Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = hyperoxic lung injury

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1980 KiB  
Review
The Destructive Cycle in Bronchopulmonary Dysplasia: The Rationale for Systems Pharmacology Therapeutics
by Mia Teng, Tzong-Jin Wu, Kirkwood A. Pritchard, Billy W. Day, Stephen Naylor and Ru-Jeng Teng
Antioxidants 2025, 14(7), 844; https://doi.org/10.3390/antiox14070844 - 10 Jul 2025
Viewed by 527
Abstract
Bronchopulmonary dysplasia (BPD) remains a significant complication of premature birth and neonatal intensive care. While much is known about the drivers of lung injury, few studies have addressed the interrelationships between oxidative stress, inflammation, and downstream events, such as endoplasmic reticulum (ER) stress. [...] Read more.
Bronchopulmonary dysplasia (BPD) remains a significant complication of premature birth and neonatal intensive care. While much is known about the drivers of lung injury, few studies have addressed the interrelationships between oxidative stress, inflammation, and downstream events, such as endoplasmic reticulum (ER) stress. In this review, we explore the concept of a “destructive cycle” in which these drivers self-amplify to push the lung into a state of maladaptive repair. Animal models, primarily the hyperoxic rat pup model, support a sequential progression from the generation of reactive oxygen species (ROS) and inflammation to endoplasmic reticulum (ER) stress and mitochondrial injury. We highlight how these intersecting pathways offer not just therapeutic targets but also opportunities for interventions that reprogram system-wide responses. Accordingly, we explore the potential of systems pharmacology therapeutics (SPTs) to address the multifactorial nature of BPD. As a prototype SPT, we describe the development of N-acetyl-L-lysyl-L-tyrosyl-L-cysteine amide (KYC), a systems chemico-pharmacology drug (SCPD), which is selectively activated in inflamed tissues and modulates key nodal targets such as high-mobility group box-1 (HMGB1) and Kelch-like ECH-associated protein-1 (Keap1). Collectively, the data suggest that future therapies may require a coordinated, network-level approach to break the destructive cycle and enable proper regeneration rather than partial repair. Full article
(This article belongs to the Special Issue Oxidative Stress in the Newborn)
Show Figures

Figure 1

28 pages, 11496 KiB  
Review
Caffeine: The Story beyond Oxygen-Induced Lung and Brain Injury in Neonatal Animal Models—A Narrative Review
by Stefanie Endesfelder
Antioxidants 2024, 13(9), 1076; https://doi.org/10.3390/antiox13091076 - 3 Sep 2024
Cited by 4 | Viewed by 1994
Abstract
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic [...] Read more.
Caffeine is one of the most commonly used drugs in intensive care to stimulate the respiratory control mechanisms of very preterm infants. Respiratory instability, due to the degree of immaturity at birth, results in apnea of prematurity (AOP), hyperoxic, hypoxic, and intermittent hypoxic episodes. Oxidative stress cannot be avoided as a direct reaction and leads to neurological developmental deficits and even a higher prevalence of respiratory diseases in the further development of premature infants. Due to the proven antioxidant effect of caffeine in early use, largely protective effects on clinical outcomes can be observed. This is also impressively observed in experimental studies of caffeine application in oxidative stress-adapted rodent models of damage to the developing brain and lungs. However, caffeine shows undesirable effects outside these oxygen toxicity injury models. This review shows the effects of caffeine in hyperoxic, hypoxic/hypoxic-ischemic, and intermittent hypoxic rodent injury models, but also the negative effects on the rodent organism when caffeine is administered without exogenous oxidative stress. The narrative analysis of caffeine benefits in cerebral and pulmonary preterm infant models supports protective caffeine use but should be given critical consideration when considering caffeine treatment beyond the recommended corrected gestational age. Full article
Show Figures

