Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = iP cytokinins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3607 KiB  
Article
Dynamics of Phytohormones in Persistent Versus Deciduous Calyx Development in Pear Revealed by Targeted Metabolomics
by Mingyang Yu, Feng Han, Nana Zhou, Lanfei Wang, Yang Li, Weifan Fan, Tianzheng Zhang and Jianping Bao
Horticulturae 2025, 11(6), 642; https://doi.org/10.3390/horticulturae11060642 - 6 Jun 2025
Viewed by 464
Abstract
To calyx persistence in Korla fragrant pear (Pyrus sinkiangensis) significantly impacts fruit marketability, with persistent calyx causing up to 40% reduction in premium-grade fruit yield. Investigating the hormonal mechanisms underlying calyx abscission and persistent in Korla Fragrant Pear, we performed comprehensive [...] Read more.
To calyx persistence in Korla fragrant pear (Pyrus sinkiangensis) significantly impacts fruit marketability, with persistent calyx causing up to 40% reduction in premium-grade fruit yield. Investigating the hormonal mechanisms underlying calyx abscission and persistent in Korla Fragrant Pear, we performed comprehensive phytohormone profiling using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS; EXIONLC system coupled with SCIEX 6500 QTRAP+). Flowers from first-position (persistent-calyx) and fourth-position (deciduous-calyx) inflorescences were collected at six developmental stages (0–10 days after flowering). Fourteen endogenous hormones—ACC, ME-IAA, IPA, TZR, SA, IAA, ICA, IP, tZ, DHJA, ABA, JA-ile, cZ, and JA—were identified in the calyx during the flowering stage. The calyx abscission rate was significantly higher in the fourth position (79%) compared to the first position (32%). ACC and ABA are closely linked to abscission, with increased ACC at 0 DAF signaling early abscission and ABA accumulation accelerating late abscission at 8 DAF. Auxin exhibited spatiotemporal specificity, peaking in first-order flowers at 4–6 DAF, potentially inhibiting abscission by maintaining cell activity. Cytokinins generally decreased, while jasmonates significantly increased during the fourth-position anthesis stage 8–10 DAF, suggesting a role in stress-related senescence. By systematic analysis of the flowers at the first order (persistent calyx) and the fourth order (deciduous calyx) from 0 to 10 days after anthesis, we found three key stages of hormone regulation: early prediction stage (0–2 DAF), ACC accumulation at the fourth order was significantly higher than that at the first order at 0 days after anthesis, ACC accumulation at the early stage predicted abscission; During the middle maintenance stage (4–6 DAF), the accumulation of cytokinin decreased significantly, while the accumulation of IAA increased significantly in the first position (persistent calyx); Execution Phase (8–10 DAF), ABA reached its peak at 8 DAF, coinciding with the final separation time. JA played an important role in the late stage. Gibberellin was undetected, implying a weak association with calyx abscission. Venn diagram identified N6-(delta 2-Isopentenyl)-adenine (IP) in first-position flowers, which may influence calyx persistence or abscission. These findings elucidate hormone interactions in calyx abscission, offering a theoretical basis for optimizing exogenous hormone application to enhance fruit quality. Full article
Show Figures

