Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (46)

Search Parameters:
Keywords = index terms—synthetic aperture radar (SAR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5669 KiB  
Article
Research on Machine Learning-Based Extraction and Classification of Crop Planting Information in Arid Irrigated Areas Using Sentinel-1 and Sentinel-2 Time-Series Data
by Lixiran Yu, Hongfei Tao, Qiao Li, Hong Xie, Yan Xu, Aihemaiti Mahemujiang and Youwei Jiang
Agriculture 2025, 15(11), 1196; https://doi.org/10.3390/agriculture15111196 - 30 May 2025
Viewed by 547
Abstract
Irrigation areas in arid regions are vital production areas for grain and cash crops worldwide. Grasping the temporal and spatial evolution of planting configurations across several years is crucial for effective regional agricultural and resource management. In view of problems such as insufficient [...] Read more.
Irrigation areas in arid regions are vital production areas for grain and cash crops worldwide. Grasping the temporal and spatial evolution of planting configurations across several years is crucial for effective regional agricultural and resource management. In view of problems such as insufficient optical images caused by cloudy weather in arid regions and the unclear spatiotemporal evolution patterns of the planting structures in irrigation areas over the years, in this study, we took the Santun River Irrigation Area, a typical arid region in Xinjiang, China, as an example. By leveraging long time-series remote sensing images from Sentinel-1 and Sentinel-2, the spectral, index, texture, and polarization features of the ground objects in the study area were extracted. When analyzing the index characteristics, we considered several widely used global vegetation indices, including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Soil Adjusted Vegetation Index (SAVI), and Global Environment Monitoring Index (GEMI). Additionally, we integrated the vertical–vertical and vertical–horizontal polarization data obtained from synthetic aperture radar (SAR) satellite systems. Machine learning algorithms, including the random forest algorithm (RF), Classification and Regression Trees (CART), and Support Vector Machines (SVM), were employed for planting structure classification. The optimal classification model selected was subjected to inter-annual transfer to obtain the planting structures over multiple years. The research findings are as follows: (1) The RF classification algorithm outperforms CART and SVM algorithms in terms of classification accuracy, achieving an overall accuracy (OA) of 0.84 and a kappa coefficient of 0.805. (2) The cropland area classified by the RF algorithm exhibited a high degree of consistency with statistical yearbook data (R2 = 0.82–0.91). Significant differences are observed in the estimated planting areas of cotton, maize, tomatoes, and wheat, while differences in other crops are not statistically significant. (3) From 2019 to 2024, cotton remained the dominant crop, although its proportional area fluctuated considerably, while the areas of maize and wheat tended to remain stable, and those of tomato and melon showed relatively minor changes. Overall, the region demonstrates a cotton-dominated, stable cropping structure for other crops. The newly developed framework exhibits exceptional precision in categorization while maintaining impressive adaptability, offering crucial insights for optimizing agricultural operations and sustainable resource allocation in irrigation-dependent arid zones. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 24849 KiB  
Article
Blind Signal Separation with Deep Residual Networks for Robust Synthetic Aperture Radar Signal Processing in Interference Electromagnetic Environments
by Lixiong Fang, Jianwen Zhang, Yi Ran, Kuiyu Chen, Aimer Maidan, Lu Huan and Huyang Liao
Electronics 2025, 14(10), 1950; https://doi.org/10.3390/electronics14101950 - 11 May 2025
Cited by 1 | Viewed by 588
Abstract
With the rapid development of electronic technology, the electromagnetic interference encountered by airborne synthetic aperture radar (SAR) is no longer satisfied with a single type of interference, and it often encounters both suppressive and deceptive interference. In this manuscript, an algorithm based on [...] Read more.
With the rapid development of electronic technology, the electromagnetic interference encountered by airborne synthetic aperture radar (SAR) is no longer satisfied with a single type of interference, and it often encounters both suppressive and deceptive interference. In this manuscript, an algorithm based on blind signal separation (BSS) and deep residual learning is proposed for airborne SAR multi-electromagnetic interference suppression. Firstly, theoretical airborne SAR imaging in a multi-electromagnetic interference environment model is established, and the signal-mixed model of multi-electromagnetic interference is proposed. Then, a BSS algorithm using maximum kurtosis deconvolution and improved principal component analysis (PCA) is presented for suppressing the composite electromagnetic interference encountered by airborne SAR. Finally, in order to find the desired signal among multiple separated sources and to cope with the residual noise, a deep residual network is designed for signal recognition and denoising. This method uses a BSS algorithm with maximum kurtosis deconvolution and improved PCA to perform mixed signal separation. After performing signal separation, the original echo signal and the jamming can be obtained. To solve the separation order uncertainty and residual noise problems of the existing BSS algorithms, the deep residual network is designed to recognize airborne SAR signals after airborne SAR imaging. This algorithm has a better signal restoration degree, higher image restoration degree, and better compound interference suppression performance before and after anti-interference. Simulation and measurement results demonstrate the effectiveness of our presented algorithm. Full article
(This article belongs to the Special Issue New Insights in Radar Signal Processing and Target Recognition)
Show Figures

