Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = impregnated resin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 961 KiB  
Article
Analysis of Chemical Composition and Odor Characteristics in Particleboards Decorated by Resin-Impregnated Paper, Polypropylene Film and Polyvinyl Chloride Film
by Liming Zhu, Minghui Yang, Lina Tang, Qian Chen, Xiaorui Liu, Xianwu Zou, Yuejin Fu and Bo Liu
Polymers 2025, 17(15), 2145; https://doi.org/10.3390/polym17152145 - 5 Aug 2025
Abstract
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or [...] Read more.
Analysis of changes in TVOC and VOCs chemical composition or odor characteristics of particleboard before and after decoration treatment with resin-impregnated paper (RIP), polypropylene (PP) film and polyvinyl chloride (PVC) film were studied. The effects of these three decoration treatments on masking or suppressing the release of VOCs and odorants from particleboard were explored. The substances that were covered or suppressed and newly introduced before and after processing were identified to provide a basis for reducing the odor emissions of PVC-, PP- and RIP-decorated particleboard. Taking undecorated particleboard and particleboard treated by three types of decorative materials as research subjects, the air permeability of the three decorative materials was tested using the Gurley Permeability Tester. TVOC emissions from the boards were evaluated using the 1 m3 environmental chamber method. Qualitative and quantitative analyses of the samples were conducted via thermal desorption–gas chromatography–mass spectrometry (TD-GCMS). The contribution of odor substances was determined using odor activity value (OAV). The results indicated that the permeability from high to low was PVC film, PP film and RIP. Compared with undecorated particleboard, the TVOC emissions of PVC-decorated boards decreased by 93%, PP-decorated particleboard by 83% but the TVOC emissions of RIP-decorated particleboard increased by 67%. PP decoration treatment masked or suppressed the release of 20 odor substances but introduced xylene, which can increase potentially the health risks for PP-decorated particleboard. PVC decoration treatment masked or suppressed 19 odor substances, but it introduced 12 new compounds, resulting in an overall increase in TVOC emissions. RIP treatment did not introduce new odor substances. After PP film and RIP treatments, both the variety of VOCs released and the number of key odor-contributing compounds and modifying odorants decreased. In contrast, the number of modifying odorants and potential odorants increased after PVC treatment. VOC emissions were effectively masked or suppressed by three decoration treatments, same as the release of substances contributing to overall odor of particleboard was reduced. Among them, PP and RIP decorative materials demonstrate better effects. Full article
(This article belongs to the Special Issue Eco-Friendly Supramolecular Polymeric Materials, 2nd Edition)
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 246
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 4484 KiB  
Article
Microscale Flow Simulation of Resin in RTM Process for Optical Fiber-Embedded Composites
by Tianyou Lu, Bo Ruan, Zhanjun Wu and Lei Yang
Polymers 2025, 17(15), 2076; https://doi.org/10.3390/polym17152076 - 29 Jul 2025
Viewed by 201
Abstract
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product [...] Read more.
By embedding optical fiber sensors into fiber preforms and utilizing liquid molding processes such as resin transfer molding (RTM), intelligent composite materials with self-sensing capabilities can be fabricated. In the liquid molding process of these intelligent composites, the quality of the final product is highly dependent on the resin flow and impregnation effects. The embedding of optical fibers can affect the microscopic flow and impregnation behavior of the resin; therefore, it is necessary to investigate the specific impact of optical fiber embedding on the resin flow and impregnation of fiber bundles. Due to the difficulty of directly observing this process at the microscopic scale through experiments, numerical simulation has become a key method for studying this issue. This paper focuses on the resin micro-flow in RTM processes for intelligent composites with embedded optical fibers. Firstly, a steady-state analysis of the resin flow and impregnation process was conducted using COMSOL 6.0 obtaining the velocity and pressure field distribution characteristics under different optical fiber embedding conditions. Secondly, the dynamic process of resin flow and impregnation of fiber bundles at the microscopic scale was simulated using Fluent 2022R2. This study comprehensively analyzes the impact of different optical fiber embedding configurations on resin flow and impregnation characteristics, determining the impregnation time and porosity after impregnation under different optical fiber embedding scenarios. Additionally, this study reveals the mechanisms of pore formation and their distribution patterns. The research findings provide important theoretical guidance for optimizing the RTM molding process parameters for intelligent composite materials. Full article
(This article belongs to the Special Issue Constitutive Modeling of Polymer Matrix Composites)
Show Figures

