain, swelling, and subcutaneous nodules, who was ultimately diagnosed with SPTCL via punch biopsy and BIOMED-2 clonality assays, confirming positive T-cell receptor-γ chain gene rearrangement. Positron emission tomography–computed tomography revealed diffuse subcutaneous involvement across multiple body regions. Methylprednisolone and cyclosporine A treatment rapidly resolved her symptoms, with laboratory parameters, including ferritin and inflammatory markers, showing significant improvement. Next-generation sequencing identified a heterozygous C9 gene mutation (c.346C>T, p.Arg116Ter), adding a novel genetic dimension to the case. Following a tapered discontinuation of immunosuppressive therapy, the patient achieved sustained remission without relapse for over 1 year. Conclusions: We report a case of adolescent SPTCL treated with immunosuppressive therapy and suggest that immunosuppressive therapy should be considered before chemotherapy in pediatric patients with SPTCL but without HLH. Full article
Show Figures

Figure 1

31 pages, 9610 KiB  
Article
Can the Building Make a Difference to User’s Health in Indoor Environments? The Influence of PM2.5 Vertical Distribution on the IAQ of a Student House over Two Periods in Milan in 2024
by Yong Yu, Marco Gola, Gaetano Settimo and Stefano Capolongo
Atmosphere 2025, 16(8), 936; https://doi.org/10.3390/atmos16080936 (registering DOI) - 4 Aug 2025
Abstract
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the [...] Read more.
This study investigates indoor and outdoor air quality monitoring in a student dormitory located in northern Milan (Italy) using low-cost sensors. This research compares two monitoring periods in June and October 2024 to examine common PM2.5 vertical patterns and differences at the building level, as well as their influence on the indoor spaces at the corresponding positions. In each period, around 30 sensors were installed at various heights and orientations across indoor and outdoor spots for 2 weeks to capture spatial variations around the building. Meanwhile, qualitative surveys on occupation presence, satisfaction, and well-being were distributed in selected rooms. The analysis of PM2.5 data reveals that the building’s lower floors tended to have slightly higher outdoor PM2.5 concentrations, while the upper floors generally had lower PM2.5 indoor/outdoor (I/O) ratios, with the top-floor rooms often below 1. High outdoor humidity reduced PM infiltration, but when outdoor PM fell below 20 µg/m3 in these two periods, indoor sources became dominant, especially on the lower floors. Air pressure I/O differences had minimal impact on PM2.5 I/O ratios, though slightly positive indoor pressure might help prevent indoor PM infiltration. Lower ventilation in Period-2 possibly contributed to more reported symptoms, especially in rooms with higher PM from shared kitchens. While outdoor air quality affects IAQ, occupant behavior—especially window opening and ventilation management—remains crucial in minimizing indoor pollutants. Users can also manage exposure by ventilating at night based on comfort and avoiding periods of high outdoor PM. Full article
(This article belongs to the Special Issue Air Quality in Metropolitan Areas and Megacities (Second Edition))
Show Figures

Figure 1

23 pages, 4383 KiB  
Article
High-Yield Precursor-Derived Si-O Ceramics: Processing and Performance
by Xia Zhang, Bo Xiao, Yongzhao Hou and Guangwu Wen
Materials 2025, 18(15), 3666; https://doi.org/10.3390/ma18153666 - 4 Aug 2025
Abstract
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize [...] Read more.
The precursor-derived ceramic route is recognized as an advanced and efficient technique for fabricating ceramic matrix composites, particularly suitable for the development and microstructural tailoring of continuous fiber-reinforced ceramic matrix composites. In this work, octamethylcyclotetrasiloxane and tetravinylcyclotetrasiloxane were employed as monomers to synthesize a branched siloxane via ring-opening polymerization. A subsequent hydrosilylation reaction led to the formation of polyvinylsiloxane with a three-dimensional crosslinked structure. The precursor exhibited excellent fluidity, adjustable viscosity, and superior thermosetting characteristics, enabling efficient impregnation and densification of reinforcements through the polymer infiltration and pyrolysis process. Upon pyrolysis, the polyvinylsiloxane gradually converted from an organic polymer to an amorphous inorganic ceramic phase, yielding silicon oxycarbide ceramics with a high ceramic yield of 81.3%. Elemental analysis indicated that the resulting ceramic mainly comprised silicon and oxygen, with a low carbon content. Furthermore, the material demonstrated a stable dielectric constant (~2.5) and low dielectric loss (<0.01), which are beneficial for enhanced thermal stability and dielectric performance. These findings offer a promising precursor system and process reference for the low-cost production of high-performance, multifunctional ceramic matrix composites with strong potential for engineering applications. Full article
(This article belongs to the Special Issue Processing and Microstructure Design of Advanced Ceramics)
Show Figures

Figure 1

12 pages, 278 KiB  
Article
A Series of Severe and Critical COVID-19 Cases in Hospitalized, Unvaccinated Children: Clinical Findings and Hospital Care
by Vânia Chagas da Costa, Ulisses Ramos Montarroyos, Katiuscia Araújo de Miranda Lopes and Ana Célia Oliveira dos Santos
Epidemiologia 2025, 6(3), 40; https://doi.org/10.3390/epidemiologia6030040 - 4 Aug 2025
Abstract
Background/Objective: The COVID-19 pandemic profoundly transformed social life worldwide, indiscriminately affecting individuals across all age groups. Children have not been exempted from the risk of severe illness and death caused by COVID-19. Objective: This paper sought to describe the clinical findings, laboratory and [...] Read more.
Background/Objective: The COVID-19 pandemic profoundly transformed social life worldwide, indiscriminately affecting individuals across all age groups. Children have not been exempted from the risk of severe illness and death caused by COVID-19. Objective: This paper sought to describe the clinical findings, laboratory and imaging results, and hospital care provided for severe and critical cases of COVID-19 in unvaccinated children, with or without severe asthma, hospitalized in a public referral service for COVID-19 treatment in the Brazilian state of Pernambuco. Methods: This was a case series study of severe and critical COVID-19 in hospitalized, unvaccinated children, with or without severe asthma, conducted in a public referral hospital between March 2020 and June 2021. Results: The case series included 80 children, aged from 1 month to 11 years, with the highest frequency among those under 2 years old (58.8%) and a predominance of males (65%). Respiratory diseases, including severe asthma, were present in 73.8% of the cases. Pediatric multisystem inflammatory syndrome occurred in 15% of the children, some of whom presented with cardiac involvement. Oxygen therapy was required in 65% of the cases, mechanical ventilation in 15%, and 33.7% of the children required intensive care in a pediatric intensive care unit. Pulmonary infiltrates and ground-glass opacities were common findings on chest X-rays and CT scans; inflammatory markers were elevated, and the most commonly used medications were antibiotics, bronchodilators, and corticosteroids. Conclusions: This case series has identified key characteristics of children with severe and critical COVID-19 during a period when vaccines were not yet available in Brazil for the study age group. However, the persistence of low vaccination coverage, largely due to parental vaccine hesitancy, continues to leave children vulnerable to potentially severe illness from COVID-19. These findings may inform the development of public health emergency contingency plans, as well as clinical protocols and care pathways, which can guide decision-making in pediatric care and ensure appropriate clinical management, ultimately improving the quality of care provided. Full article
Back to TopTop