Figure 1

27 pages, 42566 KiB  
Article
Unsupervised Rural Flood Mapping from Bi-Temporal Sentinel-1 Images Using an Improved Wavelet-Fusion Flood-Change Index (IWFCI) and an Uncertainty-Sensitive Markov Random Field (USMRF) Model
by Amin Mohsenifar, Ali Mohammadzadeh and Sadegh Jamali
Remote Sens. 2025, 17(6), 1024; https://doi.org/10.3390/rs17061024 - 14 Mar 2025
Cited by 2 | Viewed by 899
Abstract
Synthetic aperture radar (SAR) remote sensing (RS) technology is an ideal tool to map flooded areas on account of its all-time, all-weather imaging capability. Existing SAR data-based change detection approaches lack well-discriminant change indices for reliable floodwater mapping. To resolve this issue, an [...] Read more.
Synthetic aperture radar (SAR) remote sensing (RS) technology is an ideal tool to map flooded areas on account of its all-time, all-weather imaging capability. Existing SAR data-based change detection approaches lack well-discriminant change indices for reliable floodwater mapping. To resolve this issue, an unsupervised change detection approach, made up of two main steps, is proposed for detecting floodwaters from bi-temporal SAR data. In the first step, an improved wavelet-fusion flood-change index (IWFCI) is proposed. The IWFCI modifies the mean-ratio change index (CI) to fuse it with the log-ratio CI using the discrete wavelet transform (DWT). The IWFCI also employs a discriminant feature derived from the co-flood image to enhance the separability between the non-flood and flood areas. In the second step, an uncertainty-sensitive Markov random field (USMRF) model is proposed to diminish the over-smoothness issue in the areas with high uncertainty based on a new Gaussian uncertainty term. To appraise the efficacy of the floodwater detection approach proposed in this study, comparative experiments were conducted in two stages on four datasets, each including a normalized difference water index (NDWI) and pre-and co-flood Sentinel-1 data. In the first stage, the proposed IWFCI was compared to a number of state-of-the-art (SOTA) CIs, and the second stage compared USMRF to the SOTA change detection algorithms. From the experimental results in the first stage, the proposed IWFCI, yielding an average F-score of 86.20%, performed better than SOTA CIs. Likewise, according to the experimental results obtained in the second stage, the USMRF model with an average F-score of 89.27% outperformed the comparative methods in classifying non-flood and flood classes. Accordingly, the proposed floodwater detection approach, combining IWFCI and USMRF, can serve as a reliable tool for detecting flooded areas in SAR data. Full article
Show Figures

Graphical abstract

21 pages, 13076 KiB  
Article
A Framework for High-Spatiotemporal-Resolution Soil Moisture Retrieval in China Using Multi-Source Remote Sensing Data
by Zhuangzhuang Feng, Xingming Zheng, Xiaofeng Li, Chunmei Wang, Jinfeng Song, Lei Li, Tianhao Guo and Jia Zheng
Land 2024, 13(12), 2189; https://doi.org/10.3390/land13122189 - 15 Dec 2024
Cited by 1 | Viewed by 1659
Abstract
High-spatiotemporal-resolution and accurate soil moisture (SM) data are crucial for investigating climate, hydrology, and agriculture. Existing SM products do not yet meet the demands for high spatiotemporal resolution. The objective is to develop and evaluate a retrieval framework to derive SM estimates with [...] Read more.
High-spatiotemporal-resolution and accurate soil moisture (SM) data are crucial for investigating climate, hydrology, and agriculture. Existing SM products do not yet meet the demands for high spatiotemporal resolution. The objective is to develop and evaluate a retrieval framework to derive SM estimates with high spatial (100 m) and temporal (<3 days) resolution that can be used on a national scale in China. Therefore, this study integrates multi-source data, including optical remote sensing (RS) data from Sentinel-2 and Landsat-7/8/9, synthetic aperture radar (SAR) data from Sentinel-1, and auxiliary data. Four machine learning and deep learning algorithms are applied, including Random Forest Regression (RFR), Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM) networks, and Ensemble Learning (EL). The integrated framework (IF) considers three feature scenarios (SC1: optical RS + auxiliary data, SC2: SAR + auxiliary data, SC3: optical RS + SAR + auxiliary data), encompassing a total of 33 features. The results are as follows: (1) The correlation coefficients (r) between auxiliary data (such as sand fraction, r = −0.48; silt fraction, r = 0.47; and evapotranspiration, r = −0.42), SAR features (such as the backscatter coefficients for VV-pol (σvv0), r = 0.47), and optical RS features (such as Shortwave Infrared Band 2 (SWIR2) reflectance data from Sentinel-2 and Landsat-7/8/9, r = −0.39) with observed SM are significant. This indicates that multi-source data can provide complementary information for SM monitoring. (2) Compared to XGBoost and LSTM, RFR and EL demonstrate superior overall performance and are the preferred models for SM prediction. Their R2 for the training and test sets exceed 0.969 and 0.743, respectively, and their ubRMSE are below 0.022 and 0.063 m3/m3, respectively. (3) The SM prediction accuracy is highest for the scenario of optical + SAR + auxiliary data, followed by SAR + auxiliary data, and finally optical + auxiliary data. (4) With an increasing Normalized Difference Vegetation Index (NDVI) and SM values, the trained models exhibit a general decrease in prediction performance and accuracy. (5) In 2021 and 2022, without considering cloud cover, the IF theoretically achieved an SM revisit time of 1–3 days across 95.01% and 96.53% of China’s area, respectively. However, SC1 was able to achieve a revisit time of 1–3 days over 60.73% of China’s area in 2021 and 69.36% in 2022, while the area covered by SC2 and SC3 at this revisit time accounted for less than 1% of China’s total area. This study validates the effectiveness of combining multi-source RS data with auxiliary data in large-scale SM monitoring and provides new methods for improving SM retrieval accuracy and spatiotemporal coverage. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

