Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,936)

Search Parameters:
Keywords = individualized learning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3338 KB  
Article
Enhancing Migraine Classification Through Machine Learning: A Comparative Study of Ensemble Methods
by Raniya R. Sarra, Ayad E. Korial, Ivan Isho Gorial and Amjad J. Humaidi
Technologies 2025, 13(11), 500; https://doi.org/10.3390/technologies13110500 (registering DOI) - 1 Nov 2025
Abstract
A migraine is a common and complex neurological disorder affecting more than 90% of people globally. Traditional migraine diagnostic and classification methods are time-intensive and prone to error. In today’s world, where health and technology are closely connected, there is an urgent need [...] Read more.
A migraine is a common and complex neurological disorder affecting more than 90% of people globally. Traditional migraine diagnostic and classification methods are time-intensive and prone to error. In today’s world, where health and technology are closely connected, there is an urgent need for more advanced tools to accurately predict and classify migraine types. Machine learning (ML) has shown promise in automating migraine diagnoses and classification. However, individual ML classifiers may not always work well, which means that they need to be improved. In this paper, we used three ML classifiers that include decision tree, naïve Bayes, and k-nearest neighbor to classify seven different types of migraines. We also investigated ensemble classifiers like bagging, boosting, stacking, and majority voting to obtain better results. All classifiers were trained on a migraine dataset of 400 patients with 24 features. Before training the classifiers, we pre-processed the data by balancing the classes, removing useless features, and checking for correlations. After evaluating the performance, the results showed that majority voting achieved the highest accuracy improvement (7.59%), followed by boosting (6.55%), bagging (5.86%), and stacking (5.52%). These results indicate that the ensemble methods are effective in improving the classification accuracy of individual ML classifiers when it comes to classifying migraines. Full article
Show Figures

Figure 1

102 pages, 3538 KB  
Review
Mapping EEG Metrics to Human Affective and Cognitive Models: An Interdisciplinary Scoping Review from a Cognitive Neuroscience Perspective
by Evgenia Gkintoni and Constantinos Halkiopoulos
Biomimetics 2025, 10(11), 730; https://doi.org/10.3390/biomimetics10110730 (registering DOI) - 1 Nov 2025
Abstract
Background: Electroencephalography (EEG) offers millisecond-precision measurement of neural oscillations underlying human cognition and emotion. Despite extensive research, systematic frameworks mapping EEG metrics to psychological constructs remain fragmented. Objective: This interdisciplinary scoping review synthesizes current knowledge linking EEG signatures to affective and cognitive [...] Read more.
Background: Electroencephalography (EEG) offers millisecond-precision measurement of neural oscillations underlying human cognition and emotion. Despite extensive research, systematic frameworks mapping EEG metrics to psychological constructs remain fragmented. Objective: This interdisciplinary scoping review synthesizes current knowledge linking EEG signatures to affective and cognitive models from a neuroscience perspective. Methods: We examined empirical studies employing diverse EEG methodologies, from traditional spectral analysis to deep learning approaches, across laboratory and naturalistic settings. Results: Affective states manifest through distinct frequency-specific patterns: frontal alpha asymmetry (8–13 Hz) reliably indexes emotional valence with 75–85% classification accuracy, while arousal correlates with widespread beta/gamma power changes. Cognitive processes show characteristic signatures: frontal–midline theta (4–8 Hz) increases linearly with working memory load, alpha suppression marks attentional engagement, and theta/beta ratios provide robust cognitive load indices. Machine learning approaches achieve 85–98% accuracy for subject identification and 70–95% for state classification. However, significant challenges persist: spatial resolution remains limited (2–3 cm), inter-individual variability is substantial (alpha peak frequency: 7–14 Hz range), and overlapping signatures compromise diagnostic specificity across neuropsychiatric conditions. Evidence strongly supports integrated rather than segregated processing, with cross-frequency coupling mechanisms coordinating affective–cognitive interactions. Conclusions: While EEG-based assessment of mental states shows considerable promise for clinical diagnosis, brain–computer interfaces, and adaptive technologies, realizing this potential requires addressing technical limitations, standardizing methodologies, and establishing ethical frameworks for neural data privacy. Progress demands convergent approaches combining technological innovation with theoretical sophistication and ethical consideration. Full article
31 pages, 15872 KB  
Article
Gated Attention-Augmented Double U-Net for White Blood Cell Segmentation
by Ilyes Benaissa, Athmane Zitouni, Salim Sbaa, Nizamettin Aydin, Ahmed Chaouki Megherbi, Abdellah Zakaria Sellam, Abdelmalik Taleb-Ahmed and Cosimo Distante
J. Imaging 2025, 11(11), 386; https://doi.org/10.3390/jimaging11110386 (registering DOI) - 1 Nov 2025
Abstract
Segmentation of white blood cells is critical for a wide range of applications. It aims to identify and isolate individual white blood cells from medical images, enabling accurate diagnosis and monitoring of diseases. In the last decade, many researchers have focused on this [...] Read more.
Segmentation of white blood cells is critical for a wide range of applications. It aims to identify and isolate individual white blood cells from medical images, enabling accurate diagnosis and monitoring of diseases. In the last decade, many researchers have focused on this task using U-Net, one of the most used deep learning architectures. To further enhance segmentation accuracy and robustness, recent advances have explored the combination of U-Net with other techniques, such as attention mechanisms and aggregation techniques. However, a common challenge in white blood cell image segmentation is the similarity between the cells’ cytoplasm and other surrounding blood components, which often leads to inaccurate or incomplete segmentation due to difficulties in distinguishing low-contrast or subtle boundaries, leaving a significant gap for improvement. In this paper, we propose GAAD-U-Net, a novel architecture that integrates attention-augmented convolutions to better capture ambiguous boundaries and complex structures such as overlapping cells and low-contrast regions, followed by a gating mechanism to further suppress irrelevant feature information. These two key components are integrated in the Double U-Net base architecture. Our model achieves state-of-the-art performance on white blood cell benchmark datasets, with a 3.4% Dice score coefficient (DSC) improvement specifically on the SegPC-2021 dataset. The proposed model achieves superior performance as measured by mean the intersection over union (IoU) and DSC, with notably strong segmentation performance even for difficult images. Full article
(This article belongs to the Special Issue Computer Vision for Medical Image Analysis)
Show Figures

