Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = in-situ fabrication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5612 KiB  
Review
In-Situ Monitoring and Process Control in Material Extrusion Additive Manufacturing: A Comprehensive Review
by Alexander Isiani, Kelly Crittenden, Leland Weiss, Okeke Odirachukwu, Ramanshu Jha, Okoye Johnson and Osinachi Abika
J. Exp. Theor. Anal. 2025, 3(3), 21; https://doi.org/10.3390/jeta3030021 - 29 Jul 2025
Viewed by 214
Abstract
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations [...] Read more.
Material extrusion additive manufacturing (MEAM) has emerged as a versatile and widely adopted 3D printing technology due to its cost-effectiveness and ability to process a diverse range of materials. However, achieving consistent part quality and repeatability remains a challenge, mainly due to variations in process parameters and material behavior during fabrication. In-situ monitoring and advanced process control systems have been increasingly integrated into MEAM to address these issues, enabling real-time detection of defects, optimization of printing conditions, reliability of fabricated parts, and enhanced control over mechanical properties. This review examines the state-of-the-art in-situ monitoring techniques, including thermal imaging, vibrational sensing, rheological monitoring, printhead positioning, acoustic sensing, image recognition, and optical scanning, and their integration with process control strategies, such as closed-loop feedback systems and machine learning algorithms. Key challenges, including sensor accuracy, data processing complexity, and scalability, are discussed alongside recent advancements and their implications for industrial applications. By synthesizing current research, this work highlights the critical role of in-situ monitoring and process control in advancing the reliability and precision of MEAM, paving the way for its broader adoption in high-performance manufacturing. Full article
Show Figures

Figure 1

54 pages, 14548 KiB  
Review
Review of Tribological and Wear Behavior of Alloys Fabricated via Directed Energy Deposition Additive Manufacturing
by Nika Zakerin, Khashayar Morshed-Behbahani, Donald Paul Bishop and Ali Nasiri
J. Manuf. Mater. Process. 2025, 9(6), 194; https://doi.org/10.3390/jmmp9060194 - 11 Jun 2025
Cited by 1 | Viewed by 1028
Abstract
Additive manufacturing (AM) is a rapidly evolving technology that enables the fabrication of complex 3D components across a wide range of materials and applications. Among various AM techniques, direct energy deposition (DED) has gained significant attention for its ability to produce metal and [...] Read more.
Additive manufacturing (AM) is a rapidly evolving technology that enables the fabrication of complex 3D components across a wide range of materials and applications. Among various AM techniques, direct energy deposition (DED) has gained significant attention for its ability to produce metal and alloy components with moderate geometric complexity while maintaining a high deposition rate. This makes DED particularly suitable for real-world applications, including in-situ repair and restoration of metallic parts. Due to the nature of the DED process, components undergo extreme heating and cooling cycles, leading to microstructural evolution, process-induced defects, and variations in properties. While extensive research has explored the microstructure and mechanical properties of DED-fabricated alloys, studies on their surface degradation remain incomplete. Corrosion behavior has been well documented, given its significance in AM alloys; however, their tribological performance remains largely unexplored. This paper provides a comprehensive review of the wear behavior of DED-manufactured alloys, emphasizing the potential of DED technology for producing durable components. Specifically, it examines the wear characteristics of four key material groups—Fe-based, Ni-based, Ti-based, and Cu-based alloys—by summarizing existing studies and analyzing the underlying mechanisms influencing their wear resistance. Finally, the paper identifies research gaps and outlines future directions to advance the understanding of wear performance in DED alloys, paving the way for further innovation in this field. Full article
Show Figures