13 pages, 3387 KiB  
Technical Note
Polarimetric Measures in Biomass Change Prediction Using ALOS-2 PALSAR-2 Data
by Henrik J. Persson and Ivan Huuva
Remote Sens. 2024, 16(6), 953; https://doi.org/10.3390/rs16060953 - 8 Mar 2024
Cited by 1 | Viewed by 1920
Abstract
The use of multiple synthetic aperture radar polarizations can improve biomass estimations compared to using a single polarization. In this study, we compared predictions of aboveground biomass change from ALOS-2 PALSAR-2 backscatter using linear regression based on (1) the cross-polarization channels, (2) the [...] Read more.
The use of multiple synthetic aperture radar polarizations can improve biomass estimations compared to using a single polarization. In this study, we compared predictions of aboveground biomass change from ALOS-2 PALSAR-2 backscatter using linear regression based on (1) the cross-polarization channels, (2) the co- and cross-polarizations from fully polarimetric SAR, (3) Freeman–Durden polarimetric decomposition, and (4) the polarimetric radar vegetation index (RVI). Additionally, the impact of forest structure on the sensitivity of the polarimetric backscatter to AGB and AGB change was assessed. The biomass consisted of mainly coniferous trees at the hemi-boreal test site Remningstorp, located in southern Sweden. We found some improvements in the predictions when quad-polarized data (RMSE = 79.4 tons/ha) were used instead of solely cross-polarized data (RMSE = 84.9 tons/ha). However, when using Freeman–Durden decomposition, the prediction accuracy improved further (RMSE = 69.7 tons/ha), and the highest accuracy was obtained with the radar vegetation index (RMSE = 50.4 tons/ha). The corresponding R2 values ranged from 0.45 to 0.82. The bias was less than 1 t/ha for all models. An analysis of forest variables showed that the sensitivity to AGB was reduced for high values of basal-area-weighted mean height, basal area, and stem density when predicting absolute AGB, but the best change prediction model was sensitive to changes larger than the apparent saturation point for AGB state estimates. We conclude that by using fully polarimetric SAR images, forest biomass changes can be estimated more accurately compared to using single- or dual-polarization images. The results were improved the most (in terms of RMSE and R2) by using the Freeman–Durden decomposition model or the RVI, which captured especially the large changes better. Full article
(This article belongs to the Special Issue SAR for Forest Mapping III)
Show Figures

