Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (280)

Search Parameters:
Keywords = immune antagonism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
1 pages, 138 KiB  
Retraction
RETRACTED: Chen, N.; Zhang, B. IAV Antagonizes Host Innate Immunity by Weakening the LncRNA-LRIR2-Mediated Antiviral Functions. Biology 2024, 13, 998
by Na Chen and Baoge Zhang
Biology 2025, 14(8), 960; https://doi.org/10.3390/biology14080960 (registering DOI) - 31 Jul 2025
Viewed by 107
Abstract
The journal retracts the article titled “IAV Antagonizes Host Innate Immunity by Weakening the LncRNA-LRIR2-Mediated Antiviral Functions” [...] Full article
18 pages, 14612 KiB  
Article
Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification
by Sixi Zhu, Xianwang Du, Wei Zhao, Xiuqin Yang, Luying Sheng, Huan Mao and Suxia Su
Toxics 2025, 13(8), 642; https://doi.org/10.3390/toxics13080642 - 30 Jul 2025
Viewed by 240
Abstract
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, [...] Read more.
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, they antagonize. However, the mechanism of action of the two in the rice cell wall remains to be clarified. In this study, we analyzed the mechanism of Cd detoxification by rice (Oryza sativa L.) cellular polysaccharides mediated by Se, using the cell wall as an entry point. Proteomic and transcriptomic analyses revealed that “Glycosyl hydrolases family 17”, “O-methyltransferase”, and “Polygalacturonase” protein pathways were significantly expressed in the cell wall. The most abundant enzymes involved in polysaccharide biosynthesis were found, including bglB, otsB, HK, PFP, ADH1, and ALDH, which resulted in the synthetic pathway of polysaccharide formation in the rice cell wall. Finally, the essential genes/proteins, such as protein Os03g0170500, were identified. The study showed that Se inhibits Cd uptake and transport when Se (1 mg/kg) is low relative to Cd (3 mg/kg), has little inhibitory effect, and even promotes Cd (3 mg/kg) uptake when Se (5 mg/kg) is relatively high. Full article
Show Figures

Graphical abstract

18 pages, 1047 KiB  
Article
Protein Functional Effector (pfe) Noncoding RNAS Are Identical to Fragments from Various Noncoding RNAs
by Roberto Patarca and William A. Haseltine
Int. J. Mol. Sci. 2025, 26(14), 6870; https://doi.org/10.3390/ijms26146870 - 17 Jul 2025
Viewed by 282
Abstract
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, [...] Read more.
Protein functional effector (pfe)RNAs were introduced in 2015 as PIWI-interacting-like small noncoding (nc)RNAs and were later categorized as a novel group based on being 2′-O-methylated at their 3′-end, directly binding and affecting protein function, but not levels, and not matching known RNAs. Here, we document that human pfeRNAs match fragments of GenBank database-annotated human ncRNAs. PDLpfeRNAa matches the 3′-half fragment of a mitochondrial transfer (t)RNA, and PDLpfeRNAb matches a 28S ribosomal (r)RNA fragment. These PDLpfeRNAs are known to bind to tumor programmed death ligand (PD-L)1, enhancing or inhibiting its interaction with lymphocyte PD-1 and consequently tumor immune escape, respectively. In a validated 8-pfeRNA-set classifier for pulmonary nodule presence and benign vs. malignant nature, seven here match one or more of the following: transfer, micro, Y, PIWI, long (lnc)RNAs, and a PDLpfeRNAa fragment. The previously identified chromosomal locations of these pfeRNAs and their matches partially overlap. Another 2-pfeRNA set was previously determined to distinguish between controls, patients with pulmonary tuberculosis, and those with lung cancer. One pfeRNA, previously shown to bind p60-DMAD and affect apoptosis, complements small nucleolar RNA SNORD45C, matching smaller 18S rRNA and lncRNA segments. Thus, pfeRNAs appear to have a common origin with known multifunctional ncRNA fragments. Differential modification may contribute to the multifunctionality of ncRNAs. For instance, for tRNA fragments, stabilizing 3′-end 2′-O-methylation, 3′-aminoacylation, and glycosylation modifications may regulate protein function, translation, and extracellular effects, respectively. One ncRNA gene can encode multiple fragments, multiple genes can encode the same fragment, and differentially modified ncRNA fragments might synergize or antagonize each other. Full article
(This article belongs to the Special Issue Targeting RNA Molecules)
Show Figures