Figure 1

13 pages, 3357 KiB  
Article
Evolutionary Analysis and Catalytic Function of LOG Proteins in Plants
by Chunjie Zhao, Huanran Yin, Yuqi Li, Jiacheng Zhou, Siteng Bi, Wenhao Yan and Yunzhen Li
Genes 2024, 15(11), 1420; https://doi.org/10.3390/genes15111420 - 31 Oct 2024
Viewed by 1299
Abstract
Background: The plant hormone cytokinin is a conserved regulator of plant development. LONELY GUY (LOG) proteins are pivotal in cytokinin biosynthesis. However, their origin, evolutionary history, and enzymatic characteristics remain largely uncharacterized. Methods: To elucidate LOG family evolution history and protein motif composition, [...] Read more.
Background: The plant hormone cytokinin is a conserved regulator of plant development. LONELY GUY (LOG) proteins are pivotal in cytokinin biosynthesis. However, their origin, evolutionary history, and enzymatic characteristics remain largely uncharacterized. Methods: To elucidate LOG family evolution history and protein motif composition, we conducted phylogenetic and motif analyses encompassing representative species across the whole green plant lineage. Catalytic activity and structure analysis were conducted to thoroughly characterize the LOG proteins. Results: Our phylogeny showed that LOG proteins could be divided into five groups and revealed three major duplication events giving rise to four distinct groups of vascular LOG proteins. LOG proteins share a conserved structure characterized by a canonical motif arrangement comprising motifs 1, 2, 3, 4, 5, 6, and 7. Two significant changes in LOG motif composition occurred during the transition to land plants: the emergence of motif 3 in charophyte LOG sequences and the subsequent acquisition of motif 8 at the C-terminus of LOG proteins. Enzymatic assays demonstrated that LOG proteins can be classified into two groups based on their enzyme activity. One group act as cytokinin riboside 5′-monophosphate phosphoribohydrolase and primarily convert iPRMP to iP, while the other group act as 5′-ribonucleotide phosphohydrolase, and preferentially produce iPR from the same substrates. TaLOG5-4A1, TaLOG5-4A2, TaLOG5-5B2, and TaLOG5-D1 shared conserved residues in the critical motif and were predicted to have similar protein structures, but displayed distinct enzymatic activities. Conclusions: Our findings provide a comprehensive overview of LOG protein phylogeny and lay a foundation for further investigations into their functional diversification. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4100 KiB  
Brief Report
Cytokinins Reduce Viral Replication and Alter Plaque Morphology of Frog Virus 3 In Vitro
by Mark Seegobin, Samantha R. Logan, R. J. Neil Emery and Craig R. Brunetti
Viruses 2024, 16(6), 826; https://doi.org/10.3390/v16060826 - 23 May 2024
Cited by 1 | Viewed by 1268
Abstract
Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic [...] Read more.
Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5′monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations. Full article
(This article belongs to the Special Issue Iridoviruses, 2nd Edition)
Show Figures

Figure 1

14 pages, 3238 KiB  
Article
Physiological Characteristics and Transcriptional Differences of Growth Traits of Persimmon with Different Ploidy
by Tingting Pu, Yiru Wang, Weijuan Han, Huawei Li, Peng Sun, Yujing Suo and Jianmin Fu
Horticulturae 2024, 10(3), 207; https://doi.org/10.3390/horticulturae10030207 - 22 Feb 2024
Cited by 3 | Viewed by 1820
Abstract
Ploidy breeding is one of the important approaches for persimmon (Diospyros kaki Thunb.) genetic improvement, and vegetative growth of seedlings is the basis for subsequent fruit development. Therefore, the physiological characteristics and transcriptional differences of seedling growth traits in different ploidy persimmon [...] Read more.
Ploidy breeding is one of the important approaches for persimmon (Diospyros kaki Thunb.) genetic improvement, and vegetative growth of seedlings is the basis for subsequent fruit development. Therefore, the physiological characteristics and transcriptional differences of seedling growth traits in different ploidy persimmon germplasm were studied in this study, which provided a theoretical basis for fruit evaluation and breeding of new polyploid persimmon varieties. Nonuploid and its full-sib hexaploid seedlings obtained from endosperm culture were used as materials. By observing plant phenotype, leaf tissue section, endogenous hormone content, and transcriptome sequencing, the phenotype and physiological characteristics of different ploidy Persimmon seedlings were compared, as well as the differences in transcription levels. (1) Compared with hexaploid seedlings, the nonuploid were more robust and compact, and the leaves were obviously thicker. The cell size of leaf veins and parenchyma were significantly different between the different ploidy plants. (2) The contents of Salicylic Acid (SA), Jasmonic Acid (JA), gibberellin A1 (GA1), gibberellin A3 (GA3) and Indole-3-acetic acid (IAA) in nonuploid leaves were significantly higher than those in hexaploid leaves, while the contents of cytokinin trans-zeanoside (Tzt) and dihydrozeanoside (DZR), N6-isopentenyladenine (iP) and Jasmonoyl-L-isoleucine (JA-ILE) in nonuploid leaves were significantly lower than those in hexaploid leaves. (3) A total of 5796 differentially expressed genes were identified in nonuploid and hexaploid leaves. These differentially expressed genes were mainly related to photosynthesis, plant-pathogen interaction, etc. Among them, YUCCA genes, GA3ox genes, and IPT genes related to hormone synthesis were significantly differentially expressed in the nonuploid and hexaploid leaves. It is speculated that it may be the key regulatory gene that leads to the difference in IAA, gibberellin (GA), and indolepropionic acid (IPA) levels in the nonuploid and the hexaploid. The growth traits of the new Persimmon germplasms with different ploidy were significantly different. The nonuploid plants were shorter and more compact, and the leaves were larger and thicker. These traits were closely related to the content of endogenous hormones, and the balance of endogenous hormones was affected by gene expression. In addition, based on the biological processes involved in hormones and differentially expressed genes, it is speculated that the nonuploid may be superior to the hexaploid in terms of resistance. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