Figure 1

21 pages, 5602 KiB  
Article
A Novel Framework for Forest Above-Ground Biomass Inversion Using Multi-Source Remote Sensing and Deep Learning
by Junxiang Zhang, Cui Zhou, Gui Zhang, Zhigao Yang, Ziheng Pang and Yongfeng Luo
Forests 2024, 15(3), 456; https://doi.org/10.3390/f15030456 - 29 Feb 2024
Cited by 6 | Viewed by 2742
Abstract
The estimation of forest above-ground biomass (AGB) can be significantly improved by leveraging remote sensing (RS) and deep learning (DL) techniques. In this process, it is crucial to obtain appropriate RS features and develop a suitable model. However, traditional methods such as random [...] Read more.
The estimation of forest above-ground biomass (AGB) can be significantly improved by leveraging remote sensing (RS) and deep learning (DL) techniques. In this process, it is crucial to obtain appropriate RS features and develop a suitable model. However, traditional methods such as random forest (RF) feature selection often fail to adequately consider the complex relationships within high-dimensional RS feature spaces. Moreover, challenges related to parameter selection and overfitting inherent in DL models may compromise the accuracy of AGB estimation. Therefore, this study proposes a novel framework based on freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 optical data. Firstly, we designed new indices through the formula analogous with vegetation index calculation to integrate multidimensional spectral and structural information. Then, leveraging the simplicity of computational principles, a pigeon-inspired optimization algorithm (PIO) was introduced into a bi-directional long short-term memory neural network (PIO-BiLSTM), which achieved the set objective function through repeated iteration and validation to obtain the optimal model parameters. Finally, to verify the framework’s effect, we conducted experiments in two different tree species and compared another seven classical optimization algorithms and machine learning models. The results indicated that the new indices significantly improved the inversion accuracy of all models in both categories, and the PIO-BiLSTM model achieved the highest accuracy (Category-1: R2 = 0.8055, MAE = 8.8475 Mg·ha−1, RMSE = 12.2876 Mg·ha−1, relative RMSE = 18.1715%; Category-2: R2 = 0.7956, MAE = 1.7103 Mg·ha−1, RMSE = 2.2887 Mg·ha−1, relative RMSE = 9.3000%). Compared with existing methods, the proposed framework greatly reduced the labor costs in parameter selection, and its potential uncertainty also decreased by up to 9.0%. Furthermore, the proposed method has a strong generalization ability and is independent of tree species, indicating its great potential for future forest AGB inversion in wider regions with diverse forest types. Full article
Show Figures

Figure 1

25 pages, 6448 KiB  
Article
Research on Time Series Monitoring of Surface Deformation in Tongliao Urban Area Based on SBAS-PS-DS-InSAR
by Yuejuan Chen, Cong Ding, Pingping Huang, Bo Yin, Weixian Tan, Yaolong Qi, Wei Xu and Siai Du
Sensors 2024, 24(4), 1169; https://doi.org/10.3390/s24041169 - 10 Feb 2024
Cited by 6 | Viewed by 2124
Abstract
As urban economies flourish and populations become increasingly concentrated, urban surface deformation has emerged as a critical factor in city planning that cannot be overlooked. Surface deformation in urban areas can lead to deformations in structural supports of infrastructure such as road bases [...] Read more.
As urban economies flourish and populations become increasingly concentrated, urban surface deformation has emerged as a critical factor in city planning that cannot be overlooked. Surface deformation in urban areas can lead to deformations in structural supports of infrastructure such as road bases and bridges, thereby posing a serious threat to public safety and creating significant safety hazards. Consequently, research focusing on the monitoring of urban surface deformation holds paramount importance. Interferometric synthetic aperture radar (InSAR), as an important means of earth observation, has all-day, wide-range, high-precision, etc., characteristics and is widely used in the field of surface deformation monitoring. However, traditional solitary InSAR techniques are limited in their application scenarios and computational characteristics. Additionally, the manual selection of ground control points (GCPs) is fraught with errors and uncertainties. Permanent scatterers (PS) can maintain high interferometric coherence in man-made building areas, and distributed scatterers (DS) usually show moderate coherence in areas with short vegetation; the combination of DS and PS solves the problem of manually selecting GCPs during track re-flattening and regrading, which affects the monitoring results. In this paper, 45 Sentinel-1B data from 16 February 2019 to 14 December 2021 are used as the data source in the urban area of Horqin District, Tongliao City, Inner Mongolia Autonomous Region, for example. A four-threshold (coherence coefficient threshold, FaSHPS adaptive threshold, amplitude divergence index threshold, and deformation velocity interval) GCPs point screening method for PS-DS, as well as a Small Baseline Subset-Permanent Scatterers-Distributed Scatterers-Interferometric Synthetic Aperture Radar (SBAS-PS-DS-InSAR) method for selecting PS and DS points as ground control points for orbit refinement and re-flattening, are proposed. The surface deformation results obtained using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) and the SBAS-PS-DS-InSAR proposed in this paper were comparatively analysed and verified. The maximum cumulative line-of-sight settlements were −90.78 mm and −83.68 mm, and the maximum cumulative uplifts are 74.94 mm and 97.56 mm, respectively; the maximum annual average line-of-sight settlements are −35.38 mm/y and −30.38 mm/y, and the maximum annual average uplifts are 25.27 mm/y and 27.92 mm/y. The results were evaluated and analysed in terms of correlation, mean absolute error (MAE), and root mean square error (RMSE). The deformation results of the two InSAR methods were evaluated and analysed in terms of correlation, MAE, and RMSE. The errors show that the Pearson correlation coefficients between the vertical settlement results obtained using the SBAS-PS-DS-InSAR method and the GPS monitoring results were closer to 1. The maximum MAE and RMSE were 13.7625 mm and 14.8004 mm, respectively, which are within the acceptable range; this confirms that the monitoring results of the SBAS-PS-DS-InSAR method were better than those of the original SBAS-InSAR method. SBAS-InSAR method, which is valid and reliable. The results show that the surface deformation results obtained using the SBAS-InSAR, SBAS-PS-DS-InSAR, and GPS methods have basically the same settlement locations, extents, distributions, and temporal and spatial settlement patterns. The deformation results obtained using these two InSAR methods correlate well with the GPS monitoring results, and the MAE and RMSE are within acceptable limits. By comparing the deformation information obtained using multiple methods, the surface deformation in urban areas can be better monitored and analysed, and it can also provide scientific references for urban municipal planning and disaster warning. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