Figure 1

14 pages, 2486 KB  
Article
Machine Learning-Integrated Explainable Artificial Intelligence Approach for Predicting Steroid Resistance in Pediatric Nephrotic Syndrome: A Metabolomic Biomarker Discovery Study
by Fatma Hilal Yagin, Feyza Inceoglu, Cemil Colak, Amal K. Alkhalifa, Sarah A. Alzakari and Mohammadreza Aghaei
Pharmaceuticals 2025, 18(11), 1659; https://doi.org/10.3390/ph18111659 (registering DOI) - 1 Nov 2025
Abstract
Aim: Nephrotic syndrome (NS) represents a complex glomerular disorder with significant clinical heterogeneity across pediatric and adult populations. Although glucocorticosteroids have constituted the mainstay of therapeutic intervention for more than six decades, primary treatment resistance manifests in approximately 20% of pediatric patients and [...] Read more.
Aim: Nephrotic syndrome (NS) represents a complex glomerular disorder with significant clinical heterogeneity across pediatric and adult populations. Although glucocorticosteroids have constituted the mainstay of therapeutic intervention for more than six decades, primary treatment resistance manifests in approximately 20% of pediatric patients and 50% of adult cohorts. Steroid-resistant nephrotic syndrome (SRNS) is associated with substantially greater morbidity compared to steroid-sensitive nephrotic syndrome (SSNS), characterized by both iatrogenic glucocorticoid toxicity and progressive nephron loss with attendant decline in renal function. Based on this, the current study aims to develop a robust machine learning (ML) model integrated with explainable artificial intelligence (XAI) to distinguish SRNS and identify important biomarker candidate metabolites. Methods: In the study, biomarker candidate compounds obtained from proton nuclear magnetic resonance (1 H NMR) metabolomics analyses on plasma samples taken from 41 patients with NS (27 SSNS and 14 SRNS) were used. We developed ML models to predict steroid resistance in pediatric NS using metabolomic data. After preprocessing with MICE-LightGBM imputation for missing values (<30%) and standardization, the dataset was randomly split into training (80%) and testing (20%) sets, repeated 100 times for robust evaluation. Four supervised algorithms (XGBoost, LightGBM, AdaBoost, and Random Forest) were trained and evaluated using AUC, sensitivity, specificity, F1-score, accuracy, and Brier score. XAI methods including SHAP (for global feature importance and model interpretability) and LIME (for individual patient-level explanations) were applied to identify key metabolomic biomarkers and ensure clinical transparency of predictions. Results: Among four ML algorithms evaluated, Random Forest demonstrated superior performance with the highest accuracy (0.87 ± 0.12), sensitivity (0.90 ± 0.18), AUC (0.92 ± 0.09), and lowest Brier score (0.20 ± 0.03), followed by LightGBM, AdaBoost, and XGBoost. The superiority of the Random Forest model was confirmed by paired t-tests, which revealed significantly higher AUC and lower Brier scores compared to all other algorithms (p < 0.05). SHAP analysis identified key metabolomic biomarkers consistently across all models, including glucose, creatine, 1-methylhistidine, homocysteine, and acetone. Low glucose and creatine levels were positively associated with steroid resistance risk, while higher propylene glycol and carnitine concentrations increased SRNS probability. LIME analysis provided patient-specific interpretability, confirming these metabolomic patterns at individual level. The XAI approach successfully identified clinically relevant metabolomic signatures for predicting steroid resistance with high accuracy and interpretability. Conclusions: The present study successfully identified candidate metabolomic biomarkers capable of predicting SRNS prior to treatment initiation and elucidating critical molecular mechanisms underlying steroid resistance regulation. Full article
Show Figures