Figure 1

12 pages, 2694 KiB  
Article
In-Situ Measurement of Gas Permeability for Membranes in Water Electrolysis
by Shuaimin Li, Chuan Song, Li Xu, Yuxin Wang and Wen Zhang
Membranes 2025, 15(5), 147; https://doi.org/10.3390/membranes15050147 - 13 May 2025
Viewed by 898
Abstract
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable [...] Read more.
Water electrolysis (WE) is a green technology for producing hydrogen gas without the emission of carbon dioxide. The ideal membrane materials in WE should be capable of transporting ions quickly and have gas barrier properties in harsh work environments. However, currently, no desirable measurement method has been developed for evaluating the gas barrier behavior of the membranes. Hence, an in-situ electrochemical method is developed to measure the gas permeability of membranes in the actual electrolysis environment, with the supersaturated state of H2 in the electrolyte and H2 bubbles during the electrolysis process. Four membranes, including Zirfon (a state-of-the-art alkaline WE membrane), polyphenylene sulfide fabric (PPS, a commercial alkaline WE membrane), FAA-3-PK-75 (a commercial anion-exchange membrane), and BILP-PE (a home-made composite membrane) were employed as the standard samples to perform the electrochemical measurement under different current densities, temperatures, and electrolyte concentrations. The results show that an increase in electrolytic current density or temperature or a decrease in KOH concentration can increase the H2 permeability of the membrane. The two porous membranes, Zirfon and PPS, are more affected by the current density and KOH concentration, while the dense FAA-3-PK-75 and BILP-PE membranes have a stronger ability to hinder H2 permeation. Under the conditions of 80 °C, 30 wt.% KOH, 101 kPa, and 400 mA·cm−2, the hydrogen permeability (×1010 L·cm·cm−2·s−1) of Zirfon, PPS, FAA, and BILP-PE are 263, 367, 28.3, and 5.32, respectively. Full article
(This article belongs to the Section Membrane Applications for Energy)
Show Figures

Figure 1

17 pages, 8137 KiB  
Article
Preparation and Characteristics of Porous Mullite Ceramics by 3D Printing and In-Situ Synthesis
by Rina Wu, Chaochao Wang, Guodong Xu, Meiling Fan, Zhigang Huang, Tao Zeng and Xiaohong Wang
Materials 2025, 18(5), 956; https://doi.org/10.3390/ma18050956 - 21 Feb 2025
Cited by 1 | Viewed by 1177
Abstract
In-situ porous mullite ceramics with varying pore size and porosity were fabricated using 3D printing. The pore size was controlled by adjusting the size of polymethyl methacrylate (PMMA) microspheres. The effect of sintering temperature on phase evolution was also examined. Additionally, the impact [...] Read more.
In-situ porous mullite ceramics with varying pore size and porosity were fabricated using 3D printing. The pore size was controlled by adjusting the size of polymethyl methacrylate (PMMA) microspheres. The effect of sintering temperature on phase evolution was also examined. Additionally, the impact of PMMA microsphere size and content on the rheological properties of the printing inks was investigated. The results indicated that alumina and microsilica fully transformed into mullite at 1550 °C. The influence of PMMA microsphere content and size on the porosity, mechanical properties, and thermal conductivity of 3D-printed porous mullite ceramics was also studied. The 3D-printed porous mullite ceramic prepared with 15 μm PMMA microspheres exhibited a porosity of 44.38%, a flexural strength of 58.53 MPa, and a thermal conductivity of 2.21 W/(m·K). This printing strategy offers a simple and effective method for fabricating porous mullite ceramics. Full article
Show Figures

Figure 1

14 pages, 3059 KiB  
Article
High Sensitivity and Wide Strain Range Flexible Strain Sensor Based on CB/CNT/PDA/TPU Conductive Fiber Membrane
by Qiong Wei, Zihang Sun, Xudong Li, Zichao Chen and Yi Li
Appl. Sci. 2025, 15(3), 1461; https://doi.org/10.3390/app15031461 - 31 Jan 2025
Viewed by 1021
Abstract
Flexible strain sensors have attracted significant attention due to their critical applications in wearable devices, biological detection, and artificial intelligence. However, achieving both a wide strain range and high sensitivity remains a major challenge in current research. This study aims to develop a [...] Read more.
Flexible strain sensors have attracted significant attention due to their critical applications in wearable devices, biological detection, and artificial intelligence. However, achieving both a wide strain range and high sensitivity remains a major challenge in current research. This study aims to develop a novel composite material with a synergistic conductive network to construct high-performance flexible strain sensors. Thermoplastic polyurethane (TPU) nanofiber membranes were first prepared using electrospinning technology, and their surface was modified with polydopamine (PDA) via in-situ polymerization, which significantly enhanced the fibers’ adsorption capacity for conductive materials. Subsequently, carbon nanotubes (CNTs) and carbon black (CB) were coated onto the PDA-modified TPU fibers through ultrasonic anchoring, forming a CB/CNT/PDA/TPU composite with a synergistic conductive network. The results demonstrated that the flexible strain sensor fabricated from this composite material (with a CB-to-CNT mass ratio of 7:3) achieved ultrahigh sensitivity (gauge factor, GF, up to 1063) over a wide strain range (up to 300%), along with a low detection limit (1% strain), fast response and recovery times (137 ms), and exceptional stability and durability. Further evaluations confirmed that this sensor reliably captured biological signals from various joint movements, highlighting its broad application potential in human motion monitoring, human–machine interaction, and soft robotics. Full article
Show Figures