21 pages, 13502 KiB  
Article
Application of Gated Recurrent Unit Neural Network for Flood Extraction from Synthetic Aperture Radar Time Series
by Ming Zhang, Chou Xie, Bangsen Tian, Yanchen Yang, Yihong Guo, Yu Zhu and Shuaichen Bian
Water 2023, 15(21), 3779; https://doi.org/10.3390/w15213779 - 29 Oct 2023
Cited by 3 | Viewed by 2234
Abstract
Floods are a sudden and influential natural disaster, and synthetic aperture radar (SAR) can image the Earth’s surface almost independently of time and weather conditions, making it particularly suitable for extracting flood ranges in time. Platforms such as Google Earth Engine (GEE) can [...] Read more.
Floods are a sudden and influential natural disaster, and synthetic aperture radar (SAR) can image the Earth’s surface almost independently of time and weather conditions, making it particularly suitable for extracting flood ranges in time. Platforms such as Google Earth Engine (GEE) can provide a large amount of SAR data and preprocess it, providing powerful assistance for real-time flood monitoring and time series analysis. However, the application of long-term series data combined with recurrent neural networks (RNNs) to monitor floods has been lacking in current research, and the accuracy of flood extraction in open water surfaces remains unsatisfactory. In this study, we proposed a new method of near real-time flood monitoring with a higher accuracy. The method utilizes SAR image time series to establish a gated recurrent unit (GRU) neural network model. This model was used to predict normal flood-free surface conditions. Flood extraction was achieved by comparing and analyzing the actual flood surface conditions with the predicted conditions, using a parameter called Scores. Our method demonstrated significant improvements in accuracy compared to existing algorithms like the OTSU algorithm, Sentinel-1 Dual Polarized Water Index (SDWI) algorithm, and Z-score algorithm. The overall accuracy of our method was 99.20%, which outperformed the Copernicus Emergency Management Service (EMS) map. Importantly, our method exhibited high stability as it allowed for fluctuation within the normal range, enabling the extraction of the complete flood range, especially in open water surfaces. The stability of our method makes it suitable for the flood monitoring of future open-access SAR data, including data from future Sentinel-1 missions. Full article
Show Figures

Figure 1

20 pages, 25724 KiB  
Article
Adaptive Speckle Filter for Multi-Temporal PolSAR Image with Multi-Dimensional Information Fusion
by Haoliang Li, Xingchao Cui, Mingdian Li, Junwu Deng and Siwei Chen
Remote Sens. 2023, 15(14), 3679; https://doi.org/10.3390/rs15143679 - 23 Jul 2023
Cited by 3 | Viewed by 2368
Abstract
Polarimetric synthetic aperture radar (PolSAR) is an important sensor for earth observation. Multi-temporal PolSAR images obtained by successive observations of the region of interest contain rich polarimetric–temporal–spatial information of the land covers, which has wide applications. Speckle filtering becomes a necessary pre-processing for [...] Read more.
Polarimetric synthetic aperture radar (PolSAR) is an important sensor for earth observation. Multi-temporal PolSAR images obtained by successive observations of the region of interest contain rich polarimetric–temporal–spatial information of the land covers, which has wide applications. Speckle filtering becomes a necessary pre-processing for many subsequent applications. Currently, it is common to filter multi-temporal PolSAR data by directly using a speckle filter developed for single SAR or PolSAR data. The cross-correlation between different time series contains rich information in multi-temporal PolSAR images. How to utilize complete polarimetric–temporal–spatial information becomes a large challenge to achieve more satisfied performances of speckle reduction and details preservation simultaneously. This work dedicates to this issue and develops a novel speckle filtering approach for multi-temporal PolSAR data by multi-dimensional information fusion. The core idea is to establish an adaptive and efficient strategy of similar pixel selection based on the similarity test of multi-temporal polarimetric covariance matrices. This similar pixel selection scheme fuses the complete information of multi-temporal PolSAR data. The sensitivity of the proposed scheme is demonstrated with several typical and challenging texture patterns. Then, an adaptive speckle filter is established specifically for multi-temporal PolSAR data. Intensive comparison studies are carried out with airborne UAVSAR datasets and spaceborne ALOS/PALSAR datasets. Quantitative investigations in terms of the equivalent number of looks (ENL) and the figure of merit (FOM) indexes demonstrate and validate the superiority of the proposed method. Full article
(This article belongs to the Special Issue Advance in SAR Image Despeckling)
Show Figures