Figure 1

12 pages, 2286 KiB  
Article
Genetic Ablation of Pyruvate Dehydrogenase Kinase Isoform 4 Gene Enhances Recovery from Hyperoxic Lung Injury: Insights into Antioxidant and Inflammatory Mechanisms
by Keisuke Watanabe, Akie Kato, Hiroyuki Adachi, Atsuko Noguchi, Hirokazu Arai, Masato Ito, Fumihiko Namba and Tsutomu Takahashi
Biomedicines 2024, 12(4), 746; https://doi.org/10.3390/biomedicines12040746 - 27 Mar 2024
Viewed by 1798
Abstract
Background: Pyruvate dehydrogenase kinase isoform 4 (PDK4) plays a pivotal role in the regulation of cellular proliferation and apoptosis. The objective of this study was to examine whether the genetic depletion of the PDK4 gene attenuates hyperoxia-induced lung injury in neonatal mice. Methods: [...] Read more.
Background: Pyruvate dehydrogenase kinase isoform 4 (PDK4) plays a pivotal role in the regulation of cellular proliferation and apoptosis. The objective of this study was to examine whether the genetic depletion of the PDK4 gene attenuates hyperoxia-induced lung injury in neonatal mice. Methods: Neonatal PDK4−/− mice and wild-type (WT) mice were exposed to oxygen concentrations of 21% (normoxia) and 95% (hyperoxia) for the first 4 days of life. Pulmonary histological assessments were performed, and the mRNA levels of lung PDK4, monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-6 were assessed. The levels of inflammatory cytokines in lung tissue were quantified. Results: Following convalescence from neonatal hyperoxia, PDK4−/− mice exhibited improved lung alveolarization. Notably, PDK4−/− mice displayed significantly elevated MCP-1 protein levels in pulmonary tissues following 4 days of hyperoxic exposure, whereas WT mice showed increased IL-6 protein levels under similar conditions. Furthermore, neonatal PDK4−/− mice subjected to hyperoxia demonstrated markedly higher MCP-1 mRNA expression at 4 days of age compared to WT mice, while IL-6 mRNA expression remained unaffected in PDK4−/− mice. Conclusions: Newborn PDK4−/− mice exhibited notable recovery from hyperoxia-induced lung injury, suggesting the potential protective role of PDK4 depletion in mitigating lung damage. Full article
Show Figures

Figure 1

11 pages, 1318 KiB  
Article
Mesenchymal Stem Cells Reduce the Extracellular Mitochondrial DNA-Mediated TLR9 Activation in Neonatal Hyperoxia-Induced Lung Injury
by Young Eun Kim, So Yoon Ahn, Se In Sung, Misun Yang, Dong Kyung Sung, Won Soon Park and Yun Sil Chang
Biomedicines 2024, 12(3), 686; https://doi.org/10.3390/biomedicines12030686 - 19 Mar 2024
Cited by 1 | Viewed by 1962
Abstract
Mitochondrial DNA (mtDNA) released from dead or injured cells can activate inflammation, and mesenchymal stem cell (MSC) transplantation can reduce inflammation and injury. However, it has not been tested whether the release of mtDNA can be reduced by MSC transplantation. We hypothesized that [...] Read more.
Mitochondrial DNA (mtDNA) released from dead or injured cells can activate inflammation, and mesenchymal stem cell (MSC) transplantation can reduce inflammation and injury. However, it has not been tested whether the release of mtDNA can be reduced by MSC transplantation. We hypothesized that the level of extracellular mtDNA would be increased after hyperoxia-induced lung injury but reduced after lung injury attenuation by MSC therapy in our newborn rat model. In an in vitro study using a rat lung epithelial L2 cell line, we found that the level of extracellular mtDNA was significantly increased with H2O2-induced cell death but reduced after MSC co-incubation. In an in vivo study, we confirmed that the levels of cell death, extracellular mtDNA, and inflammatory cytokines were significantly increased in hyperoxic newborn rat lungs but reduced after MSC transplantation. The levels of extracellular mtDNA were significantly and positively correlated with the levels of the inflammatory cytokines. The TLR9/MyD88/NF-κB pathway, which is activated by binding to mtDNA, was also significantly upregulated but downregulated after MSC transplantation. We found a significant positive correlation between inflammatory cytokines and extracellular mtDNA in intubated neonates. The levels of inflammatory cytokines and extracellular mtDNA changed over time in a similar pattern in transtracheal aspirate samples from intubated neonates. In conclusion, increased levels of extracellular mtDNA are associated with increased inflammation in hyperoxia-induced lung injury, and attenuation of lung inflammation by MSC therapy is associated with reduced levels of extracellular mtDNA. Full article
Show Figures