Graphical abstract

20 pages, 1721 KiB  
Article
Evaluating the Impact of Arginine-to-Lysine Ratios on Growth Performance, Antioxidant Defense, and Immune Modulation in Juvenile Largemouth Bass (Micropterus salmoides)
by Yulong Sun, Shuailiang Zhang, Xueyao Luan, Tao Liu, Jiale He, Jiteng Wang and Tao Han
Animals 2025, 15(13), 1947; https://doi.org/10.3390/ani15131947 - 2 Jul 2025
Viewed by 430
Abstract
This study examines the impact of the arginine/lysine ratio in feed on the growth, serum amino acids, arginine metabolism, and antioxidant capacity of juvenile largemouth bass (5.95 ± 0.02 g). Five isonitrogenous and isolipidic diets with varying arginine/lysine ratios were formulated and administered [...] Read more.
This study examines the impact of the arginine/lysine ratio in feed on the growth, serum amino acids, arginine metabolism, and antioxidant capacity of juvenile largemouth bass (5.95 ± 0.02 g). Five isonitrogenous and isolipidic diets with varying arginine/lysine ratios were formulated and administered over an eight-week period. The results indicated that the treatments had no significant effect on protein efficiency ratio (PER), daily feed intake (DFI), or morphological indices of juvenile largemouth bass (p > 0.05). When the arginine/lysine ratio was 0.85 (2.25/2.65; 2.54/3.00), liver antioxidant capacity was maximized, and inflammatory factors were suppressed. Conversely, a ratio of 2.25/2.99 significantly reduced weight gain (WG) and specific growth rate (SGR) in juvenile largemouth bass, inhibited arginase activity, and increased serum total nitric oxide synthase (T-NOS) activity. When lysine was in excess (2.25/2.99 group), elevating arginine content (2.54/3.00 group) enhanced growth, antioxidant, and immune performance. Analysis of glutathione metabolism and innate immune-related pathway revealed that an optimal arginine/lysine ratio mitigates inflammatory damage induced by oxidative stress. An arginine/lysine imbalance significantly elevated liver malondialdehyde (MDA) content while reducing total antioxidant capacity (T-AOC), superoxide dismutase (SOD), catalase (CAT) activities, and glutathione (GSH) content, thereby increasing the expression levels of inflammatory factors (IL1B, IL8, TGFB1, BAX). These findings demonstrate that an imbalance in arginine/lysine adversely affects the growth, metabolism, and antioxidant capacity of largemouth bass. When lysine is in excess, increasing the arginine content to achieve an arginine/lysine ratio of 0.85 alleviates the negative effects of antagonism, suggesting arginine supplementation may regulate oxidative damage caused by lysine excess. Full article
Show Figures