14 pages, 7026 KiB  
Article
The Cytokinins BAP and 2-iP Modulate Different Molecular Mechanisms on Shoot Proliferation and Root Development in Lemongrass (Cymbopogon citratus)
by María del Rosario Cárdenas-Aquino, Alberto Camas-Reyes, Eliana Valencia-Lozano, Lorena López-Sánchez, Agustino Martínez-Antonio and José Luis Cabrera-Ponce
Plants 2023, 12(20), 3637; https://doi.org/10.3390/plants12203637 - 21 Oct 2023
Cited by 11 | Viewed by 3309
Abstract
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, [...] Read more.
The known activities of cytokinins (CKs) are promoting shoot multiplication, root growth inhibition, and delaying senescence. 6-Benzylaminopurine (BAP) has been the most effective CK to induce shoot proliferation in cereal and grasses. Previously, we reported that in lemongrass (Cymbopogon citratus) micropropagation, BAP 10 µM induces high shoot proliferation, while the natural CK 6-(γ,γ-Dimethylallylamino)purine (2-iP) 10 µM shows less pronounced effects and developed rooting. To understand the molecular mechanisms involved, we perform a protein–protein interaction (PPI) network based on the genes of Brachypodium distachyon involved in shoot proliferation/repression, cell cycle, stem cell maintenance, auxin response factors, and CK signaling to analyze the molecular mechanisms in BAP versus 2-iP plants. A different pattern of gene expression was observed between BAP- versus 2-iP-treated plants. In shoots derived from BAP, we found upregulated genes that have already been demonstrated to be involved in de novo shoot proliferation development in several plant species; CK receptors (AHK3, ARR1), stem cell maintenance (STM, REV and CLV3), cell cycle regulation (CDKA-CYCD3 complex), as well as the auxin response factor (ARF5) and CK metabolism (CKX1). In contrast, in the 2-iP culture medium, there was an upregulation of genes involved in shoot repression (BRC1, MAX3), ARR4, a type A-response regulator (RR), and auxin metabolism (SHY2). Full article
Show Figures

Figure 1

9 pages, 3553 KiB  
Communication
In Vitro-Based Production of Virus-Tested Babaco (Vasconcellea x heilbornii, syn. Carica pentagona) in Ecuador: An Integrated Approach to an Endangered Crop
by Valeria Muñoz, Diana Curillo, Sebastián Gómez, Lissette Moreno-Peña, Denisse Peña, Eduardo Chica, Viviana Yánez, Eduardo Sánchez-Timm and Diego F. Quito-Avila
Plants 2023, 12(13), 2560; https://doi.org/10.3390/plants12132560 - 6 Jul 2023
Cited by 4 | Viewed by 2460
Abstract
Babaco (Vasconcellea x heilbornii), a fruit-bearing vegetatively propagated crop native to Ecuador, is appreciated for its distinctive flavor and nutritional properties. The aim of this research was to determine a functional protocol for tissue culture propagation of virus-free babaco plants including [...] Read more.
Babaco (Vasconcellea x heilbornii), a fruit-bearing vegetatively propagated crop native to Ecuador, is appreciated for its distinctive flavor and nutritional properties. The aim of this research was to determine a functional protocol for tissue culture propagation of virus-free babaco plants including in vitro establishment, multiplication, rooting, and acclimation. First, symptomless babaco plants from a single commercial nursery were analyzed for virus detection and cared for using different disinfection treatments in the greenhouse to reduce contamination during the in vitro establishing step, and three cytokinins, 6-(γ,γ-Dimethylallylamino) purine (2IP), 6-Benzylaminopurine (BAP), and Thidiazuron (TDZ), were used to determine the best hormone for multiplication. The best treatment for plant disinfection was the weekly application of copper sulfate at the greenhouse and a laboratory disinfection using ethanol (EtOH) (70%), Clorox (2%), and a solution of povidone iodine (2.5%), with an 80% survival during in vitro plant establishment. TDZ showed a better multiplication rate when compared with other hormones, and 70% of the rooted plants were successfully acclimated at the greenhouse. Generated plants were virus-free when tested against babaco mosaic virus (BabMV) and papaya ringspot virus (PRSV), two of the most important viruses that can affect babaco. An efficient protocol to produce virus-free babaco plants was elaborated with an integrated use of viral diagnostic tools to ensure the production of healthy start material to farmers. Full article
Show Figures