Figure 1

13 pages, 3086 KiB  
Article
Furin Regulates the Alveolarization of Neonatal Lungs in a Mouse Model of Hyperoxic Lung Injury
by Shin Kato, Osuke Iwata, Hiroyuki Kato, Satoko Fukaya, Yukari Imai and Shinji Saitoh
Biomolecules 2023, 13(11), 1656; https://doi.org/10.3390/biom13111656 - 16 Nov 2023
Cited by 1 | Viewed by 1735
Abstract
Despite advances in treatment options, such as corticosteroid administration and less invasive respiratory support, bronchopulmonary dysplasia (BPD) remains an important prognostic factor in preterm infants. We previously reported that furin regulates changes in lung smooth muscle cell phenotypes, suggesting that it plays a [...] Read more.
Despite advances in treatment options, such as corticosteroid administration and less invasive respiratory support, bronchopulmonary dysplasia (BPD) remains an important prognostic factor in preterm infants. We previously reported that furin regulates changes in lung smooth muscle cell phenotypes, suggesting that it plays a critical role in BPD pathogenesis. Therefore, in this study, we aimed to evaluate whether it regulates the alveolarization of immature lungs through activating alveolarization-driving proteins. We first examined furin expression levels, and its functions, using an established hyperoxia-induced BPD mouse model. Thereafter, we treated mice pups, as well as primary myofibroblast cell cultures, with furin inhibitors. Finally, we administered the hyperoxia-exposed mice pups with recombinant furin. Immunofluorescence revealed the co-expression of furin with alpha-smooth muscle actin. Hyperoxia exposure for 10 d decreased alveolar formation, as well as the expression of furin and its target, IGF-1R. Hexa-D-arginine administration also significantly inhibited alveolar formation. Another furin inhibitor, decanoyl-RVKR-chloromethylketone, accumulated pro-IGF-1R, and decreased IGF-1R phosphorylation in myofibroblast primary cultures. Finally, recombinant furin treatment significantly improved alveolarization in hyperoxia-exposed mice pups. Furin regulates alveolarization in immature lungs. Therefore, this study provides novel insights regarding the involvement of furin in BPD pathogenesis, and highlights a potential treatment target for ameliorating the impact of BPD. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

16 pages, 639 KiB  
Review
Pathogenesis of Bronchopulmonary Dysplasia: Role of Oxidative Stress from ‘Omics’ Studies
by Ashley Kimble, Mary E. Robbins and Marta Perez
Antioxidants 2022, 11(12), 2380; https://doi.org/10.3390/antiox11122380 - 1 Dec 2022
Cited by 27 | Viewed by 3681
Abstract
Bronchopulmonary dysplasia (BPD) remains the most common respiratory complication of prematurity as younger and smaller infants are surviving beyond the immediate neonatal period. The recognition that oxidative stress (OS) plays a key role in BPD pathogenesis has been widely accepted since at least [...] Read more.
Bronchopulmonary dysplasia (BPD) remains the most common respiratory complication of prematurity as younger and smaller infants are surviving beyond the immediate neonatal period. The recognition that oxidative stress (OS) plays a key role in BPD pathogenesis has been widely accepted since at least the 1980s. In this article, we examine the interplay between OS and genetic regulation and review ‘omics’ data related to OS in BPD. Data from animal models (largely models of hyperoxic lung injury) and from human studies are presented. Epigenetic and transcriptomic analyses have demonstrated several genes related to OS to be differentially expressed in murine models that mimic BPD as well as in premature infants at risk of BPD development and infants with established lung disease. Alterations in the genetic regulation of antioxidant enzymes is a common theme in these studies. Data from metabolomics and proteomics have also demonstrated the potential involvement of OS-related pathways in BPD. A limitation of many studies includes the difficulty of obtaining timely and appropriate samples from human patients. Additional ‘omics’ studies could further our understanding of the role of OS in BPD pathogenesis, which may prove beneficial for prevention and timely diagnosis, and aid in the development of targeted therapies. Full article
(This article belongs to the Special Issue Oxidative Stress and Gene Regulation)
Show Figures