Figure 1

18 pages, 3425 KiB  
Article
SARS-CoV-2 ORF7a Protein Impedes Type I Interferon-Activated JAK/STAT Signaling by Interacting with HNRNPA2B1
by Yujie Wen, Chaochao Li, Tian Tang, Chao Luo, Shan Lu, Na Lyu, Yongxi Li and Rong Wang
Int. J. Mol. Sci. 2025, 26(12), 5536; https://doi.org/10.3390/ijms26125536 - 10 Jun 2025
Viewed by 501
Abstract
The pandemic of Coronavirus Disease 2019 has triggered a worldwide public health emergency. Its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed multiple strategies for effectively evading the host immune defenses, including inhibition of interferon (IFN) signaling. Several viral proteins of [...] Read more.
The pandemic of Coronavirus Disease 2019 has triggered a worldwide public health emergency. Its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed multiple strategies for effectively evading the host immune defenses, including inhibition of interferon (IFN) signaling. Several viral proteins of SARS-CoV-2 are believed to interfere with IFN signaling. In this study, we found that the SARS-CoV-2 accessory protein ORF7a considerably impaired IFN-activated Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling via suppression of the nuclear translocation of IFN-stimulated gene factor 3 (ISGF3) and the activation of STAT2. ORF7a dampened STAT2 activation without altering the expression and phosphorylation of Janus kinases (JAKs). A co-immunoprecipitation (co-IP) assay was performed to gather ORF7a protein, but it failed to precipitate STAT2. Interestingly, mass spectrometry and immunoblotting analyses of the ORF7a co-IP product revealed that ORF7a interacted with an RNA-binding protein, heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), and HNRNPA2B1 was related to the inhibitory effect of ORF7a on STAT2 phosphorylation. Moreover, examination of ORF7a deletion constructs revealed that the C-terminal region of ORF7a (amino acids 96 to 122) is crucial for suppressing IFN-induced JAK/STAT signaling activation. In conclusion, we discovered that SARS-CoV-2 ORF7a antagonizes type I IFN-activated JAK/STAT signaling by interacting with HNRNPA2B1, and the C-terminal region of ORF7a is responsible for its inhibitory effect. Full article
(This article belongs to the Special Issue COVID-19: Molecular Research and Novel Therapy)
Show Figures

Figure 1

20 pages, 1016 KiB  
Review
Caffeine: A Neuroprotectant and Neurotoxin in Traumatic Brain Injury (TBI)
by Bharti Sharma, George Agriantonis, Sarah Dawson-Moroz, Rolanda Brown, Whenzdjyny Simon, Danielle Ebelle, Jessica Chapelet, Angie Cardona, Aditi Soni, Maham Siddiqui, Brijal Patel, Sittha Cheerasarn, Justin Chang, Lauren Cobb, Fanta John, Munirah M. Hasan, Carrie Garcia, Zahra Shaefee, Kate Twelker, Navin D. Bhatia and Jennifer Whittingtonadd Show full author list remove Hide full author list
Nutrients 2025, 17(11), 1925; https://doi.org/10.3390/nu17111925 - 4 Jun 2025
Viewed by 1554
Abstract
Caffeine is a weak, nonselective adenosine receptor antagonist. At low-to-moderate doses, caffeine has a stimulating effect; however, at higher doses, it can act as a depressant. It can function both as a neuroprotectant and a neurotoxin. In experimental Traumatic Brain Injury (TBI), administration [...] Read more.
Caffeine is a weak, nonselective adenosine receptor antagonist. At low-to-moderate doses, caffeine has a stimulating effect; however, at higher doses, it can act as a depressant. It can function both as a neuroprotectant and a neurotoxin. In experimental Traumatic Brain Injury (TBI), administration of this psychoactive drug has been associated with beneficial or detrimental effects, depending on the dose, model, and timing. In a healthy brain, caffeine can enhance alertness and promote wakefulness. However, its consumption during late adolescence and early adulthood disrupts normal pruning processes in the context of repetitive moderate TBI (mTBI), leading to changes in dendritic spine morphology, resulting in neurological and behavioral impairments. Caffeine can potentially reduce TBI-associated intracranial pressure, oxidative stress, lipid peroxidation, cytotoxic edema, inflammation, and apoptosis. It can enhance alertness and reduce mental fatigue, which is critical for the cognitive rehabilitation of TBI patients. Additionally, caffeine positively affects immune cells and aids recovery post-TBI. Antagonizing adenosine receptors involved in controlling synaptic transmission, synaptic plasticity, and synapse toxicity can improve cognitive function. Conversely, studies have also shown that caffeine consumers report significantly higher somatic discomfort compared to non-consumers. This review aims to explore various studies and thoroughly examine the positive and negative roles of caffeine in TBI. Full article
(This article belongs to the Special Issue Nutrition Interventions and Their Impact on Brain Health and Disease)
Show Figures