Figure 1

16 pages, 3267 KiB  
Article
Comparative Analysis Based on Physiological and Transcriptomic Data between Juvenile and Adult Tree Peony (Paeonia delavayi)
by Xiaoli Zhai, Yan Feng, Xiuxin Zhang and Xianfeng Guo
Int. J. Mol. Sci. 2023, 24(13), 10906; https://doi.org/10.3390/ijms241310906 - 30 Jun 2023
Viewed by 1622
Abstract
A long juvenile period limits the breeding process of many woody plants including tree peony. To investigate the physiological and transcriptomic differences between juvenile and adult plants of tree peony and to explore the key SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, [...] Read more.
A long juvenile period limits the breeding process of many woody plants including tree peony. To investigate the physiological and transcriptomic differences between juvenile and adult plants of tree peony and to explore the key SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes, which are vital in age-dependent pathways, 1-year-old and 3-year-old Paeonia delavayi plants were used to compare the relevant physiological parameters and transcriptomic profiles of the leaves in two phases of plants. The results of the physiological parameters showed that the starch content in the leaves of adult plants remained unchanged and that the soluble sugar content significantly increased compared with those in the juvenile plants. In terms of plant hormones, the contents of cytokinin-like hormone (N6-isopentenyladenine (iP)) and jasmonic acid (JA) significantly decreased, whereas the contents of auxin (indole-3-acetic acid, IAA), abscisic acid (ABA), cytokinin-like hormone (N6-isopentenyladenenosine (iPR)), and ethylene precursor (1-aminocyclopropane-1-carboxylic acid, ACC) showed no statistic difference. Transcriptome sequencing results showed that there were 194 differentially expressed genes (DEGs) between juvenile and adult plants, including 171 up-regulated DEGs and 23 down-regulated DEGs. Circadian rhythm, plant hormone signal transduction, and sugar metabolism were closely related to the juvenile-to-adult transition in P. delavayi, involving a total of 12 DEGs. In addition, a total of 13 SPL genes were identified in the transcriptome data, but only PdSPL10 (c71307.graph_c0) was differentially expressed. It was further validated via qRT-PCR analysis, indicating that PdSPL10 might be a key gene regulating the process of juvenile-to-adult in P. delavayi. Based on the above results, a hypothetical transcriptional network regulating juvenile-to-adult transition and flowering in P. delavayi was proposed. These findings provide a reference for understanding the mechanism of juvenile-to-adult transition in tree peony. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2696 KiB  
Article
SDG26 Is Involved in Trichome Control in Arabidopsis thaliana: Affecting Phytohormones and Adjusting Accumulation of H3K27me3 on Genes Related to Trichome Growth and Development
by Jing Zeng, Lanpeng Yang, Minyu Tian, Xiang Xie, Chunlin Liu and Ying Ruan
Plants 2023, 12(8), 1651; https://doi.org/10.3390/plants12081651 - 14 Apr 2023
Cited by 10 | Viewed by 2958
Abstract
Plant trichomes formed by specialized epidermal cells play a role in protecting plants from biotic and abiotic stresses and can also influence the economic and ornamental value of plant products. Therefore, further studies on the molecular mechanisms of plant trichome growth and development [...] Read more.
Plant trichomes formed by specialized epidermal cells play a role in protecting plants from biotic and abiotic stresses and can also influence the economic and ornamental value of plant products. Therefore, further studies on the molecular mechanisms of plant trichome growth and development are important for understanding trichome formation and agricultural production. SET Domain Group 26 (SDG26) is a histone lysine methyltransferase. Currently, the molecular mechanism by which SDG26 regulates the growth and development of Arabidopsis leaf trichomes is still unclear. We found that the mutant of Arabidopsis (sdg26) possessed more trichomes on its rosette leaves compared to the wild type (Col-0), and the trichome density per unit area of sdg26 is significantly higher than that of Col-0. The content of cytokinins and jasmonic acid was higher in sdg26 than in Col-0, while the content of salicylic acid was lower in sdg26 than in Col-0, which is conducive to trichome growth. By measuring the expression levels of trichome-related genes, we found that the expression of genes that positively regulate trichome growth and development were up-regulated, while the negatively regulated genes were down-regulated in sdg26. Through chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we found that SDG26 can directly regulate the expression of genes related to trichome growth and development such as ZFP1, ZFP5, ZFP6, GL3, MYB23, MYC1, TT8, GL1, GIS2, IPT1, IPT3, and IPT5 by increasing the accumulation of H3K27me3 on these genes, which further affects the growth and development of trichomes. This study reveals the mechanism by which SDG26 affects the growth and development of trichomes through histone methylation. The current study provides a theoretical basis for studying the molecular mechanism of histone methylation in regulating leaf trichome growth and development and perhaps guiding the development of new crop varieties. Full article
Show Figures