Figure 1

15 pages, 5635 KiB  
Technical Note
Recognizing the Shape and Size of Tundra Lakes in Synthetic Aperture Radar (SAR) Images Using Deep Learning Segmentation
by Denis Demchev, Ivan Sudakow, Alexander Khodos, Irina Abramova, Dmitry Lyakhov and Dominik Michels
Remote Sens. 2023, 15(5), 1298; https://doi.org/10.3390/rs15051298 - 26 Feb 2023
Cited by 3 | Viewed by 3119
Abstract
Permafrost tundra contains more than twice as much carbon as is currently in the atmosphere, and it is warming six times as fast as the global mean. Tundra lakes dynamics is a robust indicator of global climate processes, and is still not well [...] Read more.
Permafrost tundra contains more than twice as much carbon as is currently in the atmosphere, and it is warming six times as fast as the global mean. Tundra lakes dynamics is a robust indicator of global climate processes, and is still not well understood. Satellite data, particularly, from synthetic aperture radar (SAR) is a suitable tool for tundra lakes recognition and monitoring of their changes. However, manual analysis of lake boundaries can be slow and inefficient; therefore, reliable automated algorithms are required. To address this issue, we propose a two-stage approach, comprising instance deep-learning-based segmentation by U-Net, followed by semantic segmentation based on a watershed algorithm for separating touching and overlapping lakes. Implementation of this concept is essential for accurate sizes and shapes estimation of an individual lake. Here, we evaluated the performance of the proposed approach on lakes, manually extracted from tens of C-band SAR images from Sentinel-1, which were collected in the Yamal Peninsula and Alaska areas in the summer months of 2015–2022. An accuracy of 0.73, in terms of the Jaccard similarity index, was achieved. The lake’s perimeter, area and fractal sizes were estimated, based on the algorithm framework output from hundreds of SAR images. It was recognized as lognormal distributed. The evaluation of the results indicated the efficiency of the proposed approach for accurate automatic estimation of tundra lake shapes and sizes, and its potential to be used for further studies on tundra lake dynamics, in the context of global climate change, aimed at revealing new factors that could cause the planet to warm or cool. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition)
Show Figures

Graphical abstract

21 pages, 7610 KiB  
Article
Risk Evaluation of the Sanalona Earthfill Dam Located in Mexico Using Satellite Geodesy Monitoring and Numerical Modeling
by J. René Vázquez-Ontiveros, Antonio Miguel Ruiz-Armenteros, M. Clara de Lacy, J. Ramon Gaxiola-Camacho, Miguel Anaya-Díaz and G. Esteban Vázquez-Becerra
Remote Sens. 2023, 15(3), 819; https://doi.org/10.3390/rs15030819 - 31 Jan 2023
Cited by 6 | Viewed by 2887
Abstract
Dams are essential structures in the growth of a region due to their ability to store large amounts of water and manage it for different social activities, mainly for human consumption. The study of the structural behavior of dams during their useful life [...] Read more.
Dams are essential structures in the growth of a region due to their ability to store large amounts of water and manage it for different social activities, mainly for human consumption. The study of the structural behavior of dams during their useful life is a fundamental factor for their safety. In terms of structural monitoring, classic terrestrial techniques are usually costly and require much time. Interferometric synthetic aperture radar (InSAR) technology through the persistent scatterer interferometry (PSI) technique has been widely applied to measure millimeter displacements of a dam crest. In this context, this paper presents an investigation about the structural monitoring of the crest of the Sanalona dam in Mexico, applying two geodetic satellite techniques and mathematical modeling to extract the risk of the dam–reservoir system. The applicability of the InSAR technique for monitoring radial displacements in dams is evaluated and compared with both GPS systems and an analytical model based on the finite element method (FEM). The radial displacements of the Sanalona dam follow a seasonal pattern derived from the reservoir level, reaching maximum radial magnitudes close to 13 mm in November when the rainy season ends. GPS recorded and FEM simulated maximum displacements of 7.3 and 6.7 mm, respectively. InSAR derived radial displacements, and the reservoir water level presented a high similarity with a correlation index equal to 0.8. In addition, it was found that the Sanalona dam presents the greatest deformation in the central zone of the crest. On the other hand, based on the reliability analysis, the probability of failure values lower than 8.3 × 102 was obtained when the reservoir level was maximum, which means that the radial displacements did not exceed the limit states of the dam–reservoir system in the evaluated period. Finally, the extracted values of the probability of failure demonstrated that the Sanalona dam does not represent a considerable risk to society. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy)
Show Figures