Figure 1

25 pages, 357 KiB  
Review
BLIS Fingerprinting as a Tool to Investigate the Distribution and Significance of Bacteriocin Production and Immunity in Streptococcus pyogenes and Streptococcus salivarius
by John R. Tagg, John D. F. Hale and Liam K. Harold
Appl. Microbiol. 2025, 5(2), 49; https://doi.org/10.3390/applmicrobiol5020049 - 21 May 2025
Viewed by 582
Abstract
The study of bacteriocins has significantly enhanced our understanding of microbial interactions, notably within the genus Streptococcus. Among the most functionally diverse and clinically relevant bacteriocins are those belonging to the lantibiotic class, which exhibit potent antimicrobial properties and are central to [...] Read more.
The study of bacteriocins has significantly enhanced our understanding of microbial interactions, notably within the genus Streptococcus. Among the most functionally diverse and clinically relevant bacteriocins are those belonging to the lantibiotic class, which exhibit potent antimicrobial properties and are central to the competitive dynamics of streptococcal species. This review focuses on the discovery and characterization of bacteriocins produced by Streptococcus pyogenes and Streptococcus salivarius, emphasizing their biological significance within their exclusive human host. A cornerstone of these studies has been the development and application of the pioneer agar culture-based bacteriocin detection methodology, known as streptococcal bacteriocin fingerprinting. This approach has proven invaluable for the initial detection and differentiation of a wide array of bacteriocin-like inhibitory substances (BLIS) in streptococcal populations. A central theme of this review is the diverse biological roles of lantibiotics in S. pyogenes and S. salivarius, particularly in relation to microbial competition, colonization dynamics, and host interactions. The expression of lantibiotic determinants provides distinct advantages to the producing strain, including enhanced niche establishment and the ability to suppress competing microbes. Furthermore, the presence of specific lantibiotic immunity mechanisms safeguards the producer from self-inhibition and potential antagonism from closely related competitors. In S. pyogenes, lantibiotic production has been implicated in virulence modulation, raising important questions about its role in pathogenicity and host immune evasion. Conversely, S. salivarius, a prominent commensal and probiotic candidate species, utilizes its lantibiotic arsenal to confer colonization benefits and mediate beneficial interactions, especially within the oral and upper respiratory tract microbiomes. The implications of in situ lantibiotic expression extend beyond microbial ecology, presenting opportunities for innovative probiotic and therapeutic applications. The potential for harnessing bacteriocin-producing streptococci in antimicrobial interventions, particularly in combating antibiotic-resistant pathogens, underscores the translational relevance of these findings. This review integrates historical and contemporary perspectives on streptococcal bacteriocin research, providing insights into future avenues for leveraging these bioactive peptides in clinical and biotechnological contexts. Full article
19 pages, 2190 KiB  
Article
Evaluation of the Expression of IDO and PTEN in Human Kidney Cancer
by Gábor Kónya, Zsuzsanna Szabó, Nikoletta Dobos, József Király, Krisztián Szegedi, Anna Vass, Ákos Steli, Csaba Szász, Balázs Dezső, Barbara Zsebik and Gábor Halmos
Curr. Issues Mol. Biol. 2025, 47(5), 359; https://doi.org/10.3390/cimb47050359 - 13 May 2025
Viewed by 768
Abstract
Immunotherapy has become one of the primary forms of cancer treatment. The inhibition of immune checkpoint molecules, including indoleamine 2,3-dioxygenase (IDO), is a promising approach for immunotherapy. Phosphatase and tensin homolog (PTEN) is well known as a tumor suppressor that antagonizes oncogenic signaling [...] Read more.
Immunotherapy has become one of the primary forms of cancer treatment. The inhibition of immune checkpoint molecules, including indoleamine 2,3-dioxygenase (IDO), is a promising approach for immunotherapy. Phosphatase and tensin homolog (PTEN) is well known as a tumor suppressor that antagonizes oncogenic signaling molecules/pathways and plays a key role in the prognosis and (immuno)therapy of the disease. In this study, twenty healthy and tumorous renal tissue pairs were investigated, and the mRNA (RT-qPCR) and protein (Western blot) expression of IDO and PTEN were analyzed. In two cancer cell lines (CAKI-2; A-498), the protein of IDO and PTEN was measured followed by IDO induction with interferon alpha-2 (IFN-α2). According to our results, a significantly higher mRNA expression of IDO and PTEN was found in tumorous tissues compared to the adjacent healthy kidney specimens. The mRNA expression of IDO and PTEN showed a positive correlation in 80% of the sample pairs. Western blot results confirmed the protein expression of both IDO and PTEN. In the cell lines, immunocytochemistry showed that IDO is inducible with IFN-α2. In summary, our results suggest that IDO expression may play a role in the development of renal cancer, and IDO as well as PTEN might be potential biomarkers for patients with RCC. Full article
Show Figures