Graphical abstract

24 pages, 850 KB  
Review
Genetic Testing in Periodontitis: A Narrative Review on Current Applications, Limitations, and Future Perspectives
by Clarissa Modafferi, Cristina Grippaudo, Andrea Corvaglia, Vittoria Cristi, Mariacristina Amato, Pietro Rigotti, Alessandro Polizzi and Gaetano Isola
Genes 2025, 16(11), 1308; https://doi.org/10.3390/genes16111308 (registering DOI) - 1 Nov 2025
Abstract
Background: Periodontitis is a multifactorial inflammatory disease with a complex interplay between microbial, environmental, and host-related factors. Among host factors, genetic susceptibility plays a significant role in influencing both disease onset and progression. Over the past two decades, a wide range of [...] Read more.
Background: Periodontitis is a multifactorial inflammatory disease with a complex interplay between microbial, environmental, and host-related factors. Among host factors, genetic susceptibility plays a significant role in influencing both disease onset and progression. Over the past two decades, a wide range of genetic tests, ranging from single-nucleotide polymorphism (SNP) analysis to genome-wide association studies (GWAS), have been explored to assess individual risk profiles and potential treatment responses. However, despite initial enthusiasm, the clinical integration of genetic testing in periodontics remains limited. This narrative review aims to critically examine the current landscape of genetic testing in periodontitis, including commercially available tests, their scientific validity, and their clinical utility. Methods: Most relevant studies which were published in recent years were identified by using the major scientific search engines, including PubMed, Scopus, and Web of Science. Articles discussing genetic susceptibility, key gene polymorphisms, and emerging technologies were included in this narrative review. Results: Polymorphisms in genes coding for IL-1, IL-6, TNF-α, and in others involved in immune modulation and bone metabolism, are associated with periodontitis. Nevertheless, there are limitations related to heterogeneity in study design, population stratification, and gene–environment interactions. Moreover, emerging technologies, including polygenic risk scoring and machine learning approaches, may enhance the predictive value of genetic tools in periodontology. Conclusions: A deeper understanding of genetic susceptibility could pave the way for precision dentistry and personalized periodontal care, but significant hurdles remain before genetic testing can become a routine component of periodontal diagnostics. Full article
Show Figures