Figure 1

22 pages, 1269 KiB  
Article
Effects of Hyperoxia and Hyperoxic Oscillations on the Proteome of Murine Lung Microvascular Endothelium
by Akos Tiboldi, Eva Hunyadi-Gulyas, Peter Wohlrab, Johannes A. Schmid, Klaus Markstaller, Klaus Ulrich Klein and Verena Tretter
Antioxidants 2022, 11(12), 2349; https://doi.org/10.3390/antiox11122349 - 28 Nov 2022
Cited by 2 | Viewed by 2382
Abstract
Patients presenting with insufficient tissue oxygenation and impaired lung function as in acute respiratory distress syndrome (ARDS) frequently require mechanical ventilation with supplemental oxygen. Despite the lung being used to experiencing the highest partial pressure of oxygen during healthy breathing, the organ is [...] Read more.
Patients presenting with insufficient tissue oxygenation and impaired lung function as in acute respiratory distress syndrome (ARDS) frequently require mechanical ventilation with supplemental oxygen. Despite the lung being used to experiencing the highest partial pressure of oxygen during healthy breathing, the organ is susceptible to oxygen-induced injury at supraphysiological concentrations. Hyperoxia-induced lung injury (HALI) has been regarded as a second hit to pre-existing lung injury and ventilator-induced lung injury (VILI) attributed to oxidative stress. The injured lung has a tendency to form atelectasis, a cyclic collapse and reopening of alveoli. The affected lung areas experience oxygen conditions that oscillate between hyperoxia and hypoxia rather than remaining in a constant hyperoxic state. Mechanisms of HALI have been investigated in many animal models previously. These studies provided insights into the effects of hyperoxia on the whole organism. However, cell type-specific responses have not been dissected in detail, but are necessary for a complete mechanistic understanding of ongoing pathological processes. In our study, we investigated the effects of constant and intermittent hyperoxia on the lung endothelium from a mouse by an in vitro proteomic approach. We demonstrate that these oxygen conditions have characteristic effects on the pulmonary endothelial proteome that underlie the physiological (patho)mechanisms. Full article
(This article belongs to the Special Issue Airway Inflammation Induced by Oxidative Stress)
Show Figures

Figure 1

15 pages, 2508 KiB  
Article
Mesenchymal Stem Cells and Formyl Peptide Receptor 2 Activity in Hyperoxia-Induced Lung Injury in Newborn Mice
by Young Eun Kim, So Yoon Ahn, Dong Kyung Sung, Yun Sil Chang and Won Soon Park
Int. J. Mol. Sci. 2022, 23(18), 10604; https://doi.org/10.3390/ijms231810604 - 13 Sep 2022
Cited by 3 | Viewed by 2489
Abstract
Formyl peptide receptor (FPR) 2 is known to play a critical role in regulating inflammation, including either the pro-inflammatory or pro-resolving effects. However, its role in neonatal hyperoxia-induced lung injury has not been delineated. In this study, we investigate whether mesenchymal stem cells [...] Read more.
Formyl peptide receptor (FPR) 2 is known to play a critical role in regulating inflammation, including either the pro-inflammatory or pro-resolving effects. However, its role in neonatal hyperoxia-induced lung injury has not been delineated. In this study, we investigate whether mesenchymal stem cells (MSCs) attenuate hyperoxia-induced neonatal lung injury by regulating FPR2 activity. We observed a significant increase in FPR2 levels in alveolar macrophages (RAW264.7 cells) after H2O2-induced stress, which decreased after MSC treatment. In the H2O2-induction model, increased levels of inflammatory cytokines (IL-1α and TNF-α) were significantly reduced in RAW264.7 cells after treatment with WRW4, an inhibitor of FPR2, or MSCs. Viability of lung epithelial cells and endothelial cells was significantly improved when cultured in the conditioned media of RAW264.7 cells treated with WRW4 or MSCs, compared to when cultured in the conditioned media of control RAW265.7 cells exposed to H2O2. For the in vivo study, wild-type and FPR2 knockout (FPR2−/−) C57/BL6 mouse pups were randomly exposed to 80% oxygen or room air from postnatal day (P) 1 to P14. At P5, 2 × 105 MSCs were transplanted intratracheally. MSCs reduced the elevated FPR2 activity at P7 and improved the decreased FPR2 activity as well as the increased immuno-stained FPR2 activity in alveolar macrophages in hyperoxic lungs at P14. Both FPR2−/− and MSCs similarly attenuated impaired alveolarization and angiogenesis, and increased apoptosis and inflammation of hyperoxic lungs without synergistic effects. Our findings suggest that the protective effects of MSCs in hyperoxic lung injury might be related to indirect modulation of FPR2 activity, at least of alveolar macrophages in neonatal mice. Full article
(This article belongs to the Special Issue Advance in Mesenchymal Stem Cells)
Show Figures

Figure 1

12 pages, 2047 KiB  
Article
Intratracheal Transplantation of Mesenchymal Stem Cells Attenuates Hyperoxia-Induced Microbial Dysbiosis in the Lungs, Brain, and Gut in Newborn Rats
by So Yoon Ahn, Dong Kyung Sung, Yun Sil Chang and Won Soon Park
Int. J. Mol. Sci. 2022, 23(12), 6601; https://doi.org/10.3390/ijms23126601 - 13 Jun 2022
Cited by 4 | Viewed by 2592
Abstract
We attempted to determine whether intratracheal (IT) transplantation of mesenchymal stem cells (MSCs) could simultaneously attenuate hyperoxia-induced lung injuries and microbial dysbiosis of the lungs, brain, and gut in newborn rats. Newborn rats were exposed to hyperoxia (90% oxygen) for 14 days. Human [...] Read more.
We attempted to determine whether intratracheal (IT) transplantation of mesenchymal stem cells (MSCs) could simultaneously attenuate hyperoxia-induced lung injuries and microbial dysbiosis of the lungs, brain, and gut in newborn rats. Newborn rats were exposed to hyperoxia (90% oxygen) for 14 days. Human umbilical cord blood-derived MSCs (5 × 105) were transplanted via the IT route on postnatal day (P) five. At P14, the lungs were harvested for histological, biochemical, and microbiome analyses. Bacterial 16S ribosomal RNA genes from the lungs, brain, and large intestine were amplified, pyrosequenced, and analyzed. IT transplantation of MSCs simultaneously attenuated hyperoxia-induced lung inflammation and the ensuing injuries, as well as the dysbiosis of the lungs, brain, and gut. In correlation analyses, lung interleukin-6 (IL-6) levels were significantly positively correlated with the abundance of Proteobacteria in the lungs, brain, and gut, and it was significantly inversely correlated with the abundance of Firmicutes in the gut and lungs and that of Bacteroidetes in the lungs. In conclusion, microbial dysbiosis in the lungs, brain, and gut does not cause but is caused by hyperoxic lung inflammation and ensuing injuries, and IT transplantation of MSCs attenuates dysbiosis in the lungs, brain, and gut, primarily by their anti-oxidative and anti-inflammatory effects. Full article
(This article belongs to the Special Issue Advance in Mesenchymal Stem Cells)
Show Figures

Figure 1

16 pages, 2559 KiB  
Article
HLA-A2 Promotes the Therapeutic Effect of Umbilical Cord Blood-Derived Mesenchymal Stem Cells in Hyperoxic Lung Injury
by Jihye Kwak, Wankyu Choi, Yunkyung Bae, Miyeon Kim, Soojin Choi, Wonil Oh and Hyejin Jin
Bioengineering 2022, 9(4), 177; https://doi.org/10.3390/bioengineering9040177 - 18 Apr 2022
Cited by 1 | Viewed by 3274
Abstract
Mesenchymal stem cells (MSCs) are one of the most extensively studied stem cell types owing to their capacity for differentiation into multiple lineages as well as their ability to secrete regenerative factors and modulate immune functions. However, issues remain regarding their further application [...] Read more.
Mesenchymal stem cells (MSCs) are one of the most extensively studied stem cell types owing to their capacity for differentiation into multiple lineages as well as their ability to secrete regenerative factors and modulate immune functions. However, issues remain regarding their further application for cell therapy. Here, to demonstrate the superiority of the improvement of MSCs, we divided umbilical cord blood-derived MSCs (UCB-MSCs) from 15 donors into two groups based on efficacy and revealed donor-dependent variations in the anti-inflammatory effect of MSCs on macrophages as well as their immunoregulatory effect on T cells. Through surface marker analyses (242 antibodies), we found that HLA-A2 was positively related to the anti-inflammatory and immunoregulatory function of MSCs. Additionally, HLA-A2 mRNA silencing in MSCs attenuated their therapeutic effects in vitro; namely, the suppression of LPS-stimulated macrophages and phytohemagglutinin-stimulated T cells. Moreover, HLA-A2 silencing in MSCs significantly decreased their therapeutic effects in a rat model of hyperoxic lung damage. The present study provides novel insights into the quality control of donor-derived MSCs for the treatment of inflammatory conditions and diseases. Full article
(This article belongs to the Special Issue Mesenchymal Stem Cells in Regenerative Medicine)
Show Figures

Figure 1

15 pages, 3085 KiB  
Article
Endothelial Adenosine Monophosphate-Activated Protein Kinase-Alpha1 Deficiency Potentiates Hyperoxia-Induced Experimental Bronchopulmonary Dysplasia and Pulmonary Hypertension
by Ahmed Elsaie, Renuka T. Menon, Amrit K. Shrestha, Sharada H. Gowda, Nidhy P. Varghese, Roberto J. Barrios, Cynthia L. Blanco, Girija G. Konduri and Binoy Shivanna
Antioxidants 2021, 10(12), 1913; https://doi.org/10.3390/antiox10121913 - 29 Nov 2021
Cited by 10 | Viewed by 2813
Abstract
Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung [...] Read more.
Bronchopulmonary dysplasia and pulmonary hypertension, or BPD-PH, are serious chronic lung disorders of prematurity, without curative therapies. Hyperoxia, a known causative factor of BPD-PH, activates adenosine monophosphate-activated protein kinase (AMPK) α1 in neonatal murine lungs; however, whether this phenomenon potentiates or mitigates lung injury is unclear. Thus, we hypothesized that (1) endothelial AMPKα1 is necessary to protect neonatal mice against hyperoxia-induced BPD-PH, and (2) AMPKα1 knockdown decreases angiogenesis in hyperoxia-exposed neonatal human pulmonary microvascular endothelial cells (HPMECs). We performed lung morphometric and echocardiographic studies on postnatal day (P) 28 on endothelial AMPKα1-sufficient and -deficient mice exposed to 21% O2 (normoxia) or 70% O2 (hyperoxia) from P1–P14. We also performed tubule formation assays on control- or AMPKα1-siRNA transfected HPMECs, exposed to 21% O2 or 70% O2 for 48 h. Hyperoxia-mediated alveolar and pulmonary vascular simplification, pulmonary vascular remodeling, and PH were significantly amplified in endothelial AMPKα1-deficient mice. AMPKα1 siRNA knocked down AMPKα1 expression in HPMECs, and decreased their ability to form tubules in normoxia and hyperoxia. Furthermore, AMPKα1 knockdown decreased proliferating cell nuclear antigen expression in hyperoxic conditions. Our results indicate that AMPKα1 is required to reduce hyperoxia-induced BPD-PH burden in neonatal mice, and promotes angiogenesis in HPMECs to limit lung injury. Full article
(This article belongs to the Special Issue Oxidative Stress in Newborns and Children)
Show Figures