Figure 1

18 pages, 3055 KiB  
Article
Stromal Interferon Regulatory Factor 3 Can Antagonize Human Papillomavirus Replication by Supporting Epithelial-to-Mesenchymal Transition
by Oluwamuyiwa T. Amusan, Rebecca Lopez, Elijah Burks, Jessica Trammel, Gaurav Raikhy, Hongyan Guo and Jason Bodily
Viruses 2025, 17(5), 598; https://doi.org/10.3390/v17050598 - 23 Apr 2025
Viewed by 635
Abstract
Epithelia contribute to the innate immune system through barrier formation and through signaling to immune cells. When the barrier is breached, epithelial cells undergo epithelial-to-mesenchymal transition (EMT) as part of the wound healing process. EMT is largely directed by signals from the stromal [...] Read more.
Epithelia contribute to the innate immune system through barrier formation and through signaling to immune cells. When the barrier is breached, epithelial cells undergo epithelial-to-mesenchymal transition (EMT) as part of the wound healing process. EMT is largely directed by signals from the stromal microenvironment, including transforming growth factor beta (TGFβ1), and antagonizes normal epithelial differentiation. How EMT and innate immunity may be connected molecularly has not been explored, although both processes are likely to occur simultaneously. Keratinocytes are the host cell type for human papillomaviruses (HPV), which can induce EMT in certain conditions but also depend on differentiation for their replication. We previously found that the innate immune factor interferon regulatory factor 3 (IRF3) inhibits epithelial differentiation and reduces the expression of HPV16 late genes. Here we report that IRF3 in the stroma compartment promotes an EMT-like pattern of gene expression in an HPV16-containing epithelium. The depletion of stromal IRF3 resulted in the downregulation of TGFβ1-related signaling in both the stroma and epithelium. IRF3 binds to the TGFB1 promoter in human foreskin fibroblasts and is necessary for TGFB1 mRNA production. Because an EMT-like state is unfavorable for differentiation-dependent HPV16, we observed that all EMT markers examined were reduced in the presence of episomal HPV16. Together, we show that stromal IRF3 can disrupt epithelial differentiation and act as an anti-HPV factor through the regulation of EMT, linking wound healing and immunity. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

6 pages, 556 KiB  
Case Report
Stimulator of InterferoN Genes (STING)-Associated Vasculopathy with Onset in Infancy Syndrome (SAVI) Associated with Disseminated Molluscum Contagiosum Under Baricitinib Treatment
by Thilo Gambichler, Yusa Devrim and Laura Susok
Dermato 2025, 5(2), 6; https://doi.org/10.3390/dermato5020006 - 2 Apr 2025
Viewed by 674
Abstract
Background/objectives: Stimulator of Interferon Genes (STING)-associated vasculopathy with onset in infancy (SAVI) is a rare autoinflammatory disorder caused by gain-of-function mutations in the TMEM173 gene. These mutations result in chronic activation of the STING pathway and excessive type I interferon production, leading to [...] Read more.
Background/objectives: Stimulator of Interferon Genes (STING)-associated vasculopathy with onset in infancy (SAVI) is a rare autoinflammatory disorder caused by gain-of-function mutations in the TMEM173 gene. These mutations result in chronic activation of the STING pathway and excessive type I interferon production, leading to systemic inflammation, vascular abnormalities, interstitial lung disease, and skin ulcerations. Janus kinase (JAK) inhibitors, including baricitinib, have shown promise in mitigating systemic and organ-specific manifestations. However, these inhibitors broadly suppress immune pathways, potentially increasing vulnerability to infections. Case presentation: This case report describes a 21-year-old woman with SAVI (due to a heterozygous TMEM173 mutation) who developed disseminated molluscum contagiosum (MC) while receiving baricitinib therapy. Laboratory results revealed lymphopenia, low CD4/CD8 ratio, and impaired immune cell activity, suggesting compromised antiviral immunity. Discussion: Despite SAVI’s association with excessive type I interferon signaling, this chronic hyperactivation may cause immune dysregulation, exhausting T cells and natural killer cells vital for viral defense. Furthermore, baricitinib suppresses interferon signaling via the JAK-STAT pathway, reducing inflammatory damage in SAVI but also impairing antiviral responses. Moreover, MC viruses evade host immune defenses by antagonizing STING and TANK-binding kinase 1-mediated interferon activation, further contributing to infection risk. This report is the first to document MC in a SAVI patient and highlights the rare complication of disseminated MC due to impaired type I interferon signaling and immune suppression from baricitinib therapy. This case underscores the need for vigilance regarding viral infections in SAVI patients treated with JAK inhibitors. Full article
(This article belongs to the Special Issue What Is Your Diagnosis?—Case Report Collection)
Show Figures

