Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = hydrophobicity index

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1579 KB  
Article
Sequence Permutation Generated Lysine and Tryptophan-Rich Antimicrobial Peptides with Enhanced Therapeutic Index
by Kuang-Li Peng, Yu-Hsuan Wu, Hsuan-Che Hsu and Jya-Wei Cheng
Antibiotics 2025, 14(11), 1077; https://doi.org/10.3390/antibiotics14111077 - 26 Oct 2025
Viewed by 478
Abstract
Background/Objectives: Antimicrobial peptides (AMPs) are promising therapeutic agents due to their broad-spectrum activity against bacteria, viruses, and fungi. Unlike traditional antibiotics, AMPs target microbial membranes directly and are less likely to induce resistance. They also possess immunomodulatory and wound-healing properties. However, clinical application [...] Read more.
Background/Objectives: Antimicrobial peptides (AMPs) are promising therapeutic agents due to their broad-spectrum activity against bacteria, viruses, and fungi. Unlike traditional antibiotics, AMPs target microbial membranes directly and are less likely to induce resistance. They also possess immunomodulatory and wound-healing properties. However, clinical application remains limited by factors such as salt sensitivity, low bioavailability, and poor stability. To address these challenges, researchers have turned to structural optimization strategies. Recently, artificial intelligence (AI) has facilitated peptide drug design by rapidly screening large peptide libraries. Still, AI struggles to predict how subtle sequence changes affect peptide structure and function. Traditional sequence permutation offers a complementary approach by analyzing structural and functional effects without altering amino acid composition. Methods: In this study, we applied a clockwise sequence permutation strategy to the AMP W5K/A9W, generating derivative peptides with identical molecular weight, net charge, and hydrophobicity. We aimed to investigate how lysine and tryptophan distribution affects antimicrobial activity, membrane permeability, and selectivity. We assessed the secondary structures using circular dichroism (CD) spectroscopy and evaluated in vitro antimicrobial activity, salt resistance, membrane-permeabilizing ability, hemolysis, and wound healing effects. Results: The results revealed that the sequence arrangement of key residues significantly impacts peptide bioactivity and therapeutic index. Conclusions: This study highlights the importance of sequence order in determining AMP function. It also supports integrating permutation strategies with AI-based design to enhance AMP discovery. Together, these approaches offer new opportunities to combat drug-resistant pathogens and advance next-generation anti-infective therapies. Full article
Show Figures

Graphical abstract

19 pages, 11841 KB  
Article
Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles
by Yu Song, Xueli Shen, Gangyue Zhou, Xia Xu, Yanan Cao, Wei Li, Yichen Hu, Jianglin Zhao, Dingtao Wu, Zunxi Huang and Liang Zou
Foods 2025, 14(19), 3429; https://doi.org/10.3390/foods14193429 - 5 Oct 2025
Viewed by 718
Abstract
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with [...] Read more.
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with 1.0% (w/v) TBP and 0.2% (w/v) SA, the zeta potential of the prepared TBP–SA composite particles was significantly more negative, and the particle size was significantly larger, than those of TBP, while emulsifying activity index and emulsifying stability index increased to 53.76 m2/g and 78.78%, respectively. Scanning electron microscopy confirmed the formation of a dense network structure; differential scanning calorimetry revealed a thermal denaturation temperature of 83 °C. Fourier transform infrared spectroscopy and surface hydrophobicity results indicated that the complex was formed primarily through hydrogen bonding and hydrophobic interactions between TBP and SA, which induced conformational changes in the protein. The Pickering emulsion prepared with 5% (w/v) TBP–SA composite particles and 60% (φ) oil phase was stable during 4-month storage, at a high temperature of 75 °C, high salt conditions of 600 mM, and pH of 3.0–9.0. The stabilization mechanisms may involve: (1) strong electrostatic repulsion provided by the highly negative zeta potential; (2) steric hindrance and mechanical strength imparted by the dense interfacial network; and (3) restriction of droplet mobility due to SA-induced gelation. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Graphical abstract

17 pages, 987 KB  
Article
Bioemulsifier Produced by Aspergillus niger UCP 1064 Isolated from Caatinga Soil as a Promising Molecule for Scaled-Up Pharmaceutical Applications
by Uiara Maria de Barros Lira Lins, Rosileide Fontenele da Silva Andrade and Galba Maria de Campos-Takaki
Fermentation 2025, 11(10), 562; https://doi.org/10.3390/fermentation11100562 - 29 Sep 2025
Viewed by 577
Abstract
This study presents the production, characterization, and potential pharmaceutical application of a bioemulsifier synthesized by Aspergillus niger UCP 1064 by submerged fermentation using agro-industrial residues (cassava wastewater and soluble starch). The compound exhibited a high emulsification index (EI24 > 88%) against hydrophobic [...] Read more.
This study presents the production, characterization, and potential pharmaceutical application of a bioemulsifier synthesized by Aspergillus niger UCP 1064 by submerged fermentation using agro-industrial residues (cassava wastewater and soluble starch). The compound exhibited a high emulsification index (EI24 > 88%) against hydrophobic substrates, effectively reduced surface tension, and remained stable across a wide range of pH (2–12), temperatures (5–100 °C), and salinity levels (0–20% NaCl). Microscopic analysis confirmed the formation of stable oil-in-water (O/W) emulsions, while biochemical tests identified the compound as a glycolipoprotein. Rheological assays demonstrated a significant reduction in oil viscosity, enhancing fluidity. Through factorial design and response surface methodology, production conditions were optimized, achieving yields of up to 3.18 g/L. A theoretical scale-up indicated technical feasibility for pharmaceutical applications; however, challenges such as process reproducibility, sterility, and regulatory compliance persist. These findings highlight the bioemulsifier’s potential as a sustainable and biocompatible alternative for drug delivery systems. Full article
(This article belongs to the Special Issue Scale-Up Challenges in Microbial Fermentation)
Show Figures