Figure 1

22 pages, 8431 KiB  
Article
Far-Red-Light-Induced Morphology Changes, Phytohormone, and Transcriptome Reprogramming of Chinese Kale (Brassica alboglabra Bailey)
by Yamin Li, Haozhao Jiang, Meifang Gao, Rui He, Xiaojuan Liu, Wei Su and Houcheng Liu
Int. J. Mol. Sci. 2023, 24(6), 5563; https://doi.org/10.3390/ijms24065563 - 14 Mar 2023
Cited by 18 | Viewed by 3639
Abstract
With far-red-light supplementation (3 W·m−2, and 6 W·m−2), the flower budding rate, plant height, internode length, plant display, and stem diameter of Chinese kale were largely elevated, as well as the leaf morphology such as leaf length, leaf width, [...] Read more.
With far-red-light supplementation (3 W·m−2, and 6 W·m−2), the flower budding rate, plant height, internode length, plant display, and stem diameter of Chinese kale were largely elevated, as well as the leaf morphology such as leaf length, leaf width, petiole length, and leaf area. Consequently, the fresh weight and dry weight of the edible parts of Chinese kale were markedly increased. The photosynthetic traits were enhanced, and the mineral elements were accumulated. To further explore the mechanism that far-red light simultaneously promoted the vegetative growth and reproductive growth of Chinese kale, this study used RNA sequencing to gain a global perspective on the transcriptional regulation, combining it with an analysis of composition and content of phytohormones. A total of 1409 differentially expressed genes were identified, involved mainly in pathways related to photosynthesis, plant circadian rhythm, plant hormone biosynthesis, and signal transduction. The gibberellins GA9, GA19, and GA20 and the auxin ME-IAA were strongly accumulated under far-red light. However, the contents of the gibberellins GA4 and GA24, the cytokinins IP and cZ, and the jasmonate JA were significantly reduced by far-red light. The results indicated that the supplementary far-red light can be a useful tool to regulate the vegetative architecture, elevate the density of cultivation, enhance the photosynthesis, increase the mineral accumulation, accelerate the growth, and obtain a significantly higher yield of Chinese kale. Full article
(This article belongs to the Special Issue Light-Dependent Control of Metabolism in Plants)
Show Figures

Figure 1

20 pages, 3631 KiB  
Article
In Vitro Seed and Clonal Propagation of the Mediterranean Bee Friendly Plant Anthyllis hermanniae L.
by Aikaterini N. Martini and Maria Papafotiou
Sustainability 2023, 15(5), 4025; https://doi.org/10.3390/su15054025 - 22 Feb 2023
Cited by 5 | Viewed by 1910
Abstract
Anthyllis hermanniae L. (Fabaceae) is a perennial Mediterranean shrub with the potential to be used as a bee-friendly ornamental plant in arid and semi-arid regions, valued for its tolerance of barren soils, winds, and strong temperature changes. With the aim of facilitating the [...] Read more.
Anthyllis hermanniae L. (Fabaceae) is a perennial Mediterranean shrub with the potential to be used as a bee-friendly ornamental plant in arid and semi-arid regions, valued for its tolerance of barren soils, winds, and strong temperature changes. With the aim of facilitating the introduction of the species into the horticulture industry, its in vitro seed and clonal propagation was investigated for the first time, to our knowledge. Seeds stored in the dark at room temperature for 4, 7, 9, 12, and 18 months germinated at percentages higher than 80% after scarification, when incubated in vitro in solid half-strength Murashige and Skoog (MS) medium at temperatures from 10 to 25 °C, while photoperiod (continuous darkness or 16 h light period/8 h dark) during incubation did not affect germination. Explants excised from in vitro grown seedlings established at higher percentages compared to explants from adult native plants, more efficiently in MS medium with 1.0 mg L−1 6 N benzyladenine (BA). During subcultures in the same medium, juvenile explants formed more and longer shoots than adult ones. Almost all adult explants formed shoots when subcultured in MS medium with 0.0 to 4.0 mg L−1 BA, zeatin, kinetin or 6-(γ,γ-dimethylallylamino)purine (2iP). ΒA at 0.5 to 2.0 mg L−1 induced many more shoots (17–21) per explant and much higher multiplication indices compared to all other cytokinins, while longer shoots were produced in a medium without hormones or with 0.5–1.0 mg L−1 2iP. Microshoots cultured in half-strength MS medium with 0.0–4.0 mg L−1 indole-3-butyric acid rooted at highest percentage (around 70%) in the medium containing 4.0 mg L−1 IBA, while microshoots of juvenile origin developed more and longer roots compared to adult ones. Micropropagated plantlets were successfully acclimatized ex vitro (>97%), regardless of their origin. The efficient micropropagation of A. hermaniae will facilitate its sustainable exploitation as a bee-friendly landscape plant, a forage plant for honeybees in Mediterranean areas, and a medicinal plant. Full article
Show Figures

