Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,484)

Search Parameters:
Keywords = immunomodulatory activities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 2414 KiB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

25 pages, 2042 KiB  
Article
Transcriptomic Profiling of Mouse Mesenchymal Stem Cells Exposed to Metal-Based Nanoparticles
by Michal Sima, Helena Libalova, Zuzana Simova, Barbora Echalar, Katerina Palacka, Tereza Cervena, Jiri Klema, Zdenek Krejcik, Vladimir Holan and Pavel Rossner
Int. J. Mol. Sci. 2025, 26(15), 7583; https://doi.org/10.3390/ijms26157583 - 5 Aug 2025
Abstract
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of [...] Read more.
Mesenchymal stem cells (MSCs), i.e., adult stem cells with immunomodulatory and secretory properties, contribute to tissue growth and regeneration, including healing processes. Some metal nanoparticles (NPs) are known to exhibit antimicrobial activity and may further potentiate tissue healing. We studied the effect of Ag, CuO, and ZnO NPs after in vitro exposure of mouse MSCs at the transcriptional level in order to reveal the potential toxicity as well as modulation of other processes that may modify the activity of MSCs. mRNA–miRNA interactions were further investigated to explore the epigenetic regulation of gene expression. All the tested NPs mediated immunomodulatory effects on MSCs, generation of extracellular vesicles, inhibition of osteogenesis, and enhancement of adipogenesis. Ag NPs exhibited the most pronounced response; they impacted the expression of the highest number of mRNAs, including those encoding interferon-γ-stimulated genes and genes involved in drug metabolism/cytochrome P450 activity, suggesting a response to the potential toxicity of Ag NPs (oxidative stress). Highly interacting MiR-126 was upregulated by all NPs, while downregulation of MiR-92a was observed after the ZnO NP treatment only, and both effects might be associated with the improvement of MSCs’ healing potency. Overall, our results demonstrate positive effects of NPs on MSCs, although increased oxidative stress caused by Ag NPs may limit the therapeutical potential of the combined MSC+NP treatment. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

23 pages, 1757 KiB  
Article
Antifungal and Immunomodulatory Activities of Brazilian Savannah Solanum lypocarpum Tree-Associated Streptomyces Isolates
by Camila Bontempo Nunes, Kunal Ranjan, Fernando Pacheco Rodrigues, Marjorie de Carvalho Vieira Queiroz, Clara Luna Freitas Marina, Luis Alexandre Muehlmann, Anamélia Lorenzetti Bocca and Marcio José Poças-Fonseca
Pharmaceuticals 2025, 18(8), 1158; https://doi.org/10.3390/ph18081158 - 5 Aug 2025
Abstract
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for [...] Read more.
Background/Objectives: Actinobacteria are one of the largest bacterial phyla. These microbes produce bioactive compounds, such as antifungals, antibiotics, immunological modulators, and anti-tumor agents. Studies on actinobacteria isolated from the Brazilian Savannah biome (Cerrado) are scarce and mostly address metagenomics or the search for hydrolytic enzyme-producing microbes. Solanum lycocarpum (lobeira) is a tree widely employed in regional gastronomy and pharmacopeia in Central Brazil. Methods: In this work, 60 actinobacteria isolates were purified from the rhizosphere of S. lycocarpum. Eight Streptomyces spp. isolates were selected for in vitro antifungal activity against Cryptococcus neoformans H99, the C. neoformans 89-610 fluconazole-tolerant strain, C. gattii NIH198, Candida albicans, C. glabrata, and C. parapsilosis. The ability of the aqueous extracts of the isolates to induce the in vitro secretion of tumor necrosis factor (TNF-α), nitric oxide (NO), interleukin-6 (IL-6), and IL-10 by murine macrophages was also evaluated. Results: All extracts showed antifungal activity against at least two yeast species. Streptomyces spp. LAP11, LDB2, and LDB17 inhibited C. neoformans growth by 40–93%. Most extracts (except LAP2) also inhibited C. gattii. None inhibited C. albicans, but all inhibited C. glabrata (40–90%). Streptomyces sp. LAP8 extract increased nitric oxide production by approximately 347-fold in murine macrophages, while LDB11 extract suppressed LPS-induced TNF-α production by 70% and simultaneously increased IL-10 secretion, suggesting immunosuppressive potential. Conclusions: The results revealed that Cerrado actinobacteria-derived aqueous extracts are potential sources of antifungal and immunomodulatory biocompounds. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