Figure 1

14 pages, 3979 KiB  
Article
Pre-Existing Anti-Vector Immunity to Adenovirus-Inspired VLP Vaccines Shows an Adjuvant-Dependent Antagonism
by Salomé Gallet, Dalil Hannani, Sebastian Dergan-Dylon, Emilie Vassal-Stermann, Isabelle Bally, Christopher Chevillard, Daphna Fenel, Olivier Epaulard, Pascal Poignard and Pascal Fender
Vaccines 2025, 13(3), 238; https://doi.org/10.3390/vaccines13030238 - 25 Feb 2025
Viewed by 1124
Abstract
Background/Objectives: The use of virus-like particles (VLPs) in vaccinology has expanded significantly in recent years. VLPs have the advantage of being non-infectious while effectively stimulating B cell responses through the repetitive presentation of epitope motifs on their surface. Since VLPs are often derived [...] Read more.
Background/Objectives: The use of virus-like particles (VLPs) in vaccinology has expanded significantly in recent years. VLPs have the advantage of being non-infectious while effectively stimulating B cell responses through the repetitive presentation of epitope motifs on their surface. Since VLPs are often derived from human-infecting viruses, preexisting immunity may influence the immune response they elicit, warranting further investigation. Methods: We have developed a 60-mer VLP derived from human adenovirus type 3, a common pathogen. We investigated the impact of pre-existing adenovirus immunity on the immunization outcome against the linear S14P5 epitope of SARS-CoV-2, which was engineered into the particle (Ad-VLP-S14P5). To this end, antibody responses to S14P5 were evaluated following immunization with Ad-VLP-S14P5 in either naive or vector-primed mice. Results: Mice with pre-existing anti-vector immunity exhibited significantly greater anti-S14P5 antibody responses compared to vector-naive animals, demonstrating a beneficial impact of prior anti-adenovirus responses. However, the addition of an oil-in-water adjuvant for the immunizations abolished this positive impact, even leading to a deleterious effect of the pre-existing anti-vector immunity. Conclusions: The data suggest that the immune status against immunizing VLPs must be taken into consideration when designing immunization protocols. Importantly, the effects of prior immunity may vary depending on the nature of the protocol, including factors such as adjuvant use. Full article
Show Figures