Figure 1

15 pages, 10298 KiB  
Article
CerealNet: A Hybrid Deep Learning Architecture for Cereal Crop Mapping Using Sentinel-2 Time-Series
by Mouad Alami Machichi, Loubna El Mansouri, Yasmina Imani, Omar Bourja, Rachid Hadria, Ouiam Lahlou, Samir Benmansour, Yahya Zennayi and François Bourzeix
Informatics 2022, 9(4), 96; https://doi.org/10.3390/informatics9040096 - 30 Nov 2022
Cited by 7 | Viewed by 3784
Abstract
Remote sensing-based crop mapping has continued to grow in economic importance over the last two decades. Given the ever-increasing rate of population growth and the implications of multiplying global food production, the necessity for timely, accurate, and reliable agricultural data is of the [...] Read more.
Remote sensing-based crop mapping has continued to grow in economic importance over the last two decades. Given the ever-increasing rate of population growth and the implications of multiplying global food production, the necessity for timely, accurate, and reliable agricultural data is of the utmost importance. When it comes to ensuring high accuracy in crop maps, spectral similarities between crops represent serious limiting factors. Crops that display similar spectral responses are notorious for being nearly impossible to discriminate using classical multi-spectral imagery analysis. Chief among these crops are soft wheat, durum wheat, oats, and barley. In this paper, we propose a unique multi-input deep learning approach for cereal crop mapping, called “CerealNet”. Two time-series used as input, from the Sentinel-2 bands and NDVI (Normalized Difference Vegetation Index), were fed into separate branches of the LSTM-Conv1D (Long Short-Term Memory Convolutional Neural Networks) model to extract the temporal and spectral features necessary for the pixel-based crop mapping. The approach was evaluated using ground-truth data collected in the Gharb region (northwest of Morocco). We noted a categorical accuracy and an F1-score of 95% and 94%, respectively, with minimal confusion between the four cereal classes. CerealNet proved insensitive to sample size, as the least-represented crop, oats, had the highest F1-score. This model was compared with several state-of-the-art crop mapping classifiers and was found to outperform them. The modularity of CerealNet could possibly allow for injecting additional data such as Synthetic Aperture Radar (SAR) bands, especially when optical imagery is not available. Full article
(This article belongs to the Special Issue Applications of Machine Learning and Deep Learning in Agriculture)
Show Figures

Figure 1

18 pages, 20053 KiB  
Article
Enabling Deep-Neural-Network-Integrated Optical and SAR Data to Estimate the Maize Leaf Area Index and Biomass with Limited In Situ Data
by Peilei Luo, Huichun Ye, Wenjiang Huang, Jingjuan Liao, Quanjun Jiao, Anting Guo and Binxiang Qian
Remote Sens. 2022, 14(21), 5624; https://doi.org/10.3390/rs14215624 - 7 Nov 2022
Cited by 2 | Viewed by 2375
Abstract
Accurate estimation of the maize leaf area index (LAI) and biomass is of great importance in guiding field management and early yield estimation. Physical models and traditional machine learning methods are commonly used for LAI and biomass estimation. However, these models and methods [...] Read more.
Accurate estimation of the maize leaf area index (LAI) and biomass is of great importance in guiding field management and early yield estimation. Physical models and traditional machine learning methods are commonly used for LAI and biomass estimation. However, these models and methods mostly rely on handcrafted features and theoretical formulas under idealized assumptions, which limits their accuracy. Deep neural networks have demonstrated great superiority in automatic feature extraction and complicated nonlinear approximation, but their application to LAI and biomass estimation has been hindered by the shortage of in situ data. Therefore, bridging the gap of data shortage and making it possible to leverage deep neural networks to estimate maize LAI and biomass is of great significance. Optical data cannot provide information in the lower canopy due to the limited penetrability, but synthetic aperture radar (SAR) data can do this, so the integration of optical and SAR data is necessary. In this paper, 158 samples from the jointing, trumpet, flowering, and filling stages of maize were collected for investigation. First, we propose an improved version of the mixup training method, which is termed mixup+, to augment the sample amount. We then constructed a novel gated Siamese deep neural network (GSDNN) based on a gating mechanism and a Siamese architecture to integrate optical and SAR data for the estimation of the LAI and biomass. We compared the accuracy of the GSDNN with those of other machine learning methods, i.e., multiple linear regression (MLR), support vector regression (SVR), random forest regression (RFR), and a multilayer perceptron (MLP). The experimental results show that without the use of mixup+, the GSDNN achieved a similar accuracy to that of the simple neural network MLP in terms of R2 and RMSE, and this was slightly lower than those of MLR, SVR, and RFR. However, with the help of mixup+, the GSDNN achieved state-of-the-art performance (R2 = 0.71, 0.78, and 0.86 and RMSE = 0.58, 871.83, and 150.76 g/m2, for LAI, Biomass_wet, and Biomass_dry, respectively), exceeding the accuracies of MLR, SVR, RFR, and MLP. In addition, through the integration of optical and SAR data, the GSDNN achieved better accuracy in LAI and biomass estimation than when optical or SAR data alone were used. We found that the most appropriate amount of synthetic data from mixup+ was five times the amount of original data. Overall, this study demonstrates that the GSDNN + mixup+ has great potential for the integration of optical and SAR data with the aim of improving the estimation accuracy of the maize LAI and biomass with limited in situ data. Full article
Show Figures