Figure 1

35 pages, 27817 KB  
Article
Mapping Coral Reef Habitats with ICESat-2 and Satellite Imagery: A Novel Spectral Unmixing Approach Compared to Machine Learning
by Gabrielle A. Trudeau, Mark Lyon, Kim Lowell and Jennifer A. Dijkstra
Remote Sens. 2025, 17(21), 3623; https://doi.org/10.3390/rs17213623 (registering DOI) - 31 Oct 2025
Abstract
Accurate, scalable mapping of coral reef habitats is essential for monitoring ecosystem health and detecting change over time. In this study, we introduce a novel mathematically based nonlinear spectral unmixing method for benthic habitat classification, which provides sub-pixel estimates of benthic composition, capturing [...] Read more.
Accurate, scalable mapping of coral reef habitats is essential for monitoring ecosystem health and detecting change over time. In this study, we introduce a novel mathematically based nonlinear spectral unmixing method for benthic habitat classification, which provides sub-pixel estimates of benthic composition, capturing the mixed benthic composition within individual pixels. We compare its performance against two machine learning approaches: semi-supervised K-Means clustering and AdaBoost decision trees. All models were applied to high-resolution PlanetScope satellite imagery and ICESat-2-derived terrain metrics. Models were trained using a ground truth dataset constructed from benthic photoquadrats collected at Heron Reef, Australia, with additional input features including band ratios, standardized band differences, and derived ICESat-2 metrics such as rugosity and slope. While AdaBoost achieved the highest overall accuracy (93.3%) and benefited most from ICESat-2 features, K-Means performed less well (85.9%) and declined when these metrics were included. The spectral unmixing method uniquely captured sub-pixel habitat abundance, offering a more nuanced and ecologically realistic view of reef composition despite lower discrete classification accuracy (64.8%). These findings highlight nonlinear spectral unmixing as a promising approach for fine-scale, transferable coral reef habitat mapping, especially in complex or heterogeneous reef environments. Full article
19 pages, 893 KB  
Review
Beyond the Sleep Lab: A Narrative Review of Wearable Sleep Monitoring
by Maria P. Mogavero, Giuseppe Lanza, Oliviero Bruni, Luigi Ferini-Strambi, Alessandro Silvani, Ugo Faraguna and Raffaele Ferri
Bioengineering 2025, 12(11), 1191; https://doi.org/10.3390/bioengineering12111191 (registering DOI) - 31 Oct 2025
Abstract
Sleep is a fundamental biological process essential for health and homeostasis. Traditionally investigated through laboratory-based polysomnography (PSG), sleep research has undergone a paradigm shift with the advent of wearable technologies that enable non-invasive, long-term, and real-world monitoring. This review traces the evolution from [...] Read more.
Sleep is a fundamental biological process essential for health and homeostasis. Traditionally investigated through laboratory-based polysomnography (PSG), sleep research has undergone a paradigm shift with the advent of wearable technologies that enable non-invasive, long-term, and real-world monitoring. This review traces the evolution from early analog and actigraphic methods to current multi-sensor and AI-driven wearable systems. We summarize major technological milestones, including the transition from movement-based to physiological and biochemical sensing, and the growing role of edge computing and deep learning in automated sleep staging. Comparative studies with PSG are discussed, alongside the strengths and limitations of emerging devices such as wristbands, rings, headbands, and camera-based systems. The clinical applications of wearable sleep monitors are examined in relation to remote patient management, personalized medicine, and large-scale population research. Finally, we outline future directions toward integrating multimodal biosensing, transparent algorithms, and standardized validation frameworks. By bridging laboratory precision with ecological validity, wearable technologies promise to redefine the gold standard for sleep monitoring, advancing both individualized care and population-level health assessment. Full article
(This article belongs to the Section Biosignal Processing)
12 pages, 745 KB  
Article
Artificial Intelligence-Assisted Wrist Radiography Analysis in Orthodontics: Classification of Maturation Stage
by Nursezen Kavasoglu, Omer Faruk Ertugrul, Seda Kotan, Yunus Hazar and Veysel Eratilla
Appl. Sci. 2025, 15(21), 11681; https://doi.org/10.3390/app152111681 (registering DOI) - 31 Oct 2025
Abstract
This study aims to evaluate the ability of an artificial intelligence (AI) model developed for use in the field of orthodontics to accurately and reliably classify skeletal maturation stages of individuals using hand–wrist radiographs. A total of 809 grayscale hand–wrist radiographs (250 × [...] Read more.