Figure 1

33 pages, 6962 KiB  
Article
Experimental Study: Stress Path Coefficient in Unconsolidated Sands: Effects of Re-Pressurization and Depletion Hysteresis
by Sabyasachi Prakash, Michael Myers, George Wong, Lori Hathon and Duane Mikulencak
Geosciences 2024, 14(12), 327; https://doi.org/10.3390/geosciences14120327 - 3 Dec 2024
Cited by 1 | Viewed by 1206
Abstract
Accurate estimation of in-situ stresses is a critical parameter for geo-mechanical modelling. In-situ stresses are estimated in the field from logs and frac tests. Laboratory tests are performed with cored material to estimate horizontal stress changes under defined boundary conditions to complement field [...] Read more.
Accurate estimation of in-situ stresses is a critical parameter for geo-mechanical modelling. In-situ stresses are estimated in the field from logs and frac tests. Laboratory tests are performed with cored material to estimate horizontal stress changes under defined boundary conditions to complement field data. Horizontal stress path coefficient is used to estimate a change in in-situ stresses as the reservoir undergoes depletion or injection. Uniaxial Strain boundary conditions are representative of far field stress state. The laboratory data provides the change in horizontal stress with a change in pore pressure. It is used to complement the field data acquisition of absolute stress values to predict the value of total stresses. This experimental study provides a novel method of simulating geological compaction for fabricating representative samples from unconsolidated sands. It investigates the variability of horizontal stress path coefficient as a function of changing pore pressure (depressurization and re-pressurization) in unconsolidated sandstone reservoirs. Synthetic sandstones samples were made from sand packs by consolidating them under an isostatic stress path at ambient pore pressure. After getting to initial reservoir conditions, a series of pore pressure depletion and injection tests with varying magnitudes (injection and depletion) were performed to study the effects of stress path direction and associated hysteresis. The magnitude of the stress path coefficient under depletion is lower than that under injection for the first load-unload cycle. In subsequent load-unload cycles, the stress path coefficient values remain constant until the sample is depleted to a new level of pore pressure. A Modified Cam Clay model is fit to the data to map the expansion of the yield surface and quantify the model parameters. Application of this research includes accurate prediction of changes in-situ stresses during depletion and injection stress paths for simulating unconsolidated reservoirs behavior under fluid injection or further depletion. Full article
(This article belongs to the Special Issue Fracture Geomechanics—Obstacles and New Perspectives)
Show Figures

Figure 1

18 pages, 12366 KiB  
Article
Enhanced Adsorption of Cadmium by a Covalent Organic Framework-Modified Biochar in Aqueous Solution
by Yanwei Hou, Shanna Lin, Jiajun Fan, Youchi Zhang, Guohua Jing and Chao Cai
Toxics 2024, 12(10), 717; https://doi.org/10.3390/toxics12100717 - 30 Sep 2024
Cited by 3 | Viewed by 1598
Abstract
In the environmental field, the advancement of new high-efficiency heavy metal adsorption materials remains a continuous research focus. A novel composite, covalent organic framework-modified biochar (RH-COF), was fabricated via an in-situ polymerization approach in this study. The COF-modified biochar was characterized by elemental [...] Read more.
In the environmental field, the advancement of new high-efficiency heavy metal adsorption materials remains a continuous research focus. A novel composite, covalent organic framework-modified biochar (RH-COF), was fabricated via an in-situ polymerization approach in this study. The COF-modified biochar was characterized by elemental analysis, BET analysis, SEM, FT-IR, and XPS. The nitrogen and oxygen content in the modified material increased significantly from 0.96% and 15.50% to 5.40% and 24.08%, respectively, indicating the addition of a substantial number of nitrogen- and oxygen-containing functional groups to the RH-COF surface, thereby enhancing its adsorption capacity for Cd from 4.20 mg g−1 to 58.62 mg g−1, representing an approximately fourteen-fold increase. Both the pseudo-second-order model and the Langmuir model were suitable for describing the kinetics and isotherms of Cd2+ adsorption onto RH-COF. The adsorption performance of Cd2+ by RH-COF showed minimal sensitivity to pH values between 4.0 and 8.0, but could be slightly influenced by ionic strength. Mechanistic analysis showed that the Cd2+ adsorption on RH-COF was dominated by surface complexation and chelation, alongside electrostatic adsorption, surface precipitation, and Cπ–cation interactions. Overall, these findings suggest that the synthesis of COF-biochar composite may serve as a promising remediation strategy while providing scientific support for applying COF in environmental materials. Full article
(This article belongs to the Special Issue Environmental Transport and Transformation of Pollutants)
Show Figures