Figure 1

15 pages, 5452 KiB  
Article
Roughness and Gloss of 3D-Printed Crowns Following Polishing or Varnish Application
by Silvia Rojas-Rueda, Tariq Aziz Alsahafi, Mohammed Hammamy, Neeraj Surathu, Nitish Surathu, Nathaniel C. Lawson and Taiseer A. Sulaiman
Materials 2025, 18(14), 3308; https://doi.org/10.3390/ma18143308 - 14 Jul 2025
Viewed by 329
Abstract
The aim of this study was to evaluate and compare the surface roughness and gloss—both initially and after simulated toothbrushing—of three 3D-printed crown materials subjected to different surface treatments: varnishing, polishing with diamond-impregnated rubber polishers, and polishing with a bristle brush and paste. [...] Read more.
The aim of this study was to evaluate and compare the surface roughness and gloss—both initially and after simulated toothbrushing—of three 3D-printed crown materials subjected to different surface treatments: varnishing, polishing with diamond-impregnated rubber polishers, and polishing with a bristle brush and paste. Disc-shaped specimens (n = 90) were 3D-printed using three commercially available crown resins (Rodin Sculpture, VarseoSmile TriniQ, and OnX Tough 2) and post-processed per manufacturers’ instructions. Specimens were divided into three surface treatment groups: application of a light-cured varnish, polishing with a two-step diamond-impregnated rubber polisher, or polishing with a bristle brush and abrasive paste. Surface roughness and gloss were measured after treatment and again following 20,000 cycles of simulated toothbrushing. Additional specimens were prepared for Vickers microhardness testing and determination of filler weight percentage (wt%). Statistical comparisons were performed using two-way ANOVA with significance set at p < 0.05. Results: The varnish provided the statistically lowest roughness of all surface treatments for all materials. The bristle brush and abrasive paste polishing protocol produced the greatest gloss for the softest material (VarseoSmile TriniQ) and lowest gloss for the hardest material (Rodin Sculpture), whereas the two-step diamond-impregnated rubber polisher produced an equivalent gloss on all materials. Following toothbrushing, roughness was minimally affected; however, gloss was considerably reduced. Conclusions: All tested polishing and varnishing methods achieved clinically acceptable surface roughness (Ra < 0.2 µm) that persisted after simulated toothbrushing. Notably, the two-step diamond-impregnated rubber polisher produced consistent gloss across all materials, while the bristle brush and abrasive paste polishing protocol performed better on softer materials, and varnish application resulted in equal or superior gloss and roughness retention compared to polishing. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