Figure 1

36 pages, 1476 KiB  
Review
Targeting Kinesins for Therapeutic Exploitation of Chromosomal Instability in Lung Cancer
by Christopher Zhang, Benson Z. Wu and Kelsie L. Thu
Cancers 2025, 17(4), 685; https://doi.org/10.3390/cancers17040685 - 18 Feb 2025
Cited by 1 | Viewed by 1481
Abstract
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or [...] Read more.
New therapeutic approaches that antagonize tumour-promoting phenotypes in lung cancer are needed to improve patient outcomes. Chromosomal instability (CIN) is a hallmark of lung cancer characterized by the ongoing acquisition of genetic alterations that include the gain and loss of whole chromosomes or segments of chromosomes as well as chromosomal rearrangements during cell division. Although it provides genetic diversity that fuels tumour evolution and enables the acquisition of aggressive phenotypes like immune evasion, metastasis, and drug resistance, too much CIN can be lethal because it creates genetic imbalances that disrupt essential genes and induce severe proteotoxic and metabolic stress. As such, sustaining advantageous levels of CIN that are compatible with survival is a fine balance in cancer cells, and potentiating CIN to levels that exceed a tolerable threshold is a promising treatment strategy for inherently unstable tumours like lung cancer. Kinesins are a superfamily of motor proteins with many members having functions in mitosis that are critical for the correct segregation of chromosomes and, consequently, maintaining genomic integrity. Accordingly, inhibition of such kinesins has been shown to exacerbate CIN. Therefore, inhibiting mitotic kinesins represents a promising strategy for amplifying CIN to lethal levels in vulnerable cancer cells. In this review, we describe the concept of CIN as a therapeutic vulnerability and comprehensively summarize studies reporting the clinical and functional relevance of kinesins in lung cancer, with the goal of outlining how kinesin inhibition, or “targeting kinesins”, holds great potential as an effective strategy for treating lung cancer. Full article
Show Figures

Figure 1

19 pages, 4218 KiB  
Article
Circular RNA ZNF277 Sponges miR-378d to Inhibit the Intracellular Survival of Mycobacterium tuberculosis by Upregulating Rab10
by Yifan Zhu, Lei Zhang, Zijian Wang, Ting Li, Yingyu Chen, Lu Lu, Han Liu, Delai Kong, Yongchong Peng, Xi Chen, Changmin Hu, Huanchun Chen and Aizhen Guo
Cells 2025, 14(4), 262; https://doi.org/10.3390/cells14040262 - 12 Feb 2025
Cited by 1 | Viewed by 1061
Abstract
Circular RNAs (circRNAs) are covalently closed non-coding RNAs formed by back-splicing, lacking a 5′ cap and poly-A tail. They could act as important regulatory factors in the host’s anti-tuberculosis immune process, but only a few have been identified, and their molecular mechanisms remain [...] Read more.
Circular RNAs (circRNAs) are covalently closed non-coding RNAs formed by back-splicing, lacking a 5′ cap and poly-A tail. They could act as important regulatory factors in the host’s anti-tuberculosis immune process, but only a few have been identified, and their molecular mechanisms remain largely unclear. Here, we identified a novel circRNA, circ-ZNF277, which responds to Mycobacterium tuberculosis (Mtb) infection in THP-1 cells. Circ-ZNF277 binds microRNA-378d (miR-378d) in vivo. The expression level of circ-ZNF277 affects the clearance of the intracellular Mtb in THP-1 cells. Mechanistically, more circ-ZNF277 molecules could absorb more miR-378d, thereby competitively activating the NF-κB signaling pathway, promoting the release of pro-inflammatory cytokines including interleukins IL-1β and IL-6, and tumor necrosis factor-α (TNF-α), and inhibiting the survival of intracellular Mtb. Expressing miR-378d or si-Rab10 targeting the transcription of Rab10 could antagonize the effects of overexpression of circ-ZNF277, resulting in the reduced intracellular survival of Mtb. In summary, circ-ZNF277 inhibits the intracellular survival of Mtb via the miR-378d/Rab10 axis. This finding represents a novel mechanism of circular RNA in regulating host immune responses during Mtb infection. Full article
Show Figures