Figure 1

39 pages, 31615 KiB  
Article
Seismic Retrofit Case Study of Shear-Critical RC Moment Frame T-Beams Strengthened with Full-Wrap FRP Anchored Strips in a High-Rise Building in Los Angeles
by Susana Anacleto-Lupianez, Luis Herrera, Scott F. Arnold, Winston Chai, Todd Erickson and Anne Lemnitzer
Appl. Sci. 2024, 14(19), 8654; https://doi.org/10.3390/app14198654 - 25 Sep 2024
Cited by 1 | Viewed by 1864
Abstract
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer [...] Read more.
This paper discusses the iteration of a seismic retrofit solution for shear-deficient end regions of 19 reinforced concrete (RC) moment-resisting frame (MRF) T-beams located in a 12-story RC MRF building in downtown Los Angeles, California. Local strengthening with externally bonded (EB) fiber-reinforced polymer (FRP) fabric was chosen as the preferred retrofit strategy due to its cost-effectiveness and proven performance. The FRP-shear-strengthening scheme for the deficient end-hinging regions of the MRF beams was designed and evaluated through large-scale cyclic testing of three replica specimens. The specimens were constructed at 4/5 scale and cantilever T-beam configurations with lengths of 3.40 m or 3.17 m. The cross-sectional geometry was 0.98 × 0.61 m with a top slab of 1.59 m in width and 0.12 m in thickness. Applied to these specimens were three different retrofit configurations, tested sequentially, namely: (a) unanchored continuous U-wrap; (b) anchored continuous U-wrap with conventional FRP-embedded anchors at the ends; and (c) fully closed external FRP hoops made of discrete FRP U-wrap strips and FRP through-anchors that penetrate the top slab and connect both ends of the FRP strips, combined with intermediate crack-control joints. The strengthening concept with FRP hoops precluded the premature debonding and anchor pullout issues of the two more conventional retrofit solutions and, despite a more challenging and labor-intensive installation, was selected for the in-situ implementation. The proposed hooplike EB-FRP shear-strengthening scheme enabled the deficient MRF beams to overcome a 30% shear overstress at the end-yielding region and to develop high-end rotations (e.g., 0.034 rad [3.4% drift] at peak and 0.038 rad [3.8% drift]) at strength loss for a beam that, otherwise, would have prematurely failed in shear. These values are about 30% larger than the ASCE 41 prescriptive value for the Life Safety (LS) performance objective. Energy dissipation achieved with the fully closed scheme was 108% higher than that of the unanchored FRP U-wrap and 45% higher than that of the FRP U-wrap with traditional embedded anchors. The intermediate saw-cut grooves successfully attracted crack formation between the strips and away from the FRP reinforcement, which contributed to not having any discernable debonding of the strips up to 3% drift. This paper presents the experimental evaluation of the three large-scale laboratory specimens that were used as the design basis for the final retrofit solution. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