Figure 1

28 pages, 14438 KiB  
Article
Investigation of the Effects of the Explant Type and Different Plant Growth Regulators on Micropropagation of Five Mediterranean Salvia spp. Native to Greece
by Maria Papafotiou, Georgia Vlachou and Aikaterini N. Martini
Horticulturae 2023, 9(1), 96; https://doi.org/10.3390/horticulturae9010096 - 11 Jan 2023
Cited by 16 | Viewed by 4431
Abstract
Sages are medicinal and aromatic plants that constitute a large pool from which active compounds of great pharmaceutical potential can be derived, while at the same time, they also have ornamental value. The purpose of this study was to develop the micropropagation protocols [...] Read more.
Sages are medicinal and aromatic plants that constitute a large pool from which active compounds of great pharmaceutical potential can be derived, while at the same time, they also have ornamental value. The purpose of this study was to develop the micropropagation protocols of Salvia fruticosa, S. officinalis, S. ringens, S. tomentosa, and S. pomifera ssp. pomifera to facilitate their exploitation in the pharmaceutical and floriculture industries. In vitro cultures of S. ringens and S. pomifera ssp. pomifera was studied for the first time. Shoot tips and single node explants from in vitro seedlings were initially cultured on hormone free (Hf)-MS medium, followed by subcultures on MS medium supplemented with 6-benzyladenine (BA) for all species, as well as with zeatin (ZEA), kinetin (KIN), 6-(γ,γ-dimethylallyamino) purine (2iP), or meta-topolin (mT) for S. fruticosa and S. officinalis, at concentrations 0.0 to 3.2 mg L−1, in combination with 0.01 mg L−1 1-naphthaleneacetic acid (NAA). S. officinalis was the most efficient in shoot multiplication of all the studied species. The highest multiplication indices were found using 0.8 mg L−1 BA for S. fruticosa, 0.4 mg L−1 BA, or mT for S. officinalis, and lower than 0.8 mg L−1 BA for the other three species. Hyperhydricity was a problem at the multiplication stage, and was most pronounced in single node explants, increasing in proportion to cytokinin concentration. Microshoots rooted at high percentages (75–85%) on half-strength MS medium with 0.0 or 0.5 mg L−1 Indole-3-butyric acid (IBA), except for those of S. ringens, which rooted best at 1.0–2.0 mg L−1 IBA. Ex vitro acclimatization was highly successful (80–95%) on peat–perlite substrate (1:1 v/v). Thus, the present study resulted in efficient micropropagation protocols for five Mediterranean sage species native to Greece, which will facilitate breeding programs and the promotion of these species in the floriculture and pharmaceutical industries. Full article
(This article belongs to the Special Issue In Vitro Technology and Micropropagated Plants)
Show Figures