Figure 1

27 pages, 4842 KiB  
Article
Discovery of a Novel Multitarget Analgesic Through an In Vivo-Guided Approach
by Guo Zhen, Nayeon Do, Nguyen Van Manh, Hee-Jin Ha, Hee Kim, Hyunsoo Kim, Kwanghyun Choi, Jihyae Ann and Jeewoo Lee
Pharmaceuticals 2025, 18(2), 205; https://doi.org/10.3390/ph18020205 - 3 Feb 2025
Viewed by 1566
Abstract
Background: Pain is a complex condition influenced by peripheral, central, immune, and psychological factors. Multitarget approaches offer a more effective and safer alternative to single-target analgesics by enhancing efficacy, reducing side effects, and minimizing tolerance. This study aimed to identify a novel multitarget [...] Read more.
Background: Pain is a complex condition influenced by peripheral, central, immune, and psychological factors. Multitarget approaches offer a more effective and safer alternative to single-target analgesics by enhancing efficacy, reducing side effects, and minimizing tolerance. This study aimed to identify a novel multitarget analgesic with improved pharmacological properties. Methods: An in vivo-guided screening approach was used to discover a new analgesic compound. Compound 29, derived from a novel scaffold inspired by opiranserin and vilazodone pharmacophores, was identified through analog screening in the formalin test. Its efficacy was further evaluated in the spinal nerve ligation (SNL) model of neuropathic pain. Mechanistic studies explored its interaction with neurotransmitter transporters and receptors, while pharmacokinetic and safety assessments were conducted to determine its stability, brain penetration, and potential toxicity. Results: Compound 29 demonstrated high potency in the formalin test, with an ED50 of 0.78 mg/kg in the second phase and a concentration-dependent effect in the first phase. In the SNL model, it produced dose-dependent analgesic effects, increasing withdrawal thresholds by 24% and 45% maximum possible effect (MPE) at 50 and 100 mg/kg, respectively. Mechanistic studies revealed strong triple uptake inhibition, particularly at dopamine (DAT) and serotonin (SERT) transporters, alongside high-affinity 5-HT2A receptor antagonism. Pharmacokinetic analysis indicated enhanced stability and blood–brain barrier permeability. In vitro studies confirmed its nontoxicity to HT-22 cells but revealed potential hERG inhibition and strong CYP3A4 inhibition. Conclusions: Compound 29 is a promising multitarget analgesic with potent efficacy and favorable pharmacokinetics. Ongoing optimization efforts aim to mitigate side effects and enhance its therapeutic profile for clinical application. Full article
(This article belongs to the Special Issue Discovery and Development of Novel Analgesics)
Show Figures

Figure 1

16 pages, 3190 KiB  
Article
Nutrient–Nutrient Interactions Among Broccoli Glucosinolates and Their Implications for Breeding Cruciferous Crops to Enhance Human Health
by Weston Bussler, Katelyn DeZego, Holli Chandler, Robert W. Reid and Slavko Komarnytsky
Nutrients 2025, 17(2), 344; https://doi.org/10.3390/nu17020344 - 18 Jan 2025
Viewed by 1502
Abstract
While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits. Background/Objectives: Broccoli (Brassica oleracea L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health [...] Read more.
While a balanced diet can fulfill most nutritional needs, optimizing the composition of specific foods like broccoli can amplify their health benefits. Background/Objectives: Broccoli (Brassica oleracea L. Italica group) is a widely consumed cruciferous vegetable valued for its gastrointestinal and immune health benefits. However, the individual contributions and interactions of broccoli glucosinolates, as they hydrolyze into bioactive isothiocyanates, remain poorly understood. Methods: This study investigated mixtures of four major aliphatic glucosinolates—glucoraphanin, gluconapin, progoitrin, and sinigrin—in individual and combinational models to assess their effects on human colorectal cell proliferation. Results: Combination index analysis revealed moderate to strong antagonistic interactions among these glucosinolates, with the most significant antagonism observed during enzymatic hydrolysis by myrosinase. Mixture analysis identified an optimal glucosinolate ratio including glucoraphanin (81–84%), gluconapin (9–19%), and others (0–7%) to maximize their antiproliferative effects (adjusted R2 > 0.80). This optimal profile was achievable within the target broccoli mapping population. Testing the near-optimal VB067 isogenic broccoli line showed a 44% increase in antiproliferative activity compared to the initial breeding parent or an average sister line. Conclusions: This study highlights the potential of leveraging nutrient–nutrient interactions to guide molecular breeding and produce functional varieties of cruciferous vegetables with optimized health benefits. Full article
(This article belongs to the Special Issue Nutritional Value and Health Benefits of Dietary Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop