Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hypertrophic cardiomyopathy (HC)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3448 KB  
Case Report
De Novo DNM1L Pathogenic Variant Associated with Lethal Encephalocardiomyopathy—Case Report and Literature Review
by Martina Magistrati, Luisa Zupin, Eleonora Lamantea, Enrico Baruffini, Daniele Ghezzi, Andrea Legati, Fulvio Celsi, Flora Maria Murru, Valeria Capaci, Maurizio Pinamonti, Rossana Bussani, Marco Carrozzi, Cristina Dallabona, Massimo Zeviani and Maria Teresa Bonati
Int. J. Mol. Sci. 2025, 26(2), 846; https://doi.org/10.3390/ijms26020846 - 20 Jan 2025
Cited by 3 | Viewed by 2706
Abstract
Pathogenic variants in DNM1L, encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo DNM1L variant identified by whole exome [...] Read more.
Pathogenic variants in DNM1L, encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo DNM1L variant identified by whole exome sequencing performed more than 10 years after the patient’s death. Meanwhile, we reviewed the broadness and specificities of DNM1L-related phenotype. The patient, who exhibited developmental delay in her third year, developed a therapy-refractory myoclonic status epilepticus, followed by neurological deterioration with brain atrophy and refractory epilepsy. She died of heart failure due to hypertrophic cardiomyopathy. She was found to be heterozygous for the DNM1L variant (NM_ 012062.5):c.1201G>A, p.(Gly401Ser). We demonstrated its deleterious impact and dominant negative effect by assessing haploid and diploid mutant yeast strains, oxidative growth, oxygen consumption, frequency of petite, and architecture of the mitochondrial network. Structural modeling of p.(Gly401Ser) predicted the interference of the mutant protein in the self-oligomerization of the DRP1 active complex. DNM1L-related phenotypes include static or (early) lethal encephalopathy and neurodevelopmental disorders. In addition, there may be ophthalmological impairment, peripheral neuropathy, ataxia, dystonia, spasticity, myoclonus, and myopathy. The clinical presentations vary depending on mutations in different DRP1 domains. Few pathogenic variants, the p.(Gly401Ser) included, cause an encephalocardiomyopathy with refractory status epilepticus. Full article
(This article belongs to the Special Issue Genes and Human Diseases 2.0)
Show Figures

Figure 1

19 pages, 2661 KB  
Article
Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy
by Chiara Foglieni, Maria Lombardi, Davide Lazzeroni, Riccardo Zerboni, Edoardo Lazzarini, Gloria Bertoli, Annalinda Pisano, Francesca Girolami, Annapaola Andolfo, Cinzia Magagnotti, Giovanni Peretto, Carmem L. Sartorio, Iacopo Olivotto, Giovanni La Canna, Ottavio Alfieri, Ornella E. Rimoldi, Lucio Barile, Giulia d’Amati and Paolo G. Camici
Biomedicines 2022, 10(9), 2180; https://doi.org/10.3390/biomedicines10092180 - 3 Sep 2022
Cited by 7 | Viewed by 3363
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts [...] Read more.
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls). A subset of tissue-abundant myectomy samples from HCM (n = 10) and controls (n = 6) was submitted to laser-capture microdissection to isolate cardiomyocytes. We investigated the relationship among clinical phenotype, cardiac myosin proteins (MyHC6, MyHC7, and MyHC7b) measured by optimized label-free mass spectrometry, the relative genes (MYH7, MYH7B and MYLC2), and the MyomiR network (myosin-encoded microRNA (miRs) and long-noncoding RNAs (Mhrt)) measured using RNA sequencing and RT-qPCR. MyHC6 was lower in HCM vs. controls, whilst MyHC7, MyHC7b, and MyLC2 were comparable. MYH7, MYH7B, and MYLC2 were higher in HCM whilst MYH6, miR-208a, miR-208b, miR-499 were comparable in HCM and controls. These results are compatible with defective transcription by active genes in HCM. Mhrt and two miR-499-target genes, SOX6 and PTBP3, were upregulated in HCM. The presence of HCM-associated mutations correlated with PTBP3 in myectomies and with SOX6 in cardiomyocytes. Additionally, iPSC-derived cardiomyocytes, transiently transfected with either miR-208a or miR-499, demonstrated a time-dependent relationship between MyomiRs and myosin genes. The transfection end-stage pattern was at least in part similar to findings in HCM myectomies. These data support uncoupling between myosin protein/genes and a modulatory role for the myosin/MyomiR network in the HCM myocardium, possibly contributing to phenotypic diversity and providing putative therapeutic targets. Full article
(This article belongs to the Special Issue Cardiomyopathies:From Molecular Basis to Therapy)
Show Figures

Graphical abstract

15 pages, 6957 KB  
Article
Myogenic Determination and Differentiation of Chicken Bone Marrow-Derived Mesenchymal Stem Cells under Different Inductive Agents
by Zhen Zhou, Changbin Zhao, Bolin Cai, Manting Ma, Shaofen Kong, Jing Zhang, Xiquan Zhang and Qinghua Nie
Animals 2022, 12(12), 1531; https://doi.org/10.3390/ani12121531 - 13 Jun 2022
Cited by 3 | Viewed by 3465
Abstract
Poultry plays an important role in the meat consumer market and is significant to further understanding the potential mechanism of muscle development in the broiler. Bone marrow-derived mesenchymal stem cells (BM-MSCs) can provide critical insight into muscle development due to their multi-lineage differentiation [...] Read more.
Poultry plays an important role in the meat consumer market and is significant to further understanding the potential mechanism of muscle development in the broiler. Bone marrow-derived mesenchymal stem cells (BM-MSCs) can provide critical insight into muscle development due to their multi-lineage differentiation potential. To our knowledge, chicken BM-MSCs demonstrate limited myogenic differentiation potential under the treatment with dexamethasone (DXMS) and hydrocortisone (HC). 5-azacytidine (5-Aza), a DNA demethylating agent, which has been widely used in the myogenic differentiation of BM-MSCs in other species. There is no previous report that applies 5-Aza to myogenic-induced differentiation of chicken BM-MSCs. In this study, we evaluated the myogenic determination and differentiation effect of BM-MSCs under different inductive agents. BM-MSCs showed better differentiation potential under the 5-Aza-treatment. Transcriptome sequence analysis identified 2402 differentially expressed DEGs including 28 muscle-related genes after 5-Aza-treatment. The DEGs were significantly enriched in Gene Ontology database terms, including in the cell plasma membrane, molecular binding, and cell cycle and differentiation. KEGG pathway analysis revealed that DEGs were enriched in myogenic differentiation-associated pathways containing the PI3K-Akt signaling pathway, the TGF-β signaling pathway, Arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, and hypertrophic cardiomyopathy, which suggested that BM-MSCs differentiated into a muscle-like phenotype under 5-Aza-treatment. Although BM-MSCs have not formed myotubes in our study, it is worthy of further study. In summary, our study lays the foundation for constructing a myogenic determination and differentiation model in chicken BM-MSCs. Full article
(This article belongs to the Special Issue Muscle Growth and Development in Farm Animals)
Show Figures

Figure 1

Back to TopTop