Figure 1

19 pages, 3228 KB  
Article
Towards Designing Green-Inspired Nano- and Microemulsions Alongside Novel Solvatochromic Probes as an Effective Tool in Delivery Issues
by Aleksandra Szarwaryn, Wojciech Bartkowiak, Tomasz K. Olszewski and Urszula Bazylińska
Int. J. Mol. Sci. 2025, 26(18), 9259; https://doi.org/10.3390/ijms26189259 - 22 Sep 2025
Viewed by 508
Abstract
The extensive use of submicron emulsion systems, particularly those stabilized by nonionic surfactants, with their proven effectiveness and safety profile, provides a reassuring foundation for our research. Consequently, we designed and engineered new submicron emulsion formulations stabilized with a biocompatible surfactant polyoxyethylated cocoamine, [...] Read more.
The extensive use of submicron emulsion systems, particularly those stabilized by nonionic surfactants, with their proven effectiveness and safety profile, provides a reassuring foundation for our research. Consequently, we designed and engineered new submicron emulsion formulations stabilized with a biocompatible surfactant polyoxyethylated cocoamine, whose nonionic character is due to a high degree of polyoxyethylation. We chose oleic acid as the oil phase, a fatty acid known for its beneficial properties. This led to novel biocompatible nanoemulsions with high stability and cosurfactant-free microemulsions. The dynamic light scattering studies confirmed that both formulations have a nanometric size and low polydispersity index values. Moreover, transmission electron microscopy verified the nanodroplets’ morphological homogeneity and spherical shape. The resulting nanoplatforms can be applied to carry bioactive agents in the pharmaceutical and cosmetic fields. For this reason, we solubilized newly synthesized 5-dimethylamino-5′-nitro-2,2′-bithiophene as a model hydrophobic cargo for delivering poorly water-soluble compounds. This dye was chosen due to its strong solvatochromic behavior and suitability for micropolarity analysis via UV–Vis spectroscopy. We also present a simple method for rapid micropolarity screening to assess the type of nanodispersion via solvatochromic shift as an alternative procedure for evaluating of the oils used to fabricate nanoformulations for pharmaceutical and cosmetic purposes. Full article
(This article belongs to the Special Issue Surfactants: Design, Synthesis and Application)
Show Figures

Graphical abstract

25 pages, 9489 KB  
Article
Moringa (Moringa oleifera) Leaf Attenuates the High-Cholesterol Diet-Induced Adverse Events in Zebrafish: A 12-Week Dietary Intervention Resulted in an Anti-Obese Effect and Blood Lipid-Lowering Properties
by Kyung-Hyun Cho, Ashutosh Bahuguna, Yunki Lee, Ji-Eun Kim, Sang Hyuk Lee and Krismala Djayanti
Pharmaceuticals 2025, 18(9), 1336; https://doi.org/10.3390/ph18091336 - 5 Sep 2025
Viewed by 2159
Abstract
Objective: The study investigates the dietary effects of Moringa oleifera leaf powder on obesity, blood biochemical parameters, and organ health in hyperlipidemic zebrafish (Danio rerio). Methodology: Adult hyperlipidemic zebrafish (n = 56/group) were fed for 12 weeks either with a [...] Read more.
Objective: The study investigates the dietary effects of Moringa oleifera leaf powder on obesity, blood biochemical parameters, and organ health in hyperlipidemic zebrafish (Danio rerio). Methodology: Adult hyperlipidemic zebrafish (n = 56/group) were fed for 12 weeks either with a high-cholesterol diet (HCD, 4% w/w) or HCD supplemented with 0.5% (w/w) M. oleifera leaf powder (0.5% MO) or HCD with 1.0% (w/w) M. oleifera leaf powder (1.0% MO). At different time points (0 to 12 weeks), the survivability and body weight (BW) of zebrafish were measured, while various biochemical and histological evaluations were performed after 12 weeks of feeding the respective diets. Additionally, an in silico approach was used to assess the binding interactions of MO phytoconstituents with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Results: Following 12-week supplementation, higher zebrafish survivability was observed in the MO-supplemented groups compared to the survivability of the HCD group. Relative to the initial BW, only 4% BW enhancement was observed post 12 weeks of dietary intake of 1.0% MO, in contrast to 27% BW gain in the HCD group. MO supplementation at both (0.5% and 1.0%) effectively mitigates the HCD-induced dyslipidemia and significantly minimizes the atherogenic coefficient and atherogenic index. Similarly, MO reduces elevated blood glucose levels, the ALT/AST ratio, and augments ferric ion reduction (FRA) and paraoxonase (PON) activity in a dose-dependent manner. Likewise, MO (particularly at 1.0%) effectively restrained HCD-induced steatosis, hepatic interleukin (IL)-6 production, and protected the kidneys, testes, and ovaries from oxidative stress and cellular senescence. The in silico findings underscore that the six phytoconstituents (chlorogenic acid, isoquercetin, kaempferol 3-O-rutinoside, astragalin, apigetrin, and myricetin) of MO exhibited a strong interaction with HMG-CoA reductase active and binding site residues via hydrogen and hydrophobic interactions. Conclusions: The findings demonstrated an antioxidant, anti-inflammatory, and hypoglycemic effect of MO, guiding the events to prevent HCD-induced metabolic stress and safeguard vital organs. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Obesity, 2nd Edition)
Show Figures