Figure 1

16 pages, 3385 KiB  
Article
Cretan Dittany (Origanum dictamnus L.), a Valuable Local Endemic Plant: In Vitro Regeneration Potential of Different Type of Explants for Conservation and Sustainable Exploitation
by Virginia Sarropoulou, Eleni Maloupa and Katerina Grigoriadou
Plants 2023, 12(1), 182; https://doi.org/10.3390/plants12010182 - 1 Jan 2023
Cited by 9 | Viewed by 2946
Abstract
Origanum dictamnus L. is a medicinal local endemic to the Island of Crete, Greece. Its propagation through biotechnological tissue culture techniques is essential due to its augmented multi-industrial sector demand. For direct organogenesis, among different culture media variants (MS, Gamborg B5), and cytokinins [...] Read more.
Origanum dictamnus L. is a medicinal local endemic to the Island of Crete, Greece. Its propagation through biotechnological tissue culture techniques is essential due to its augmented multi-industrial sector demand. For direct organogenesis, among different culture media variants (MS, Gamborg B5), and cytokinins [6-benzyladenine (BA), kinetin (Kin), 2-isopentenyl adenine (2-iP)], the MS + added with BA (2.2 μM) was the most effective treatment for shoots and roots formation. For indirect organogenesis, all explant types (leaves, petioles, roots) showed a 100% callusing rate after 2 months in all media variants tested; ODK1: 20 μM thidiazuron (TDZ) + 5 μM indole-3-butyric acid (IBA) or ODK2: 0.5 μM kinetin + 5 μM 2,4-dichlorophenoxy acetic acid (2,4-D). The leaves and petiole explants assured a low rate of shoot regeneration (20%) in ODK1. Afterwards, leaf-, petiole-and root-callus derived from both media were transferred to four new media plant growth regulators—free or with BA + IBA + gibberellic acid (GA3). After 10 months from callus transferring, the petiole callus gave rise to roots (20–75%) while the leaf callus exhibited 10–30% shoot or 30% root regeneration. In this study, indirect organogenesis of O. dictamnus was carried out for the first time, thus various organs can be used for plant regeneration, and the developed protocol may be applicable in the horticulture industry. Full article
Show Figures

Figure 1

29 pages, 27965 KiB  
Article
Solanum tuberosum Microtuber Development under Darkness Unveiled through RNAseq Transcriptomic Analysis
by Eliana Valencia-Lozano, Lisset Herrera-Isidrón, Jorge Abraham Flores-López, Osiel Salvador Recoder-Meléndez, Aarón Barraza and José Luis Cabrera-Ponce
Int. J. Mol. Sci. 2022, 23(22), 13835; https://doi.org/10.3390/ijms232213835 - 10 Nov 2022
Cited by 5 | Viewed by 3026
Abstract
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with [...] Read more.
Potato microtuber (MT) development through in vitro techniques are ideal propagules for producing high quality potato plants. MT formation is influenced by several factors, i.e., photoperiod, sucrose, hormones, and osmotic stress. We have previously developed a protocol of MT induction in medium with sucrose (8% w/v), gelrite (6g/L), and 2iP as cytokinin under darkness. To understand the molecular mechanisms involved, we performed a transcriptome-wide analysis. Here we show that 1715 up- and 1624 down-regulated genes were involved in this biological process. Through the protein–protein interaction (PPI) network analyses performed in the STRING database (v11.5), we found 299 genes tightly associated in 14 clusters. Two major clusters of up-regulated proteins fundamental for life growth and development were found: 29 ribosomal proteins (RPs) interacting with 6 PEBP family members and 117 cell cycle (CC) proteins. The PPI network of up-regulated transcription factors (TFs) revealed that at least six TFs–MYB43, TSF, bZIP27, bZIP43, HAT4 and WOX9–may be involved during MTs development. The PPI network of down-regulated genes revealed a cluster of 83 proteins involved in light and photosynthesis, 110 in response to hormone, 74 in hormone mediate signaling pathway and 22 related to aging. Full article
(This article belongs to the Special Issue Vegetable Genetics and Genomics)
Show Figures