38 pages, 9437 KiB  
Review
Antibacterial Polysaccharides in Dental Implantology
by Lubica Hallmann and Mark Daniel Gerngroß
Mar. Drugs 2025, 23(8), 321; https://doi.org/10.3390/md23080321 - 4 Aug 2025
Abstract
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used [...] Read more.
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used to search for peer-reviewed scientific publications published between 2018 and 2025 that provide insights to answer research questions on the role of antibacterial polysaccharides in combating pathogens in dental implantology without triggering immune reactions and inflammation. Further research questions relate to the efficacy against various dental pathogens and the understanding of the antibacterial mechanism, which may enable the development of functionalized polysaccharides with long-term antibacterial activity. Results: Biomedical implants have revolutionized medicine but also increased the risk of infections. Implant infections are a major problem in implantology and lead to implant failure and replacement. An antibacterial coating could be an excellent strategy to extend the lifespan of implants and improve the quality of the patient’s life. Bacterial resistance to antibiotics poses significant challenges for researchers, forcing them to search for new ways to prevent bacterial infections in implantology. Antibacterial natural polymers have recently received considerable research attention due to their long-term antibacterial activity. Polysaccharides from marine sources, such as chitosan and alginate, or pectin, xanthan, etc., from various plants, appear to be promising biopolymers for such applications in implantology due to their antibacterial activity, biocompatibility, and osteogenic properties. The antibacterial activity of these natural biopolymers depends on their chemical and physical properties. Nanopolysaccharides exhibit higher antibacterial activity than conventional polysaccharides, but their toxicity to human cells must be considered. Their antibacterial activity is based on the disruption of bacterial DNA or RNA synthesis, increased cell wall permeability, membrane disruption, and cytoplasmic leakage. Conclusions: Polysaccharides are a class of natural polymers with a broad spectrum of biological activities. They exhibit antioxidant, immunomodulatory, anticoagulant, anticancer, anti-inflammatory, antibacterial, and antiviral activity. Furthermore, polysaccharides are non-cytotoxic and exhibit good biocompatibility with osteogenic cells. Bactericidal polysaccharides are attractive new antibacterial materials against implant infections and open up new perspectives in implantology. Full article
(This article belongs to the Special Issue Marine Biomaterials for Dental Applications)
Show Figures

Figure 1

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 15
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

22 pages, 11011 KiB  
Article
Flavonoid Extract of Senecio scandens Buch.-Ham. Ameliorates CTX-Induced Immunosuppression and Intestinal Damage via Activating the MyD88-Mediated Nuclear Factor-κB Signaling Pathway
by Xiaolin Zhu, Lulu Zhang, Xuan Ni, Jian Guo, Yizhuo Fang, Jianghan Xu, Zhuo Chen and Zhihui Hao
Nutrients 2025, 17(15), 2540; https://doi.org/10.3390/nu17152540 - 1 Aug 2025
Viewed by 147
Abstract
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated [...] Read more.
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated its efficacy against cyclophosphamide (CTX)-induced immunosuppression and intestinal injury. Methods: The constituents of SSF were identified using UHPLC/Q-Orbitrap/HRMS. Mice with CTX-induced immunosuppression were treated with SSF (80, 160, 320 mg/kg) for seven days. Immune parameters (organ indices, lymphocyte proliferation, cytokine, and immunoglobulin levels) and gut barrier integrity markers (ZO-1, Occludin, Claudin-1 protein expression; sIgA secretion; microbiota composition) were assessed. Network pharmacology combined with functional assays elucidated the underlying regulatory mechanisms. Results: Twenty flavonoids were identified in SSF, with six prototype compounds detectable in the blood. The SSF treatment significantly ameliorated CTX-induced weight loss and atrophy of the thymus and spleen. It enhanced splenic T- and B-lymphocyte proliferation by 43.6% and 29.7%, respectively; normalized the CD4+/CD8+ ratio (1.57-fold increase); and elevated levels of IL-2, IL-6, IL-10, TNF-α, IFN-γ, IgM, and IgG. Moreover, SSF reinforced the intestinal barrier by upregulating tight junction protein expression and sIgA levels while modulating the gut microbiota, enriching beneficial taxa (e.g., the Lachnospiraceae_NK4A136_group, Akkermansia) and suppressing pathogenic Alistipes. Mechanistically, SSF activated the TLR/MyD88/NF-κB pathway, with isoquercitrin identified as a pivotal bioactive constituent. Conclusions: SSF effectively mitigates CTX-induced immunosuppression and intestinal damage. These findings highlight SSF’s potential as a dual-functional natural agent for immunomodulation and intestinal protection. Subsequent research should validate isoquercitrin’s molecular targets and assess SSF’s clinical efficacy. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