11 pages, 5047 KiB  
Article
Study on the Polymer Morphology and Electro-Optical Performance of Acrylate/Epoxy Resin-Based Polymer-Stabilized Liquid Crystals Based on Stepwise Photopolymerization
by Yishuo Wu, Guangyang Shang, Cong Ma, Yingjie Shi, Zhexu Song, Peixiang Wang, Yanzi Gao, Qian Wang, Meina Yu, Jiumei Xiao and Cheng Zou
Polymers 2024, 16(17), 2446; https://doi.org/10.3390/polym16172446 - 29 Aug 2024
Cited by 1 | Viewed by 1268
Abstract
Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be [...] Read more.
Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be controlled precisely. Herein, a novel polymer-stabilized liquid crystal film based on acrylate/epoxy resin is proposed, fabricated and the relationships between preparation process, polymer content, polymer morphology and electro-optical properties are studied. The in-situ photopolymerization of acrylate/epoxy resin liquid crystalline polymer is fulfilled using cation photo-initiator UV 6976. The distinct photopolymerization speed between acrylate and epoxy resin benefits the polymer morphology control, and with accurate containment of the polymerization process and polymer composition, the superior electro-optical properties at a higher polymer content are acquired. The polymer morphology and electro-optical properties are influenced by the polymer content and mass ratio between acrylate and epoxy resin. The best electro-optical properties among samples are attained by controlling the mass ratio between acrylate and epoxy resin to 1:1, integrating higher densities of scattering centers and lower anchoring effect. With higher polymer content, the strategy of increasing the mass ratio of E6M benefits the improvement of E-O properties for alleviating polymer density. This work provides insights to stepwise polymerization of liquid crystalline monomers and offers a fancy strategy for the preparation of novel liquid crystal dimming films. Full article
(This article belongs to the Special Issue Advanced Polymer Nanocomposites III)
Show Figures

Graphical abstract

19 pages, 2956 KiB  
Article
Eddy Current Sensor Probe Design for Subsurface Defect Detection in Additive Manufacturing
by Heba E. Farag, Mir Behrad Khamesee and Ehsan Toyserkani
Sensors 2024, 24(16), 5355; https://doi.org/10.3390/s24165355 - 19 Aug 2024
Cited by 1 | Viewed by 2861
Abstract
Pore and crack formation in parts produced by additive manufacturing (AM) processes, such as laser powder bed fusion, is one of the issues associated with AM technology. Surface and subsurface cracks and pores are induced during the printing process, undermining the printed part [...] Read more.
Pore and crack formation in parts produced by additive manufacturing (AM) processes, such as laser powder bed fusion, is one of the issues associated with AM technology. Surface and subsurface cracks and pores are induced during the printing process, undermining the printed part durability. In-situ detection of defects will enable the real-time or intermittent control of the process, resulting in higher product quality. In this paper, a new eddy current-based probe design is proposed to detect these defects in parts with various defects that mimic pores and cracks in additively manufactured parts. Electromagnetic finite element analyses were carried out to optimize the probe geometry, followed by fabricating a prototype. Artificial defects were seeded in stainless steel plates to assess the feasibility of detecting various flaws with different widths and lengths. The smallest defect detected had a 0.17 mm radius for blind holes and a 0.43 mm notch with a 5 mm length. All the defects were 0.5 mm from the surface, and the probe was placed on the back surface of the defects. The surface roughness of the tested samples was less than 2 µm. The results show promise for detecting defects, indicating a potential application in AM. Full article
Show Figures

Figure 1

21 pages, 5067 KiB  
Article
In-Situ Hydrothermal Fabrication of ZnO-Loaded GAC Nanocomposite for Efficient Rhodamine B Dye Removal via Synergistic Photocatalytic and Adsorptive Performance
by Kehinde Shola Obayomi, Sie Yon Lau, Zongli Xie, Stephen R. Gray and Jianhua Zhang
Nanomaterials 2024, 14(14), 1234; https://doi.org/10.3390/nano14141234 - 22 Jul 2024
Cited by 4 | Viewed by 2098
Abstract
In this work, zinc oxide (ZnO)/granular activated carbon (GAC) composites at different ZnO concentrations (0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC) were prepared by an in-situ hydrothermal method and demonstrated synergistic photocatalytic degradation and adsorption of rhodamine B (RhB). The thermal stability, morphological structure, elemental composition, [...] Read more.
In this work, zinc oxide (ZnO)/granular activated carbon (GAC) composites at different ZnO concentrations (0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC) were prepared by an in-situ hydrothermal method and demonstrated synergistic photocatalytic degradation and adsorption of rhodamine B (RhB). The thermal stability, morphological structure, elemental composition, crystallographic structure, and textural properties of developed catalysts were characterized by thermal gravimetric analysis (TGA/DTG), scanning electron microscopy equipped with energy dispersive-x-ray (SEM-EDS), X-ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis. The successful loading of ZnO onto GAC was confirmed by SEM-EDS and XRD analysis. The BET surface areas of GAC, 0.25M-ZnO@GAC, 0.5M-ZnO@GAC, and 0.75M-ZnO@GAC were 474 m2/g, 450 m2/g, 453 m2/g, and 421 m2/g, respectively. The decrease in GAC could be attributed to the successful loading of ZnO on the GAC surface. Notably, 0.5M-ZnO@GAC exhibited the best photocatalytic degradation efficiency of 82% and 97% under UV-A and UV-C light over 120 min, attributed to improved crystallinity and visible light absorption. The photocatalytic degradation parameters revealed that lowering the RhB concentration and raising the catalyst dosage and pH beyond the point of zero charge (PZC) would favor the RhB degradation. Photocatalytic reusability was demonstrated over five cycles. Scavenger tests revealed that the hydroxyl radicals (OH), superoxide radicals (O2−•), and photoinduced hole (h+) radicals play a major role during the RhB degradation process. Based on the TOC results, the RhB mineralization efficiency of 79.1% was achieved by 0.5M-ZnO@GAC. Additionally, GAC exhibited a strong adsorptive performance towards RhB, with adsorption capacity and the RhB removal of 487.1 mg/g and 99.5% achieved within 90 min of equilibrium time. The adsorption characteristics were best described by pseudo-second-order kinetics, suggesting chemical adsorption. This research offers a new strategy for the development of effective photocatalyst materials with potential for wider wastewater treatment applications. Full article
Show Figures