22 pages, 9667 KiB  
Article
A Simulation and a Computational Study on the Reliability Verification of Epoxy Resin Paper-Impregnated Bushings in Power Transformers
by Daijun Liu, Xiaobang Tong, Libao Liu, Xiaoying Dong, Tianming Yan, Wenkai Tang, Liming Wang, Bin Cao and Zimin Luo
Energies 2025, 18(13), 3239; https://doi.org/10.3390/en18133239 - 20 Jun 2025
Viewed by 336
Abstract
Epoxy resin paper-impregnated bushings, as critical insulating components in power transformers, are subjected to complex electric fields, thermal fields, and mechanical stresses over extended periods. Their performance stability is directly linked to the safe operation of transformers. Given the significant costs associated with [...] Read more.
Epoxy resin paper-impregnated bushings, as critical insulating components in power transformers, are subjected to complex electric fields, thermal fields, and mechanical stresses over extended periods. Their performance stability is directly linked to the safe operation of transformers. Given the significant costs associated with their production, reliability verification is a crucial aspect of their design and manufacturing process. This study employs the finite element simulation technology to systematically investigate the electric field distribution characteristics, thermal field distribution characteristics, and seismic performance reliability verification methods of epoxy resin paper-impregnated bushings. The simulation and calculation results indicate that for bushings with rated voltages of 40.5 kV, 72.5 kV, and 126 kV, the maximum radial electric field strengths are 1.38 kV/mm, 2.74 kV/mm, and 3.0 kV/mm, respectively, with axial electric field strengths all below allowable values. The insulation margin meets the 1.5 standard requirements. Under short-circuit conditions, the thermal stability analysis of the bushings reveals that the final conductor temperatures are all below 180 °C, indicating sufficient safety margins. All three types of bushings comply with the design requirements for an 8-degree earthquake intensity and are capable of effectively withstanding seismic loads. This research provides a theoretical foundation for the development and application of epoxy resin paper-impregnated bushings, offering a significant engineering application value in enhancing the safety and stability of transformers and power systems. Full article
Show Figures

Figure 1

33 pages, 1352 KiB  
Review
Delignification as a Key Strategy for Advanced Wood-Based Materials: Chemistry, Delignification Parameters, and Emerging Applications
by Paschalina Terzopoulou, Evangelia C. Vouvoudi and Dimitris S. Achilias
Forests 2025, 16(6), 993; https://doi.org/10.3390/f16060993 - 12 Jun 2025
Viewed by 955
Abstract
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has [...] Read more.
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has emerged as a promising pretreatment technique to enhance the properties of wood for advanced subsequent applications. This process selectively removes lignin while preserving the aligned cellulose structure, thereby improving mechanical strength, dimensional stability, and potential for functionalization. Various delignification methods, including alkaline, acidic, and reductive catalytic fractionation, have been explored to optimize the wood’s structural and chemical properties. When combined with densification or impregnation, delignified wood exhibits superior mechanical performance, making it suitable for a range of applications, including structural materials, optical devices, biomedical applications, and energy storage. This detailed review examines the chemistry and mechanisms of delignification, its impact on the physical and mechanical properties of wood, and its role in developing sustainable, high-performance bio-based materials. Furthermore, challenges and future opportunities in delignification research are discussed, highlighting its potential for next-generation wood-based innovative applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

14 pages, 1050 KiB  
Article
Green On-Site Diclofenac Extraction from Wastewater Matrices Using a 3D-Printed Device Followed by PTV-GC-MS Determination
by César Castro-García, Edwin Palacio, Rogelio Rodríguez-Maese, Luz O. Leal and Laura Ferrer
Chemosensors 2025, 13(6), 212; https://doi.org/10.3390/chemosensors13060212 - 9 Jun 2025
Viewed by 946
Abstract
A 3D-printed device was designed and printed by a stereolithographic technique (SLA) and coated with a highly selective solid phase extraction resin for on-site diclofenac extraction from wastewater, avoiding the transport and treatment of large volumes of samples in the laboratory. The best [...] Read more.
A 3D-printed device was designed and printed by a stereolithographic technique (SLA) and coated with a highly selective solid phase extraction resin for on-site diclofenac extraction from wastewater, avoiding the transport and treatment of large volumes of samples in the laboratory. The best results in terms of chemical and mechanical resistance were obtained with Rigid 10K resin. The “stick-and-cure” impregnation technique was used to coat the 3D-printed device with Oasis® HLB resin. The coated 3D-printed device can be reused up to eight times without losing extraction efficiency. The eluent and derivatization reagent volumes were optimized by a multivariate design. The proposed method allowed for the extraction and determination of diclofenac by PTV-GC-MS, achieving methodological detection and quantification limits of 0.019 and 0.055 μg L−1, respectively, with a preconcentration factor of 46. The analysis time was 23 min per sample. To validate the proposed methodology, addition/recovery tests were carried out in different wastewater samples, obtaining recoveries above 90%. The methodology was applied at the wastewater treatment plant (WWTP) of Calvià (Mallorca, Spain), finding diclofenac in concentrations of 15.39 ± 0.07 μg L−1 at the input of the primary decantation process, 4.48 ± 0.03 μg L−1 at the output of the secondary decantation, and 0.099 ± 0.001 μg L−1 at the output of the tertiary treatment, demonstrating the feasibility of the on-site extraction method in monitoring diclofenac over a wide concentration range. Finally, a greenness index of 0.58 for the proposed on-site sample preparation was achieved according to the AGREEprep metrics, making it an eco-friendly alternative for diclofenac monitoring. Full article
Show Figures