10 pages, 1460 KiB  
Article
Induction of Sustained Remissions Associated with Immune Activation by Idelalisib in Patients with Follicular Lymphoma
by Anna-Carina Hund, Jörg Larsen and Gerald G. Wulf
Lymphatics 2025, 3(3), 22; https://doi.org/10.3390/lymphatics3030022 - 1 Aug 2025
Viewed by 122
Abstract
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 [...] Read more.
Phosphatidylinositol-3-kinase (PI3K) inhibition has emerged as a therapeutic option against indolent lymphoma, including relapsed follicular lymphoma (FL). While inhibition of active signaling in the lymphoma cell represents the primary mode of action, PI3K inhibition also exerts immunomodulatory effects. Here we have analyzed 17 consecutive advanced treatment line FL patients treated with the delta-selective PI3K inhibitor idelalisib in a retrospective single-center observational study, with a specific focus on response and immune effects. Eleven patients achieved complete remission (CR) or partial remission (PR) with median response duration of 22 (11–88) months following a median idelalisib exposure of 15 (4–88) months. Disease response persisted in three patients for a median of 37 (21–63) months following cessation of idelalisib without another therapy being initiated. Autoimmune side effects occurred in eight of the eleven patients who responded, compared to none in six patients whose disease did not respond. In conclusion, a time-limited exposure to idelalisib may induce sustained remissions in a portion of patients with recurrent and/or refractory (r/r) FL, suggesting immunomodulatory effects of PI3K inhibition to be involved in the control of the disease. Full article
(This article belongs to the Collection Lymphomas)
Show Figures

Figure 1

68 pages, 2838 KiB  
Review
Unravelling the Viral Hypothesis of Schizophrenia: A Comprehensive Review of Mechanisms and Evidence
by Mădălina Georgeta Sighencea and Simona Corina Trifu
Int. J. Mol. Sci. 2025, 26(15), 7429; https://doi.org/10.3390/ijms26157429 - 1 Aug 2025
Viewed by 324
Abstract
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a [...] Read more.
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a wide array of neurotropic viruses, including influenza viruses, herpesviruses (HSV-1 and 2, CMV, VZV, EBV, HHV-6 and 8), hepatitis B and C viruses, HIV, HERVs, HTLV, Zika virus, BoDV, coronaviruses (including SARS-CoV-2), and others. These pathogens can contribute to schizophrenia through mechanisms such as direct microinvasion, persistent central nervous system infection, immune-mediated neuroinflammation, molecular mimicry, and the disturbance of the blood–brain barrier. Prenatal exposure to viral infections can trigger maternal immune activation, resulting in cytokine-mediated alterations in the neurological development of the foetus that persist into adulthood. Genetic studies highlight the role of immune-related loci, including major histocompatibility complex polymorphisms, in modulating susceptibility to infection and neurodevelopmental outcomes. Clinical data also support the “mild encephalitis” hypothesis, suggesting that a subset of schizophrenia cases involve low-grade chronic neuroinflammation. Although antipsychotics have some immunomodulatory effects, adjunctive anti-inflammatory therapies show promise, particularly in treatment-resistant cases. Despite compelling associations, pathogen-specific links remain inconsistent, emphasising the need for longitudinal studies and integrative approaches such as viromics to unravel causal relationships. This review supports a “multi-hit” model in which viral infections interfere with hereditary and immunological susceptibilities, enhancing schizophrenia risk. Elucidating these virus–immune–brain interactions may facilitate the discovery of biomarkers, targeted prevention, and novel therapeutic strategies for schizophrenia. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