Figure 1

10 pages, 2068 KiB  
Article
Shoot Induction, Multiplication, Rooting and Acclimatization of Black Turmeric (Curcuma caesia Roxb.): An Important and Endangered Curcuma Species
by Zainol Haida, Uma Rani Sinniah, Jaafar Juju Nakasha and Mansor Hakiman
Horticulturae 2022, 8(8), 740; https://doi.org/10.3390/horticulturae8080740 - 17 Aug 2022
Cited by 13 | Viewed by 5629
Abstract
Curcuma caesia Roxb., commonly known as Kali Haldi or black turmeric, is one of the important species in the genus Curcuma. This species has been classified as one of the endangered Curcuma species due to the drastic decrement of this plant in [...] Read more.
Curcuma caesia Roxb., commonly known as Kali Haldi or black turmeric, is one of the important species in the genus Curcuma. This species has been classified as one of the endangered Curcuma species due to the drastic decrement of this plant in its natural habitat. C. caesia has been overharvested for various purposes, including bioactive compound extraction to fulfill the pharmaceutical industry demand. Hence, this study was conducted to establish a protocol for the propagation of C. caesia via plant tissue culture techniques. In the shoot induction stage, three basal medium formulations, including Murashige and Skoog (MS medium), the combination of Murashige and Skoog macronutrients and B5 micronutrients (MSB5 medium) and woody plant medium (WPM medium) supplemented with 15 μM of 6-benzylaminopurine (BAP), were used. The results found that the MSB5 medium was the most suitable basal medium formulation for shoot induction of C. caesia. In the subsequent experiment, different types of cytokinin, including BAP, kinetin and 2-iP at concentrations of 5, 10, 15 and 20 μM, were fortified in the MSB5 medium for shoot multiplication. The shoot multiplication was further enhanced by supplementing the MSB5 medium with indole-3-butyric acid (IBA) or 1-napthaleneacetic acid (NAA) at the concentrations of 2, 4, 6 and 8 μM. The results showed that a combination of 15 μM of BAP and 6 μM of IBA significantly increased the shoot multiplication with 100% shoot induction, 3.53 shoots/explant, 10.81 cm of shoot length, 9.57 leaves, 0.486 g of leaves fresh weight and 0.039 g of leaves dry weight. After the multiplication, the rooting stage was carried out by altering the basal medium strength into half and full strength and supplementing with 2.5, 5, 7.5 and 10 μM of indole-3-acetic acid (IAA). The full strength of MSB5 medium supplemented with 5 μM of IAA exhibited the highest number of roots and length of roots, with 6.13 roots and 5.37 cm, respectively. After the rooting stage, the plantlets were successfully acclimatized in the potting medium with the combination of cocopeat and peatmoss, and the ratio of 1:1 was found to produce the highest survival rate with 77.78%. In conclusion, the protocol established in this study could be useful for large-scale raw material production, either for conservation or bioactive compound extraction. Full article
(This article belongs to the Special Issue In Vitro Technology and Micropropagated Plants)
Show Figures

Figure 1

17 pages, 1663 KiB  
Article
Effect of Different Cytokinins on Shoot Outgrowth and Bioactive Compounds Profile of Lemograss Essential Oil
by Alberto Camas-Reyes, Rosalía Vuelvas-Nolasco, José Luis Cabrera-Ponce, Benito Pereyra-Alférez, Jorge Molina-Torres and Agustino Martínez-Antonio
Int. J. Plant Biol. 2022, 13(3), 298-314; https://doi.org/10.3390/ijpb13030025 - 17 Aug 2022
Cited by 7 | Viewed by 2901
Abstract
Lemongrass (Cymbopogon citratus) essential oil (EO) is a major source of bioactive compounds (BC) with anticancer activity such as α-citral, limonene, geraniol, geranyl acetate, and β-caryophyllene. Comparative studies about cytokinin effects on BC profiles in lemongrass are missing. Here, we evaluated [...] Read more.
Lemongrass (Cymbopogon citratus) essential oil (EO) is a major source of bioactive compounds (BC) with anticancer activity such as α-citral, limonene, geraniol, geranyl acetate, and β-caryophyllene. Comparative studies about cytokinin effects on BC profiles in lemongrass are missing. Here, we evaluated four cytokinins (2iP, tZ, BAP, and KIN) in two different osmotic media, MS-N (3% sucrose, 3 g L−1 Gelrite™) and MS-S (5% sucrose, 5 g L−1 Gelrite™). It results in a higher multiplication rate in BAP containing medium compared to tZ, KIN, and 2iP (p ≤ 0.05). While shoots grown on MS-N/BAP, tZ, and KIN exhibited a highly branching morphology, MS-N/2iP produced a less branching architecture. BC profile analysis of established plants in pots revealed that their maxima production depends on the in vitro shoot growth conditions: i.e., highest content (80%) of α-citral in plants that were cultured in MS-S/BAP (p ≤ 0.05), limonene (41%) in MS-N/2iP, or geranyl acetate (25.79%) in MS-S/2iP. These results indicate that it is possible to increase or address the production of BC in lemongrass by manipulating the cytokinin type and osmotic pressure in culture media. The culture protocol described here is currently successfully applied for somatic embryogenesis induction and genetic transformation in lemongrass. Full article
Show Figures

Figure 1

Back to TopTop