Graphical abstract

14 pages, 926 KiB  
Article
Comparison of Apical Microleakage in Bioceramic and Resin-Based Endodontic Sealers with Conventional and Bioceramic Surface-Impregnated Gutta-Percha Points
by Lucia Somolová, Yuliya Morozova, Iva Voborná, Matej Rosa, Barbora Novotná, Pavel Holík and Kateřina Langová
Ceramics 2025, 8(2), 65; https://doi.org/10.3390/ceramics8020065 - 26 May 2025
Viewed by 1175
Abstract
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated [...] Read more.
The aim of this study is to evaluate the apical sealing ability of novel bioceramic-based (BCB) and widely used resin-based (RB) root canal sealers in combination with traditional or bioceramic-coated gutta-percha points. A total of 92 human single-root extracted teeth were endodontically treated and divided into three groups (A, B, and C) of 30 samples based on the endodontic sealer/type of gutta-percha points/obturation method used. One tooth sample was used for the negative and positive controls (each). Group A: BCB sealer BioRoot RCS (Septodont, Saint-Maur-des-Fossés, France)/bioceramic-impregnated gutta-percha TotalFill BC points (FKG Dentaire, La Chaux-de-Fonds, Switzerland)/cold hydraulic single-cone. Group B: BioRoot RCS (Septodont, France)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, Charlotte, NC, USA)/cold hydraulic single-cone. Group C: RB sealer AdSeal (Meta Biomed, Cheongju, Republic of Korea)/traditional Protaper Gold Gutta-Percha Points (Dentsply Sirona, USA)/warm vertical condensation. A dye penetration method was applied, and the length of apicocoronal penetration was measured using a surgical microscope. The data were statistically analyzed to evaluate differences at the 0.05 significance level. A significant difference was found between groups A and C, p = 0.0003, and groups B and C, p = 0.003. The data analysis proved that the BCB sealer using the cold hydraulic single-cone method ensured a substantially better seal than the RB sealer using the warm vertical condensation method. The choice of the type of gutta-percha points (bioceramic-coated or regular) appeared to be unimportant. No statistical significance was found between groups A and B, which indicates that using bioceramic-coated gutta-percha points does not bring any considerable benefit in view of a no-gap root canal obturation. Full article
Show Figures

Graphical abstract

20 pages, 8874 KiB  
Article
Oxidation Resistance, Ablation Resistance, and Ablation Mechanism of HfC–B4C-Modified Carbon Fiber/Boron Phenolic Resin Ceramizable Composites
by Hairun Wen, Wei Zhang, Zongyi Deng, Xueyuan Yang and Wenchao Huang
Polymers 2025, 17(10), 1412; https://doi.org/10.3390/polym17101412 - 20 May 2025
Viewed by 598
Abstract
Thermal protection materials with excellent performance are critical for hypersonic vehicles. Carbon fiber/phenolic resin composites (Cf/Ph) have been widely used as thermal protection materials due to their high specific strength and ease of processing. However, oxidative failure limits the extensive applications [...] Read more.
Thermal protection materials with excellent performance are critical for hypersonic vehicles. Carbon fiber/phenolic resin composites (Cf/Ph) have been widely used as thermal protection materials due to their high specific strength and ease of processing. However, oxidative failure limits the extensive applications of Cf/Ph in harsh environments. In this paper, a novel hafnium carbide (HfC) and boron carbide (B4C)-modified Cf/Ph was fabricated via an impregnating and compression molding route. The synergistic effect of HfC and B4C on the thermal stability, flexural strength, microstructure, and phase evolution of the ceramizable composite was studied. The resulting ceramizable composites exhibited excellent resistance to oxidative corrosion and ablation behavior. The residual yield at 1400 °C and the flexural strength after heat treatment at 1600 °C for 20 min were 46% and 54.65 MPa, respectively, with an increase of 79.59% in flexural strength compared to that of the composites without ceramizable fillers. The linear ablation rate (LAR) and mass ablation rate (MAR) under a heat flux density of 4.2 MW/m2 for the 20 s were as low as −8.33 × 10−3 mm/s and 3.08 × 10−2 g/s. The ablation mechanism was further revealed. A dense B–C–N–O–Hf ceramic layer was constructed in situ as an efficient thermal protection barrier, significantly reducing the corrosion of the carbon fibers. Full article
Show Figures

Graphical abstract

14 pages, 8736 KiB  
Article
Design and Manufacturing of Experimental Solid Propellant Rocket Motor Cases Made of Carbon Composite Materials
by Berdiyar Baiserikov, Marat Ismailov, Laura Mustafa, Nurmakhan Yesbolov, Arman Kulbekov, Abussaid Yermekov, Mohammed Meiirbekov and Ilyas Ablakatov
Polymers 2025, 17(10), 1352; https://doi.org/10.3390/polym17101352 - 15 May 2025
Cited by 1 | Viewed by 802
Abstract
This paper investigates a polymer composite and carbon fiber impregnated with epoxy resin for the fabrication of a lightweight and high-strength composite casing for rocket propulsion systems. It describes the winding technology which uses a removable mandrel and angular winding at ±55° and [...] Read more.
This paper investigates a polymer composite and carbon fiber impregnated with epoxy resin for the fabrication of a lightweight and high-strength composite casing for rocket propulsion systems. It describes the winding technology which uses a removable mandrel and angular winding at ±55° and ±20° to expand the stress distribution, as well as alternating angles of ±45° and 80° to improve resistance to tensile and torsional loads. A fixture has been developed that ensures ease of disassembly and good strength of the final products. Hydrostatic tests showed the operational stability of the casings under internal pressure up to 10 MPa for a 1.5 mm-thick casing and 18 MPa for a 3 mm-thick casing, which confirms the effectiveness of the proposed technology. The research results demonstrate the high reliability and potential exploitation of composite materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 5271 KiB  
Article
Advancing High-Performance Composites in Additive Manufacturing (AM) Through Pre-Impregnation and Direct Ink Writing for Scalable 3D Printing
by Yuanrui Wang, Yuchen Ding, Kai Yu and Guoying Dong
J. Compos. Sci. 2025, 9(5), 218; https://doi.org/10.3390/jcs9050218 - 29 Apr 2025
Viewed by 1018
Abstract
Additive manufacturing (AM) has the potential to revolutionize the fabrication of continuous carbon fiber-reinforced polymer composites (CCFRPCs). Among AM techniques, direct ink writing (DIW) with ultraviolet (UV) curable resin shows promise for creating CCFRPCs with high manufacturing speed, high fiber volume fraction, and [...] Read more.
Additive manufacturing (AM) has the potential to revolutionize the fabrication of continuous carbon fiber-reinforced polymer composites (CCFRPCs). Among AM techniques, direct ink writing (DIW) with ultraviolet (UV) curable resin shows promise for creating CCFRPCs with high manufacturing speed, high fiber volume fraction, and low energy consumption. However, issues such as incomplete curing and weak interfacial bonding, particularly in dense fiber bundles, limit the mechanical performance. This study addressed these challenges using pre-impregnated systems (PISs), which is a process developed to impregnate dry fiber bundles with partially cured resin before being used for DIW printing, to enhance resin-fiber adhesion and fiber–fiber bonding within fiber bundles. By optimizing resin viscosity and curing conditions in the PIS process, samples treated by PIS achieved improved mechanical properties. Tensile and bending tests revealed significant performance gains over non-PIS treated samples, with tensile stiffness increasing by at least 39% and bending stiffness by 45% in 3K fiber bundles. Tensile samples with thicker fiber bundles (6K and 12K) exhibited similar improvements. On the other hand, while all samples exhibit enhanced mechanical properties under bending deformation, the improvement of flexural stiffness and strength with thicker fiber bundles is shown to be less significant than those with 3K fiber bundles. Overall, composites made with PIS-treated fibers can enhance mechanical performance compared with those made with non-PIS-treated fibers, offering the scaling capability of printing thicker fiber bundles to reduce processing time while maintaining improved properties. It emphasizes the importance of refining the pre-processing strategies of large continuous fiber bundles in the AM process to achieve optimal mechanical properties. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