21 pages, 4201 KiB  
Review
Feedback Loops Shape Oxidative and Immune Interactions in Hepatic Ischemia–Reperfusion Injury
by Kenneth J. Dery, Richard Chiu, Aanchal Kasargod and Jerzy W. Kupiec-Weglinski
Antioxidants 2025, 14(8), 944; https://doi.org/10.3390/antiox14080944 (registering DOI) - 31 Jul 2025
Viewed by 309
Abstract
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS [...] Read more.
Reactive oxygen species (ROS) play a dual role as both essential signaling molecules and harmful mediators of damage. Imbalances in the redox state of the liver can overwhelm antioxidant defenses and promote mitochondrial dysfunction, oxidative damage, and inflammation. Complex feedback loops between ROS and immune signaling pathways are a hallmark of pathological liver conditions, such as hepatic ischemia–reperfusion injury (IRI). This is a major cause of liver transplant failure and is of increasing significance due to the increased use of marginally discarded livers for transplantation. This review outlines the major enzymatic and metabolic sources of ROS in hepatic IRI, including mitochondrial reverse electron transport, NADPH oxidases, cytochrome P450 enzymes, and endoplasmic reticulum stress. Hepatocyte injury activates redox feedback loops that initiate immune cascades through DAMP release, toll-like receptor signaling, and cytokine production. Emerging regulatory mechanisms, such as succinate accumulation and cytosolic calcium–CAMKII signaling, further shape oxidative dynamics. Pharmacological therapies and the use of antioxidant and immunomodulatory approaches, including nanoparticles and redox-sensitive therapeutics, are discussed as protective strategies. A deeper understanding of how redox and immune feedback loops interact is an exciting and active area of research that warrants further clinical investigation. Full article
Show Figures

Figure 1

21 pages, 604 KiB  
Review
Autoantibodies in COVID-19: Pathogenic Mechanisms and Implications for Severe Illness and Post-Acute Sequelae
by Lais Alves do-Nascimento, Nicolle Rakanidis Machado, Isabella Siuffi Bergamasco, João Vitor da Silva Borges, Fabio da Ressureição Sgnotto and Jefferson Russo Victor
COVID 2025, 5(8), 121; https://doi.org/10.3390/covid5080121 - 30 Jul 2025
Viewed by 268
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly [...] Read more.
The COVID-19 pandemic, caused by SARS-CoV-2, has led to a wide range of acute and chronic disease manifestations. While most infections are mild, a significant number of patients develop severe illness marked by respiratory failure, thromboinflammation, and multi-organ dysfunction. In addition, post-acute sequelae—commonly known as long-COVID—can persist for months. Recent studies have identified the emergence of diverse autoantibodies in COVID-19, including those targeting nuclear antigens, phospholipids, type I interferons, cytokines, endothelial components, and G-protein-coupled receptors. These autoantibodies are more frequently detected in patients with moderate to severe disease and have been implicated in immune dysregulation, vascular injury, and persistent symptoms. This review examines the underlying immunological mechanisms driving autoantibody production during SARS-CoV-2 infection—including molecular mimicry, epitope spreading, and bystander activation—and discusses their functional roles in acute and post-acute disease. We further explore the relevance of autoantibodies in maternal–fetal immunity and comorbid conditions such as autoimmunity and cancer, and we summarize current and emerging therapeutic strategies. A comprehensive understanding of SARS-CoV-2-induced autoantibodies may improve risk stratification, inform clinical management, and guide the development of targeted immunomodulatory therapies. Full article
(This article belongs to the Section Host Genetics and Susceptibility/Resistance)
Show Figures

Figure 1

23 pages, 8937 KiB  
Article
Neuro-Cells Mitigate Amyloid Plaque Formation and Behavioral Deficits in the APPswe/PS1dE9 Model of Alzheimer Disease While Also Reducing IL-6 Production in Human Monocytes
by Johannes de Munter, Kirill Chaprov, Ekkehard Lang, Kseniia Sitdikova, Erik Ch. Wolters, Evgeniy Svirin, Aliya Kassenova, Andrey Tsoy, Boris W. Kramer, Sholpan Askarova, Careen A. Schroeter, Daniel C. Anthony and Tatyana Strekalova
Cells 2025, 14(15), 1168; https://doi.org/10.3390/cells14151168 - 29 Jul 2025
Viewed by 184
Abstract
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in [...] Read more.
Neuroinflammation is a key feature of Alzheimer’s disease (AD), and stem cell therapies have emerged as promising candidates due to their immunomodulatory properties. Neuro-Cells (NC), a combination of unmodified mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs), have demonstrated therapeutic potential in models of central nervous system (CNS) injury and neurodegeneration. Here, we studied the effects of NC in APPswe/PS1dE9 mice, an AD mouse model. Twelve-month-old APPswe/PS1dE9 mice or their wild-type littermates were injected with NC or vehicle into the cisterna magna. Five to six weeks post-injection, cognitive, locomotor, and emotional behaviors were assessed. The brain was stained for amyloid plaque density using Congo red, and for astrogliosis using DAPI and GFAP staining. Gene expression of immune activation markers (Il-1β, Il-6, Cd45, Tnf) and plasticity markers (Tubβ3, Bace1, Trem2, Stat3) was examined in the prefrontal cortex. IL-6 secretion was measured in cultured human monocytes following endotoxin challenge and NC treatment. Untreated APPswe/PS1dE9 mice displayed impaired learning in the conditioned taste aversion test, reduced object exploration, and anxiety-like behavior, which were improved in the NC-treated mutants. NC treatment normalized the expression of several immune and plasticity markers and reduced the density of GFAP-positive cells in the hippocampus and thalamus. NC treatment decreased amyloid plaque density in the hippocampus and thalamus, targeting plaques of <100 μm2. Additionally, NC treatment suppressed IL-6 secretion by human monocytes. Thus, NC treatment alleviated behavioral deficits and reduced amyloid plaque formation in APPswe/PS1dE9 mice, likely via anti-inflammatory mechanisms. The reduction in IL-6 production in human monocytes further supports the potential of NC therapy for the treatment of AD. Full article
Show Figures

Figure 1

24 pages, 6108 KiB  
Review
Angiogenic Cell Precursors and Neural Cell Precursors in Service to the Brain–Computer Interface
by Fraser C. Henderson and Kelly Tuchman
Cells 2025, 14(15), 1163; https://doi.org/10.3390/cells14151163 - 29 Jul 2025
Viewed by 495
Abstract
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have [...] Read more.
The application of artificial intelligence through the brain–computer interface (BCI) is proving to be one of the great advances in neuroscience today. The development of surface electrodes over the cortex and very fine electrodes that can be stereotactically implanted in the brain have moved the science forward to the extent that paralyzed people can play chess and blind people can read letters. However, the introduction of foreign bodies into deeper parts of the central nervous system results in foreign body reaction, scarring, apoptosis, and decreased signaling. Implanted electrodes activate microglia, causing the release of inflammatory factors, the recruitment of systemic inflammatory cells to the site of injury, and ultimately glial scarring and the encapsulation of the electrode. Recordings historically fail between 6 months and 1 year; the longest BCI in use has been 7 years. This article proposes a biomolecular strategy provided by angiogenic cell precursors (ACPs) and nerve cell precursors (NCPs), administered intrathecally. This combination of cells is anticipated to sustain and promote learning across the BCI. Together, through the downstream activation of neurotrophic factors, they may exert a salutary immunomodulatory suppression of inflammation, anti-apoptosis, homeostasis, angiogenesis, differentiation, synaptogenesis, neuritogenesis, and learning-associated plasticity. Full article
Show Figures