This study aims to evaluate the ability of an artificial intelligence (AI) model developed for use in the field of orthodontics to accurately and reliably classify skeletal maturation stages of individuals using hand–wrist radiographs. A total of 809 grayscale hand–wrist radiographs (250 × 250 px; pre-peak n = 400, peak n = 100, post-peak n = 309) were analyzed using four complementary image-based feature extraction methods: Local Binary Pattern (LBP), Histogram of Oriented Gradients (HOG), Zernike Moments (ZM), and Intensity Histogram (IH). These methods generated 2355 features per image, of which 2099 were retained after variance thresholding. The most informative 1250 features were selected using the ANOVA F-test and classified with a stacking-based machine learning (ML) architecture composed of Light Gradient Boosting Machine (LightGBM) and Logistic Regression (LR) as base learners, and Random Forest (RF) as the meta-learner. Across all evaluation folds, the average performance of the model was Accuracy = 83.42%, Precision = 84.48%, Recall = 83.42%, and F1 = 83.50%. The proposed model achieved 87.5% accuracy, 87.8% precision, 87.5% recall, and an F1-score of 87.6% in 10-fold cross-validation, with a macro-average area under the ROC curve (AUC) of 0.96. The pre-peak stage, corresponding to the period of maximum growth velocity, was identified with 92.5% accuracy. These findings indicate that integrating handcrafted radiographic features with ensemble learning can enhance diagnostic precision, reduce observer variability, and accelerate evaluation. The model provides an interpretable and clinically applicable AI-based decision-support tool for skeletal maturity assessment in orthodontic practice. Full article
25 pages, 2287 KB  
Article
Identification of Cotton Leaf Mite Damage Stages Using UAV Multispectral Images and a Stacked Ensemble Method
by Shifeng Fan, Qiang He, Yongqin Chen, Xin Xu, Wei Guo, Yanhui Lu, Jie Liu and Hongbo Qiao
Agriculture 2025, 15(21), 2277; https://doi.org/10.3390/agriculture15212277 (registering DOI) - 31 Oct 2025
Abstract
Cotton leaf mites are pests that cause irreparable damage to cotton and pose a severe threat to the cotton yield, and the application of unmanned aerial vehicles (UAVs) to monitor the incidence of cotton leaf mites across a vast region is important for [...] Read more.
Cotton leaf mites are pests that cause irreparable damage to cotton and pose a severe threat to the cotton yield, and the application of unmanned aerial vehicles (UAVs) to monitor the incidence of cotton leaf mites across a vast region is important for cotton leaf mite prevention. In this work, 52 vegetation indices were calculated based on the original five bands of spliced UAV multispectral images, and six featured indices were screened using Shapley value theory. To classify and identify cotton leaf mite infestation classes, seven machine learning classification models were used: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGB), light gradient boosting machine (LGBM), K-Nearest Neighbors (KNN), decision tree (DT), and gradient boosting decision tree (GBDT) models. The base model and metamodel used in stacked models were built based on a combination of four models, namely, the XGB, GBDT, KNN, and DT models, which were selected in accordance with the heterogeneity principle. The experimental results showed that the stacked classification models based on the XGB, KNN base model, and DT metamodel were the best performers, outperforming other integrated and single individual models, with an overall accuracy of 85.7% (precision: 93.3%, recall: 72.6%, and F1-score: 78.2% in the macro_avg case; precision: 88.6%, recall: 85.7%, and F1 score: 84.7% in the weighted_avg case). This approach provides support for using UAVs to monitor the cotton leaf mite prevalence over vast regions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
25 pages, 4186 KB  
Article
Embodying Indigenous Relationalities with Mathematics
by Meixi, Racquel Banaszak, George Spears, Eileen Bass, Sukanda Kongkaew, Panthiwa Theechumpa, Amornrat Pinwanna and Alison Ling
Educ. Sci. 2025, 15(11), 1449; https://doi.org/10.3390/educsci15111449 (registering DOI) - 31 Oct 2025
Abstract
Mathematical learning—understanding patterns, logic, and space—always carries ethical, relational, and political dimensions, even though these might be routinely muted at school. At the same time, Indigenous relationalities have often driven mathematics inquiry and optimization. In this paper, we highlight the co-constituted nature of [...] Read more.
Mathematical learning—understanding patterns, logic, and space—always carries ethical, relational, and political dimensions, even though these might be routinely muted at school. At the same time, Indigenous relationalities have often driven mathematics inquiry and optimization. In this paper, we highlight the co-constituted nature of Indigenous relationalities and mathematical learning and how these open up possibilities of helping us mature as humans individually and collectively. Mathematics has long been a part of practices of human maturation and the living of Indigenous relationalities. To illustrate the co-constituted nature of relationalities and mathematics, we share four stories of land-based mathematics from two urban Indigenous schools—Sahasatsuksa School in Chiang Rai, Thailand, and Nawayee Center School in Minneapolis, USA. We illuminate opportunities for human maturation and mathematics learning in four interrelated levels: (1) mathematics to cultivate a fierce love of land, (2) mathematics to regenerate unique intergenerational roles and responsibilities, (3) mathematics to learn how we are related, and (4) mathematics to better understand power in places. In conclusion, Land-based mathematics fundamentally recognizes how Land supports the systematic cultivation and transmission of mathematical knowledge and optimizes ethical learning of what it means to be human. Through these stories, we consider the power and possibility of designing mathematics education towards more relational worlds. Full article
34 pages, 2025 KB  
Review
EV and Renewable Energy Integration in Residential Buildings: A Global Perspective on Deep Learning, Strategies, and Challenges
by Ahmad Mohsenimanesh, Christopher McNevin and Evgueniy Entchev
World Electr. Veh. J. 2025, 16(11), 603; https://doi.org/10.3390/wevj16110603 (registering DOI) - 31 Oct 2025
Abstract
Charging electric vehicles (EVs) and integrating renewable energy sources (RESs) are becoming key aspects of residential energy systems. However, the variability of RES generation, combined with uncontrolled EV charging, poses challenges for reliability, power quality, and supply-demand balancing within communities. The challenges only [...] Read more.
Charging electric vehicles (EVs) and integrating renewable energy sources (RESs) are becoming key aspects of residential energy systems. However, the variability of RES generation, combined with uncontrolled EV charging, poses challenges for reliability, power quality, and supply-demand balancing within communities. The challenges only grow when considering other electrified building loads as well. Accurate forecasting of power demand and renewable generation is essential for efficient and sustainable grid operation, optimal use of RESs, and effective energy trading within communities. Deep learning (DL), including supervised, unsupervised, and reinforcement learning (RL), has emerged as a promising solution for predicting consumer demand, renewable generation, and managing energy flows in residential environments. This paper provides a comprehensive review of the development and application of these methods for forecasting and energy management in residential communities. Evaluation metrics across studies indicate that supervised learning can achieve highly accurate forecasting results, especially when integrated with unsupervised K-means clustering and data decomposition. These methods help uncover patterns and relationships within the data while reducing noise, thereby enhancing prediction accuracy. RL shows significant potential in control applications, particularly for charging strategies. Similarly to how V2G-simulators model individual EV usage and simulate large fleets to generate grid-scale predictions, RL can be applied to various aspects of EV fleet management, including vehicle dispatching, smart scheduling, and charging coordination. Traditional methods are also used across different applications and help utilities with planning. However, these methods have limitations and may not always be completely accurate. Our review suggests that integrating hybrid supervised-unsupervised learning methods with RL can significantly improve the sustainability and resilience of energy systems. This approach can improve demand and generation forecasting while enabling smart charging coordination and scheduling for scalable EV fleets integrated with building electrification measures. Furthermore, the review introduces a unifying conceptual framework that links forecasting, optimization, and policy coupling through hierarchical deep learning layers, enabling scalable coordination of EV charging, renewable generation, and building energy management. Despite methodological advances, real-world deployment of hybrid and deep learning frameworks remains constrained by data-privacy restrictions, interoperability issues, and computational demands, highlighting the need for explainable, privacy-preserving, and standardized modeling approaches. To be effective in practice, these methods require robust data acquisition, optimized forecasting and control models, and integrated consideration of transport, building, and grid domains. Furthermore, deployment must account for data privacy regulations, cybersecurity safeguards, model interpretability, and economic feasibility to ensure resilient, scalable, and socially acceptable solutions. Full article
(This article belongs to the Section Energy Supply and Sustainability)
Show Figures

Figure 1

18 pages, 1486 KB  
Article
A Deep Learning-Based Ensemble System for Brent and WTI Crude Oil Price Analysis and Prediction
by Yiwen Zhang and Salim Lahmiri
Entropy 2025, 27(11), 1122; https://doi.org/10.3390/e27111122 (registering DOI) - 31 Oct 2025
Abstract
Crude oil price forecasting is an important task in energy management and storage. In this regard, deep learning has been applied in the literature to generate accurate forecasts. The main purpose of this study is to design an ensemble prediction system based on [...] Read more.
Crude oil price forecasting is an important task in energy management and storage. In this regard, deep learning has been applied in the literature to generate accurate forecasts. The main purpose of this study is to design an ensemble prediction system based on various deep learning systems. Specifically, in the first stage of our proposed ensemble system, convolutional neural networks (CNNs), long short-term memory networks (LSTMs), bidirectional LSTM (BiLSTM), gated recurrent units (GRUs), bidirectional GRU (BiGRU), and deep feedforward neural networks (DFFNNs) are used as individual predictive systems to predict crude oil prices. Their respective parameters are fine-tuned by Bayesian optimization (BO). In the second stage, forecasts from the previous stage are all weighted by using the sequential least squares programming (SLSQP) algorithm. The standard tree-based ensemble models, namely, extreme gradient boosting (XGBoost) and random forest (RT), are implemented as baseline models. The main findings can be summarized as follows. First, the proposed ensemble system outperforms the individual CNN, LSTM, BiLSTM, GRU, BiGRU, and DFFNN. Second, it outperforms the standard XGBoost and RT models. Governments and policymakers can use these models to design more effective energy policies and better manage supply in fluctuating markets. For investors, improved predictions of price trends present opportunities for strategic investments, reducing risk while maximizing returns in the energy market. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

20 pages, 3102 KB  
Article
A Study on Digital Soil Mapping Based on Multi-Attention Convolutional Neural Networks: A Case Study in Heilongjiang Province
by Yaxue Liu, Hengkai Li, Yuchun Pan, Yunbing Gao and Yanbing Zhou
Agriculture 2025, 15(21), 2273; https://doi.org/10.3390/agriculture15212273 (registering DOI) - 31 Oct 2025
Abstract
Machine learning-based digital soil mapping often struggles with spatial heterogeneity and long-range dependencies. To address these limitations, this study proposes Multi-Attention Convolutional Neural Networks (MACNN). This deep learning algorithm integrates multiple attention mechanisms to improve mapping accuracy. First, environmental covariates are determined from [...] Read more.
Machine learning-based digital soil mapping often struggles with spatial heterogeneity and long-range dependencies. To address these limitations, this study proposes Multi-Attention Convolutional Neural Networks (MACNN). This deep learning algorithm integrates multiple attention mechanisms to improve mapping accuracy. First, environmental covariates are determined from the soil-landscape model. These are then fed as structured input to the Convolutional Neural Network. Next, by incorporating Transformer self-attention and multi-head attention mechanisms, this study effectively models the long-range dependencies between soil types and features. Concurrently, the Convolutional Block Attention Module (CBAM) is introduced. CBAM features both channel and spatial dual attention, enabling adaptive weighting of crucial feature channels and spatial locations. This significantly enhances the algorithm’s sensitivity to discriminative information. To validate its effectiveness, the proposed MACNN algorithm was used for soil type mapping in Heilongjiang Province. Compared to Random Forest, Decision Tree, and One-Dimensional Convolutional Neural Network algorithms, MACNN demonstrated superior classification performance. It achieved an overall classification accuracy of 81.27%. An ablation study was conducted to investigate the importance of individual modules within the proposed algorithm. The findings indicate that progressively integrating Transformer and CBAM modules into the 1D-CNN baseline significantly enhances algorithm performance through synergistic gains. Therefore, this integrated algorithm offers a feasible solution to improve digital soil mapping accuracy, providing significant reference value for future research and applications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