Graphical abstract

15 pages, 3445 KiB  
Article
Field Emission Properties of Cu-Filled Vertically Aligned Carbon Nanotubes Grown Directly on Thin Cu Foils
by Chinaza E. Nwanno, Arun Thapa, John Watt, Daniel Simkins Bendayan and Wenzhi Li
Nanomaterials 2024, 14(11), 988; https://doi.org/10.3390/nano14110988 - 6 Jun 2024
Cited by 4 | Viewed by 2387
Abstract
Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive substrate treatments, our in-situ technique offers a [...] Read more.
Copper-filled vertically aligned carbon nanotubes (Cu@VACNTs) were grown directly on Cu foil substrates of 0.1 mm thicknesses at different temperatures via plasma-enhanced chemical vapor deposition (PECVD). By circumventing the need for additional catalyst layers or intensive substrate treatments, our in-situ technique offers a simplified and potentially scalable route for fabricating Cu@VACNTs with enhanced electrical and thermal properties on thin Cu foils. Comprehensive analysis using field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS) mappings, and X-ray diffraction (XRD) revealed uniform Cu filling within the VACNTs across a range of synthesis temperatures (650 °C, 700 °C, and 760 °C). Field emission (FE) measurements of the sample synthesized at 700 °C (S700) showed low turn-on and threshold fields of 2.33 V/μm and 3.29 V/μm, respectively. The findings demonstrate the viability of thin Cu substrates in creating dense and highly conductive Cu-filled VACNT arrays for advanced electronic and nanoelectronics applications. Full article
Show Figures

Graphical abstract

22 pages, 4661 KiB  
Article
Microstructure Tailoring for High Strength Ti-6Al-4V without Alloying Elements through Optimized Preheating and Post-Heating Laser Scanning in Laser Powder Bed Fusion
by Ahmet Alptug Tanrikulu, Aditya Ganesh-Ram, Hamidreza Hekmatjou, Sadman Hafiz Durlov, Md Najmus Salehin and Amirhesam Amerinatanzi
Metals 2024, 14(6), 629; https://doi.org/10.3390/met14060629 - 26 May 2024
Cited by 2 | Viewed by 2213
Abstract
Ti-6Al-4V with its eclectic array of excellent properties along with the combination of meticulous precision and flexibility offered by the laser powder bed fusion (LPBF) technology makes it a strong proponent in the field of engineering applications. As a substantial amount of research [...] Read more.
Ti-6Al-4V with its eclectic array of excellent properties along with the combination of meticulous precision and flexibility offered by the laser powder bed fusion (LPBF) technology makes it a strong proponent in the field of engineering applications. As a substantial amount of research has paved the way to fabricate Ti-6AL-4V more effectively and efficiently, researchers are becoming more adventurous in finding out the optimal techniques to get better yields in terms of mechanical responses. This includes post-processing techniques i.e., heat treatment (HT) or introducing various alloying elements. Nevertheless, these techniques not only make the overall fabrication more expensive and time-consuming but also contradict the simplistic notion of additive manufacturing (AM) by imparting multistage fabrication without a considerable improvement overall. Here, we propose an innovative breakthrough in the field of Ti-6AL-4V fabrication with LPBF by introducing an in-situ approach to tackle the handicap mentioned in contemporary studies. By imparting multiple laser scans prior to and after the melting scan at each layer, a remarkable 37% improvement in yield strength (YS) can be achieved with higher elongation, while also maintaining a high relative density of around 99.99%. Full article
(This article belongs to the Special Issue Microstructural Tailoring of Metals and Alloys)
Show Figures