Figure 1

13 pages, 319 KiB  
Review
Supplemental Oxygen in the Newborn: Historical Perspective and Current Trends
by Maxwell Mathias, Jill Chang, Marta Perez and Ola Saugstad
Antioxidants 2021, 10(12), 1879; https://doi.org/10.3390/antiox10121879 - 25 Nov 2021
Cited by 26 | Viewed by 4386
Abstract
Oxygen is the final electron acceptor in aerobic respiration, and a lack of oxygen can result in bioenergetic failure and cell death. Thus, administration of supplemental concentrations of oxygen to overcome barriers to tissue oxygen delivery (e.g., heart failure, lung disease, ischemia), can [...] Read more.
Oxygen is the final electron acceptor in aerobic respiration, and a lack of oxygen can result in bioenergetic failure and cell death. Thus, administration of supplemental concentrations of oxygen to overcome barriers to tissue oxygen delivery (e.g., heart failure, lung disease, ischemia), can rescue dying cells where cellular oxygen content is low. However, the balance of oxygen delivery and oxygen consumption relies on tightly controlled oxygen gradients and compartmentalized redox potential. While therapeutic oxygen delivery can be life-saving, it can disrupt growth and development, impair bioenergetic function, and induce inflammation. Newborns, and premature newborns especially, have features that confer particular susceptibility to hyperoxic injury due to oxidative stress. In this review, we will describe the unique features of newborn redox physiology and antioxidant defenses, the history of therapeutic oxygen use in this population and its role in disease, and clinical trends in the use of therapeutic oxygen and mitigation of neonatal oxidative injury. Full article
28 pages, 5696 KiB  
Article
Murine Neonatal Oxidant Lung Injury: NRF2-Dependent Predisposition to Adulthood Respiratory Viral Infection and Protection by Maternal Antioxidant
by Hye-Youn Cho, Laura Miller-DeGraff, Ligon A. Perrow, Wesley Gladwell, Vijayalakshmi Panduri, Fred B. Lih and Steven R. Kleeberger
Antioxidants 2021, 10(12), 1874; https://doi.org/10.3390/antiox10121874 - 24 Nov 2021
Cited by 6 | Viewed by 2944
Abstract
NRF2 protects against oxidant-associated airway disorders via cytoprotective gene induction. To examine if NRF2 is an important determinant of respiratory syncytial virus (RSV) susceptibility after neonate lung injury, Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice neonatally exposed [...] Read more.
NRF2 protects against oxidant-associated airway disorders via cytoprotective gene induction. To examine if NRF2 is an important determinant of respiratory syncytial virus (RSV) susceptibility after neonate lung injury, Nrf2-deficient (Nrf2−/−) and wild-type (Nrf2+/+) mice neonatally exposed to hyperoxia were infected with RSV. To investigate the prenatal antioxidant effect on neonatal oxidative lung injury, time-pregnant Nrf2−/− and Nrf2+/+ mice were given an oral NRF2 agonist (sulforaphane) on embryonic days 11.5–17.5, and offspring were exposed to hyperoxia. Bronchoalveolar lavage and histopathologic analyses determined lung injury. cDNA microarray analyses were performed on placenta and neonatal lungs. RSV-induced pulmonary inflammation, injury, oxidation, and virus load were heightened in hyperoxia-exposed mice, and injury was more severe in hyperoxia-susceptible Nrf2−/− mice than in Nrf2+/+ mice. Maternal sulforaphane significantly alleviated hyperoxic lung injury in both neonate genotypes with more marked attenuation of severe neutrophilia, edema, oxidation, and alveolarization arrest in Nrf2−/− mice. Prenatal sulforaphane altered different genes with similar defensive functions (e.g., inhibition of cell/perinatal death and inflammation, potentiation of angiogenesis/organ development) in both strains, indicating compensatory transcriptome changes in Nrf2−/− mice. Conclusively, oxidative injury in underdeveloped lungs NRF2-dependently predisposed RSV susceptibility. In utero sulforaphane intervention suggested NRF2-dependent and -independent pulmonary protection mechanisms against early-life oxidant injury. Full article
(This article belongs to the Special Issue NRF2 in Health and Diseases)
Show Figures