Figure 1

24 pages, 5131 KiB  
Article
A Neural Network-Based Fusion Approach for Improvement of SAR Interferometry-Based Digital Elevation Models in Plain and Hilly Regions of India
by Priti Girohi and Ashutosh Bhardwaj
AI 2022, 3(4), 820-843; https://doi.org/10.3390/ai3040050 - 9 Oct 2022
Cited by 7 | Viewed by 3579
Abstract
Interferometry Synthetic Aperture Radar (InSAR) is an advanced remote sensing technique for studying the earth’s surface topography and deformations; it is used to generate high-quality Digital Elevation Models (DEMs). DEMs are a crucial and primary input to various topographical quantification and modelling applications. [...] Read more.
Interferometry Synthetic Aperture Radar (InSAR) is an advanced remote sensing technique for studying the earth’s surface topography and deformations; it is used to generate high-quality Digital Elevation Models (DEMs). DEMs are a crucial and primary input to various topographical quantification and modelling applications. The quality of input DEMs can be further improved using fusion methods, which combine multi-sensor or multi-temporal datasets intelligently to retrieve the best information from the input data. This research study is based on developing a Neural Network-based fusion approach for improving InSAR-based DEMs in plain and hilly terrain parts of India. The study areas comprise relatively plain terrain from Ghaziabad and hilly terrain of Dehradun and their surrounding regions. The training dataset consists of DEM elevations and derived topographic attributes like slope, aspect, topographic position index (TPI), terrain ruggedness index (TRI), and vector roughness measure (VRM) in different land use land cover classes of the study areas. The spaceborne altimetry ICESat-2 ATL08 photon data are used as a reference elevation. A Feed Forward Neural Network with a backpropagation algorithm is trained based on the prepared training samples. The trained model produces fused DEMs by learning the relationship between the input and target samples; this is used to predict elevations for the test areas. The accuracy of results from the models is assessed with TanDEM-X 90 m DEM. The fused DEMs show significant improvement in terms of RMSE (Root Mean Square Error) over the input DEMs with an improvement factor of 94.65% in plain areas and 82.62% in hilly areas. The study concludes that the ANN with its universal approximation property can significantly improve the fused DEM. Full article
Show Figures

Figure 1

19 pages, 3459 KiB  
Article
Crop Classification Based on GDSSM-CNN Using Multi-Temporal RADARSAT-2 SAR with Limited Labeled Data
by Heping Li, Jing Lu, Guixiang Tian, Huijin Yang, Jianhui Zhao and Ning Li
Remote Sens. 2022, 14(16), 3889; https://doi.org/10.3390/rs14163889 - 11 Aug 2022
Cited by 15 | Viewed by 3343
Abstract
Crop classification is an important part of crop management and yield estimation. In recent years, neural networks have made great progress in synthetic aperture radar (SAR) crop classification. However, the insufficient number of labeled samples limits the classification performance of neural networks. In [...] Read more.
Crop classification is an important part of crop management and yield estimation. In recent years, neural networks have made great progress in synthetic aperture radar (SAR) crop classification. However, the insufficient number of labeled samples limits the classification performance of neural networks. In order to solve this problem, a new crop classification method combining geodesic distance spectral similarity measurement and a one-dimensional convolutional neural network (GDSSM-CNN) is proposed in this study. The method consisted of: (1) the geodesic distance spectral similarity method (GDSSM) for obtaining similarity and (2) the one-dimensional convolutional neural network model for crop classification. Thereinto, a large number of training data are extracted by GDSSM and the generalized volume scattering model which is based on radar vegetation index (GRVI), and then classified by 1D-CNN. In order to prove the effectiveness of the GDSSM-CNN method, the GDSSM method and 1D-CNN method are compared in the case of a limited sample. In terms of evaluation and verification of methods, the GDSSM-CNN method has the highest accuracy, with an accuracy rate of 91.2%, which is 19.94% and 23.91% higher than the GDSSM method and the 1D-CNN method, respectively. In general, the GDSSM-CNN method uses a small number of ground measurement samples, and it uses the rich polarity information in multi-temporal fully polarized SAR data to obtain a large number of training samples, which can quickly improve the accuracy of classification in a short time, which has more new inspiration for crop classification. Full article
(This article belongs to the Special Issue SAR-Based Signal Processing and Target Recognition)
Show Figures

Graphical abstract

Back to TopTop