Figure 1

16 pages, 4390 KiB  
Article
Multifunctional Superamphiphobic Coating Based on Fluorinated TiO2 toward Effective Anti-Corrosion
by Xiao Huang, Xinghua Gao, Xin Wang, Hongfei Shang and Shujun Zhou
Materials 2024, 17(10), 2203; https://doi.org/10.3390/ma17102203 - 8 May 2024
Cited by 4 | Viewed by 1437
Abstract
The application of superamphiphobic coatings improves the surface’s ability to repel fluids, thereby greatly enhancing its various functions, including anti-fouling, anti-corrosion, anti-icing, anti-bacterial, and self-cleaning properties. This maximizes the material’s potential for industrial applications. This work utilized the agglomeration phenomenon exhibited by nano-spherical [...] Read more.
The application of superamphiphobic coatings improves the surface’s ability to repel fluids, thereby greatly enhancing its various functions, including anti-fouling, anti-corrosion, anti-icing, anti-bacterial, and self-cleaning properties. This maximizes the material’s potential for industrial applications. This work utilized the agglomeration phenomenon exhibited by nano-spherical titanium dioxide (TiO2) particles to fabricate 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) modified TiO2 (TiO2@fluoroPOS) fillers with low surface energy. This was achieved through the in-situ formation of protective armor on the surface of the agglomerates using the sol-gel method and fluorination modification. Polyvinylidene fluoride-tetrafluoropropylene (PVDF-HFP) and TiO2@fluoroPOS fillers were combined using a spraying technique to prepare P/TiO2@fluoroPOS coatings with superamphiphobicity. Relying on the abundance of papillae, micropores, and other tiny spaces on the surface, the coating can capture a stable air film and reject a variety of liquids. When the coatings were immersed in solutions of 2 mol/L HCl, NaCl, and NaOH for a duration of 12 h, they retained their exceptional superamphiphobic properties. Owing to the combined influence of the armor structure and the organic binder, the coating exhibited good liquid repellency during water jetting and sandpaper abrasion tests. Furthermore, the coating has shown exceptional efficacy in terms of its ability to be anti-icing, anti-waxing, and self-cleaning. Full article
Show Figures

Figure 1

14 pages, 7985 KiB  
Article
Recycled PET/PA6 Fibers from Waste Textile with Improved Hydrophilicity by In-Situ Reaction-Induced Capacity Enhancement
by Li-Bin Luo, Rong Chen, Yu-Xin Lian, Wen-Jun Wu, Jia-Hong Zhang, Chong-Xian Fu, Xiao-Li Sun and Li-Ren Xiao
Polymers 2024, 16(8), 1052; https://doi.org/10.3390/polym16081052 - 11 Apr 2024
Cited by 5 | Viewed by 2334
Abstract
Due to the increasing amounts of textile waste, textile to textile recycling is of prime concern. Polyethylene terephthalate (PET) represents the most extensively used type of chemical fiber. Its spinnability suffers from impurities and degradation in the processing, which limits its recycling to [...] Read more.
Due to the increasing amounts of textile waste, textile to textile recycling is of prime concern. Polyethylene terephthalate (PET) represents the most extensively used type of chemical fiber. Its spinnability suffers from impurities and degradation in the processing, which limits its recycling to new fibers. Here, recycled polyester is blended with a small amount of recycled nylon, and the regenerated fibers, which demonstrated good mechanical properties, were obtained via a melt spinning machine. The mechanical properties, thermal properties, rheological properties, and chemical structure of the modified recycled fibers were investigated. It was found that when compared with rPET-T fibers, the elongation at break of rPET-Ax fibers increased to 17.48%, and the strength at break decreased to 3.79 cN/dtex. The compatibility of PET and PA6 copolymer were enhanced by copolymers produced by in-situ reaction in the processing. Meanwhile, the existence of PA6 increases the crystallization temperature and improves the hydrophilicity of the fibers. This study realized the high-value recycling of waste PET fabric to new fibers, which opens a door for the large utilization of waste textiles. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

Back to TopTop