Figure 1

19 pages, 3939 KiB  
Article
Intermittent Hypoxia-Hyperoxia and Oxidative Stress in Developing Human Airway Smooth Muscle
by Colleen M. Bartman, Daniel Wasim Awari, Christina M. Pabelick and Y. S. Prakash
Antioxidants 2021, 10(9), 1400; https://doi.org/10.3390/antiox10091400 - 31 Aug 2021
Cited by 12 | Viewed by 3380
Abstract
Premature infants are frequently and intermittently administered supplemental oxygen during hypoxic episodes, resulting in cycles of intermittent hypoxia and hyperoxia. The relatively hypoxic in utero environment is important for lung development while hyperoxia during the neonatal period is recognized as detrimental towards the [...] Read more.
Premature infants are frequently and intermittently administered supplemental oxygen during hypoxic episodes, resulting in cycles of intermittent hypoxia and hyperoxia. The relatively hypoxic in utero environment is important for lung development while hyperoxia during the neonatal period is recognized as detrimental towards the development of diseases such as bronchopulmonary dysplasia and bronchial asthma. Understanding early mechanisms that link hypoxic, hyperoxic, and intermittent hypoxic-hyperoxic exposures to altered airway structure and function are key to developing advanced therapeutic approaches in the clinic. Changes in oxygen availability can be detrimental to cellular function and contribute to oxidative damage. Here, we sought to determine the effect of oxygen on mitochondria in human fetal airway smooth muscle cells exposed to either 5% O2, 21% O2, 40% O2, or cycles of 5% and 40% O2 (intermittent hypoxia-hyperoxia). Reactive oxygen species production, altered mitochondrial morphology, and changes in mitochondrial respiration were assessed in the context of the antioxidant N-acetylcysteine. Our findings show developing airway smooth muscle is differentially responsive to hypoxic, hyperoxic, or intermittent hypoxic-hyperoxic exposure in terms of mitochondrial structure and function. Cycling O2 decreased mitochondrial branching and branch length similar to hypoxia and hyperoxia in the presence of antioxidants. Additionally, hypoxia decreased overall mitochondrial respiration while the addition of antioxidants increased respiration in normoxic and O2-cycling conditions. These studies show the necessity of balancing oxidative damage and antioxidant defense systems in the developing airway. Full article
(This article belongs to the Special Issue Antioxidants and Lung Diseases)
Show Figures

Figure 1

13 pages, 3914 KiB  
Article
Neonatal Extracellular Superoxide Dismutase Knockout Mice Increase Total Superoxide Dismutase Activity and VEGF Expression after Chronic Hyperoxia
by Maxwell Mathias, Joann Taylor, Elizabeth Mendralla and Marta Perez
Antioxidants 2021, 10(8), 1236; https://doi.org/10.3390/antiox10081236 - 1 Aug 2021
Cited by 5 | Viewed by 3422
Abstract
Bronchopulmonary dysplasia (BPD) is a common lung disease affecting premature infants that develops after exposure to supplemental oxygen and reactive oxygen intermediates. Extracellular superoxide dismutase (SOD3) is an enzyme that processes superoxide radicals and has been shown to facilitate vascular endothelial growth factor [...] Read more.
Bronchopulmonary dysplasia (BPD) is a common lung disease affecting premature infants that develops after exposure to supplemental oxygen and reactive oxygen intermediates. Extracellular superoxide dismutase (SOD3) is an enzyme that processes superoxide radicals and has been shown to facilitate vascular endothelial growth factor (VEGF) and nitric oxide (NO) signaling in vascular endothelium. We utilized a mouse model of neonatal hyperoxic lung injury and SOD3 knockout (KO) mice to evaluate its function during chronic hyperoxia exposure. Wild-type age-matched neonatal C57Bl/6 (WT) and SOD3−/− (KO) mice were placed in normoxia (21% FiO2, RA) or chronic hyperoxia (75% FiO2, O2) within 24 h of birth for 14 days continuously and then euthanized. Lungs were harvested for histologic evaluation, as well as comparison of antioxidant enzyme expression, SOD activity, VEGF expression, and portions of the NO signaling pathway. Surprisingly, KO-O2 mice survived without additional alveolar simplification, microvascular remodeling, or nuclear oxidation when compared to WT-O2 mice. KO-O2 mice had increased total SOD activity and increased VEGF expression when compared to WT-O2 mice. No genotype differences were noted in intracellular antioxidant enzyme expression or the NO signaling pathway. These results demonstrate that SOD3 KO mice can survive prolonged hyperoxia without exacerbation of alveolar or vascular phenotype. Full article
(This article belongs to the Special Issue Antioxidants and Lung Diseases)
Show Figures

Figure 1

Back to TopTop