Graphical abstract

22 pages, 3942 KiB  
Article
The Therapeutic Potential of Galium verum for Psoriasis: A Combined Phytochemical, In Silico, and Experimental Approach
by Branislava Daskalovic, Vladimir Jakovljevic, Sergej Bolevic, Marijana Andjic, Jovana Bradic, Aleksandar Kocovic, Milos Nikolic, Nikola Nedeljkovic, Jovan Milosavljevic, Jovan Baljak, Milos Krivokapic, Svetlana Trifunovic and Jasmina Sretenovic
Int. J. Mol. Sci. 2025, 26(15), 7290; https://doi.org/10.3390/ijms26157290 - 28 Jul 2025
Viewed by 221
Abstract
Psoriasis is a chronic inflammatory skin disorder involving oxidative stress and immune dysregulation. Given the limitations and adverse effects of conventional therapies, interest in natural treatments with anti-oxidant and immunomodulatory properties is increasing. This study aimed to comprehensively evaluate the therapeutic potential of [...] Read more.
Psoriasis is a chronic inflammatory skin disorder involving oxidative stress and immune dysregulation. Given the limitations and adverse effects of conventional therapies, interest in natural treatments with anti-oxidant and immunomodulatory properties is increasing. This study aimed to comprehensively evaluate the therapeutic potential of Galium verum extract in an imiquimod-induced rat model of psoriasis. The extract was chemically characterized by HPLC and evaluated for anti-oxidant activity using DPPH, ABTS, and FRAP assays. Molecular docking studies targeted psoriasis-related proteins (IL-17, IL-22, IL-23, JAK2, MAPK2, NF-κB, STAT3), revealing strong binding affinities for rutin and quercetin, the extract’s dominant bioactives. In vivo, 18 Wistar albino male rats were divided into control (CTRL), psoriasis (PSORI), and psoriasis treated with Galium verum (PSORI + GV) groups. A seven-day topical application of 5% imiquimod cream was used for the induction of psoriasis. The PSORI + GV group received 250 mg/kg Galium verum extract orally for 7 days. Morphometric and redox analyses were performed. Histological and morphometric analyses showed reduced epidermal thickness, inflammation, and collagen content. Redox analysis revealed lowered oxidative stress biomarkers and enhanced anti-oxidant defenses. These findings suggest that Galium verum extract exerts anti-psoriatic effects through antioxidative and immunomodulatory mechanisms, supporting its potential as a natural adjunct therapy for psoriasis. Full article
Show Figures