26 pages, 28205 KiB  
Article
Enhanced Mechanical Performance of Resin-Infused 3D-Printed Polymer Lattices
by Jakub J. Słowiński, Maciej Roszak, Mikołaj Kazimierczak, Grzegorz Skrzypczak and Maksymilian Stępczak
Polymers 2025, 17(8), 1028; https://doi.org/10.3390/polym17081028 - 10 Apr 2025
Viewed by 826
Abstract
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., [...] Read more.
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., GFRP and CF) and thermosetting resin modifications, resulting in improved impact strength and fracture toughness and increased thermal stability of products. The final mechanical properties are significantly influenced by processing parameters (e.g., fill density, layer height, and printing speed) and internal geometry (e.g., lattice structures), which can be further optimised by numerical analyses using constitutive models such as the Johnson–Cook model. The focus of the study presented here is on the fabrication of composites from FDM dies filled with F8 polyurethane resin. Filaments, including PETG carbon and PETG, were tested for potential applications with the resin. A static compression test, supported by numerical analysis using the Johnson–Cook model, was carried out to identify key mechanical characteristics and to predict the material’s behaviour under different loading conditions. The results indicate that these structures exhibit numerous potential delamination planes and voids between filament paths, leading to relatively low maximum stress values (σm ≈ 2.5–3 MPa). However, the impregnation with polyurethane resin significantly enhances these properties by bonding the layers and filling the pores, resulting in a more homogeneous and stronger composite. Additionally, numerical simulations effectively captured key aspects of structural behaviour, identifying critical stress concentration areas, particularly along the side walls and in regions forming triangular stress zones. These findings provide valuable insights into the potential of resin-filled FDM structures in engineering applications, demonstrating their improved performance over purely printed samples. Full article
(This article belongs to the Special Issue Polymers and Polymer Composite Structures for Energy Absorption)
Show Figures

Figure 1

14 pages, 6307 KiB  
Article
The Clear Choice: Developing Transparent Cork for Next-Generation Sustainable Materials
by Pedro Gil, Pedro L. Almeida, Maria H. Godinho and Ana P. C. Almeida
Macromol 2025, 5(2), 17; https://doi.org/10.3390/macromol5020017 - 8 Apr 2025
Viewed by 1190
Abstract
Many modern technologies rely on materials that harm the environment. Glass manufacturing, for instance, is both expensive and environmentally damaging. In response, scientists have developed a technique to replace glass with transparent wood, an innovative, versatile, and sustainable alternative. Wood naturally retains heat, [...] Read more.
Many modern technologies rely on materials that harm the environment. Glass manufacturing, for instance, is both expensive and environmentally damaging. In response, scientists have developed a technique to replace glass with transparent wood, an innovative, versatile, and sustainable alternative. Wood naturally retains heat, is durable, and remains cost-effective, making it promising substitute for glass and plastic in window production. This innovation highlights the urgent need for eco-friendly technologies to replace or improve existing materials. This work explores cork as a sustainable alternative for producing transparent materials, potentially replacing transparent wood. Unlike wood, cork can be harvested from the same tree for up to 300 years. The process followed a method like transparent wood production, involving delignification, bleaching, and forced polymer impregnation. The choice of bleaching agent significantly impacted results—samples treated with sodium hypochlorite solution appeared whiter but became extremely fragile, whereas hydrogen peroxide preserved mechanical properties better. The resin-to-hardener ratio was crucial, with higher resin content improving polymer infiltration and transparency. While fully transparent cork was not achieved, the resulting translucent material lays the groundwork for future research in this field. Full article
Show Figures

Graphical abstract

13 pages, 6602 KiB  
Article
Synthesis of High-Sulfur-Content Resins via Inverse Vulcanization Using Dithiols and Their Application as Cathode Materials for Lithium–Sulfur Rechargeable Batteries
by Hiroto Tominaga, Junichi Tokomoto, Kenjiro Onimura and Kazuhiro Yamabuki
Electrochem 2025, 6(1), 8; https://doi.org/10.3390/electrochem6010008 - 18 Mar 2025
Viewed by 1247
Abstract
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic [...] Read more.
In this study, we developed lithium–sulfur rechargeable batteries using chemically modified thermoplastic sulfur polymers as cathode active materials, aiming to effectively utilize surplus sulfur resources. The resulting high-sulfur-content resins exhibited self-healing properties, extensibility, and adhesiveness. By leveraging its high solubility in specific organic solvents, we successfully introduced sulfur-based compounds into porous carbon via vacuum impregnation using a solution, rather than conventional thermal impregnation. Charge–discharge measurements of lithium–sulfur (Li-S) secondary batteries assembled with this more uniform composite cathode, compared to those using elemental sulfur, demonstrated an increased discharge capacity in the initial cycles and at higher rates. Full article
Show Figures

Graphical abstract

27 pages, 3177 KiB  
Article
Computational Approach for Optimizing Resin Flow Behavior in Resin Transfer Molding with Variations in Injection Pressure, Fiber Permeability, and Resin Sorption
by Pavan Hiremath, Krishnamurthy D. Ambiger, P. K. Jayashree, Srinivas Shenoy Heckadka, G. Divya Deepak, B. R. N. Murthy, Suhas Kowshik and Nithesh Naik
J. Compos. Sci. 2025, 9(3), 129; https://doi.org/10.3390/jcs9030129 - 11 Mar 2025
Cited by 2 | Viewed by 1075
Abstract
Resin transfer molding (RTM) is a key process for manufacturing high-performance fiber-reinforced composites, in which resin infiltration dynamics play a critical role in process efficiency and defect minimization. This study presents a numerical and experimental analysis of resin flow in biaxial noncrimp carbon [...] Read more.
Resin transfer molding (RTM) is a key process for manufacturing high-performance fiber-reinforced composites, in which resin infiltration dynamics play a critical role in process efficiency and defect minimization. This study presents a numerical and experimental analysis of resin flow in biaxial noncrimp carbon fiber reinforcement using FormuLITE 2500A/2401B epoxy. A model based on Darcy’s law and resin sorption effects was developed to investigate the influence of injection pressure (15–25 kPa), permeability (350 × 10−12 m2 to 0.035 × 10−12 m2), porosity (0.78–0.58), viscosity (0.28–0.48 Pa·s), and injection radius (0.001–0.003 m) on flow-front progression. The results show that a higher injection pressure increased the infiltration depth by 30% at 250 s, while a 100× reduction in permeability reduced infiltration by 75%. The increased viscosity slowed the resin flow by ~18%, and the lower porosity reduced the flow-front progression by 15%. The experimental validation demonstrated a relative error of <5% between the numerical predictions and the measured data. This study provides critical insights into RTM process optimization for uniform fiber impregnation and defect minimization. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

Back to TopTop