36 pages, 3380 KB  
Article
Advancing SDG5: Machine Learning and Statistical Graphics for Women’s Empowerment and Gender Equity
by A’aeshah Alhakamy
Sustainability 2025, 17(21), 9706; https://doi.org/10.3390/su17219706 (registering DOI) - 31 Oct 2025
Abstract
In pursuit of sustainable development goal 5 (SDG5), this study underscores gender equity and women’s empowerment as pivotal themes in sustainable development. It examines the drivers of women’s empowerment, including education, economics, finance, and legal rights, using data from n=223 individuals, [...] Read more.
In pursuit of sustainable development goal 5 (SDG5), this study underscores gender equity and women’s empowerment as pivotal themes in sustainable development. It examines the drivers of women’s empowerment, including education, economics, finance, and legal rights, using data from n=223 individuals, primarily women (68.4%) aged 20–30 (69.6%). The research methodology integrates descriptive statistical measures, machine learning (ML) algorithms, and graphical representations to systematically explore the fundamental research inquiries that align with SDG5, which focuses on achieving gender equity. The results indicate that higher educational levels, captured through ordinal encoding and correlation analyzes, are strongly linked to increased labor market participation and entrepreneurial activity. The random forest (RF) and support vector machine (SVM) classifiers achieved overall accuracies of 89% and 93% for the categorization of experience, respectively. Although 91% of women have bank accounts, only 47% reported financial independence due to gendered barriers. Logistic regression correctly identified financially independent women with a 93% recall, but the classification of non-independent participants was less robust, with a 44% recall. Access to legal services, modeled using a neural network, was a potent predictor of empowerment (F1-score 0.83 for full access cases), yet significant obstacles persist for those uncertain about or lacking legal access. These findings underscore that, while formal institutional access is relatively widespread among educated women literate in the digital world, perceived and practical barriers in the financial and legal realms continue to hinder empowerment. The results quantify these effects and highlight opportunities for tailored, data-driven policy interventions targeting persistent gaps. Full article
Show Figures

Figure 1

12 pages, 1470 KB  
Article
Correlation Study Between Neoadjuvant Chemotherapy Response and Long-Term Prognosis in Breast Cancer Based on Deep Learning Models
by Ke Wang, Yikai Luo, Peng Zhang, Bing Yang and Yubo Tao
Diagnostics 2025, 15(21), 2763; https://doi.org/10.3390/diagnostics15212763 (registering DOI) - 31 Oct 2025
Abstract
Background: The pathological response to neoadjuvant chemotherapy (NAC) is an established predictor of long-term outcomes in breast cancer. However, conventional binary assessment based solely on pathological complete response (pCR) fails to capture prognostic heterogeneity across molecular subtypes. This study aimed to develop [...] Read more.
Background: The pathological response to neoadjuvant chemotherapy (NAC) is an established predictor of long-term outcomes in breast cancer. However, conventional binary assessment based solely on pathological complete response (pCR) fails to capture prognostic heterogeneity across molecular subtypes. This study aimed to develop an interpretable deep learning model that integrates multiple clinical and pathological variables to predict both recurrence and metastasis development following NAC treatment. Methods: We conducted a retrospective analysis of 832 breast cancer patients who received NAC between 2013 and 2022. The analysis incorporated five key variables: tumor size changes, nodal status, Ki-67 index, Miller–Payne grade, and molecular subtype. A Multi-Layer Perceptron (MLP) model was implemented on the PyTorch platform and systematically benchmarked against SVM, Random Forest, and XGBoost models using five-fold cross-validation. Model performance was assessed by calculating the area under the curve (AUC), accuracy, precision, recall, and F1-score, and by analyzing confusion matrices. Results: The MLP model achieved AUC values of 0.86 (95% CI: 0.82–0.93) for HER2-positive cases, 0.82 (95% CI: 0.70–0.92) for triple-negative cases, and 0.76 (95% CI: 0.66–0.82) for HR+/HER2-negative cases. SHAP analysis identified post-NAC tumor size, Ki-67 index, and Miller–Payne grade as the most influential predictors. Notably, patients who achieved pCR still had a 12% risk of developing recurrence, highlighting the necessity for ongoing risk assessment beyond binary response evaluation. Conclusions: The proposed deep learning system provides precise and interpretable risk assessment for NAC patients, facilitating individualized treatment approaches and post-treatment monitoring plans. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

Back to TopTop