Figure 1

17 pages, 4113 KiB  
Article
Protective Effect of Camellia japonica Extract on 2,4-Dinitrochlorobenzene (DNCB)-Induced Atopic Dermatitis in an SKH-1 Mouse Model
by Chaodeng Mo, Md. Habibur Rahman, Thu Thao Pham, Cheol-Su Kim, Johny Bajgai and Kyu-Jae Lee
Int. J. Mol. Sci. 2025, 26(15), 7286; https://doi.org/10.3390/ijms26157286 - 28 Jul 2025
Viewed by 284
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disorder characterized by immune dysregulation and skin barrier impairment. This study evaluated the anti-inflammatory and immunomodulatory effects of Camellia japonica extract in a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model using SKH-1 hairless mice. Topical application [...] Read more.
Atopic dermatitis (AD) is a common chronic inflammatory skin disorder characterized by immune dysregulation and skin barrier impairment. This study evaluated the anti-inflammatory and immunomodulatory effects of Camellia japonica extract in a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model using SKH-1 hairless mice. Topical application of Camellia japonica extract for four weeks significantly alleviated AD-like symptoms by reducing epidermal thickness, mast cell infiltration, and overall skin inflammation. Hematological analysis revealed a marked decrease in total white blood cell (WBC) and neutrophil counts. Furthermore, the Camellia japonica extract significantly decreased oxidative stress, as evidenced by reduced serum reactive oxygen species (ROS) and nitric oxide (NO) levels, while enhancing the activity of antioxidant enzymes such as catalase. Importantly, allergic response markers including serum immunoglobulin E (IgE), histamine, and thymic stromal lymphopoietin (TSLP), were also downregulated. At the molecular level, Camellia japonica extract suppressed the expression of key pro-inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, and T helper 2 (Th2)-type cytokines such as IL-4 and IL-5, while slightly upregulating the anti-inflammatory cytokine IL-10. Collectively, these findings suggest that Camellia japonica extract effectively modulates immune responses, suppresses allergic responses, attenuates oxidative stress, and promotes skin barrier recovery. Therefore, application of Camellia japonica extract holds the promising effect as a natural therapeutic agent for the prevention and treatment of AD-like skin conditions. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

36 pages, 5612 KiB  
Review
The Multifaceted Role of p53 in Cancer Molecular Biology: Insights for Precision Diagnosis and Therapeutic Breakthroughs
by Bolong Xu, Ayitila Maimaitijiang, Dawuti Nuerbiyamu, Zhengding Su and Wenfang Li
Biomolecules 2025, 15(8), 1088; https://doi.org/10.3390/biom15081088 - 27 Jul 2025
Viewed by 525
Abstract
The protein p53, often referred to as the “guardian of the genome,” is essential for preserving cellular balance and preventing cancerous transformations. As one of the most commonly altered genes in human cancers, its impaired function is associated with tumor initiation, development, and [...] Read more.
The protein p53, often referred to as the “guardian of the genome,” is essential for preserving cellular balance and preventing cancerous transformations. As one of the most commonly altered genes in human cancers, its impaired function is associated with tumor initiation, development, and resistance to treatment. Exploring the diverse roles of p53, which include regulating the cell cycle, repairing DNA, inducing apoptosis, reprogramming metabolism, and modulating immunity, provides valuable insights into cancer mechanisms and potential treatments. This review integrates recent findings on p53′s dual nature, functioning as both a tumor suppressor and an oncogenic promoter, depending on the context. Wild-type p53 suppresses tumors by inducing cell cycle arrest or apoptosis in response to genotoxic stress, while mutated variants often lose these functions or gain novel pro-oncogenic activities. Emerging evidence highlights p53′s involvement in non-canonical pathways, such as regulating tumor microenvironment interactions, metabolic flexibility, and immune evasion mechanisms. For instance, p53 modulates immune checkpoint expression and influences the efficacy of immunotherapies, including PD-1/PD-L1 blockade. Furthermore, advancements in precision diagnostics, such as liquid biopsy-based detection of p53 mutations and AI-driven bioinformatics tools, enable early cancer identification and stratification of patients likely to benefit from targeted therapies. Therapeutic strategies targeting p53 pathways are rapidly evolving. Small molecules restoring wild-type p53 activity or disrupting mutant p53 interactions, such as APR-246 and MDM2 inhibitors, show promise in clinical trials. Combination approaches integrating gene editing with synthetic lethal strategies aim to exploit p53-dependent vulnerabilities. Additionally, leveraging p53′s immunomodulatory effects through vaccine development or adjuvants may enhance immunotherapy responses. In conclusion, deciphering p53′s complex biology underscores its unparalleled potential as a biomarker and therapeutic target. Integrating multi-omics analyses, functional genomic screens, and real-world clinical data will accelerate the translation of p53-focused research into precision oncology breakthroughs, ultimately improving patient outcomes. Full article
(This article belongs to the Special Issue DNA Damage and Repair in Cancer Treatment)
Show Figures

Figure 1

Back to TopTop