Graphical abstract

26 pages, 3958 KB  
Article
Nebulized Bacterioruberin/Astaxanthin-Loaded Nanovesicles: Antitumoral Activity and Beyond
by Victoria Rebeca Dana González Epelboim, Diego G. Lamas, Cristián Huck-Iriart, Ezequiel Nicolas Caputo, Maria Julia Altube, Horacio Emanuel Jerez, Yamila Roxana Simioni, Kajal Ghosal, Maria Jose Morilla, Leticia Herminia Higa and Eder Lilia Romero
Int. J. Mol. Sci. 2025, 26(17), 8607; https://doi.org/10.3390/ijms26178607 - 4 Sep 2025
Viewed by 807
Abstract
The membranes of halophilic archaea are a source of novel biomaterials, mainly of isoprenoid nature, with therapeutic properties practically unraveled. Here, we explored the antitumoral activity of neutral archaeolipids (NAs, such as bacterioruberin, astaxanthin, and dihydrosqualene) present in the total archaeolipids (TAs) (a [...] Read more.
The membranes of halophilic archaea are a source of novel biomaterials, mainly of isoprenoid nature, with therapeutic properties practically unraveled. Here, we explored the antitumoral activity of neutral archaeolipids (NAs, such as bacterioruberin, astaxanthin, and dihydrosqualene) present in the total archaeolipids (TAs) (a fraction from the first step of lipid extraction by the modified Blight and Dyer technique) extracted from halophilic archaea Halorubrum tebenquichense, and formulated as TA-nanoarchaeosomes (TA: polar archaeolipids (PAs): Tween 80, 5:5:4 w:w:w, TA-nanoARC). The structure of 300.3 ± 84.2 nm TA-nanoARC of 0.59 ± 0.12 polydispersity index and −20 ± 3.7 mV ζ potential as determined by SAXS modelling, revealed that NA reduced the hydrophobic core and enlarged its hydrophilic section in comparison to TA-lacking bilayers (nanoARC), while preserving the width (~50 Å) and unilamellarity. Stable to storage and nebulization, TA-nanoARC was cytotoxic on A549 cells after 48 h, with an IC50 expressed as [bacterioruberin] of 0.15 μg/mL (~0.20 µM), comparable to or lower than the IC50 of docetaxel or cisplatin. Such cytotoxicity was exerted at a concentration harmless to macrophages (mTHP-1 cells). Besides, the conditioned medium from TA-nanoARC nebulized on A549 cells reduced the expression of the CD204/SRA-1, an M2 phenotype marker, and induced pro-inflammatory activity, comparable to or to a greater extent than that induced by lipopolysaccharide, including IL-6 and TNF-α, in mTHP-1 as a model of tumor-associated macrophages. The endocytosis of TA-nanoARC by A549 cells induced Lysotracker red fluorescence to fade and blur. This suggested the internalization of the highly viscous and ordered TA-nanoARC rich in NAs and subsequent lysosomal dysfunction (and not its antioxidant activity), as responsible for the selective damage on A549 cells. These are the first results showing that nebulized TA-nanoARC, lethal to A549 cells and modulating mTHP-1 cell phenotype, may act as antitumorals in the absence of cytotoxic drugs. Full article
Show Figures

Graphical abstract

16 pages, 4161 KB  
Article
New Eutectic Solvent Based on bis(2,4,4-trimethylpentyl)phosphinic Acid, Tributyl Phosphate and Phenol for the Extraction of Trivalent Rare-Earth Elements from Nitrate Solutions
by Tatiana Yu. Chikineva, Inna V. Zinov’eva, Sofya A. Yakovleva, Yulia A. Zakhodyaeva and Andrey A. Voshkin
Processes 2025, 13(9), 2830; https://doi.org/10.3390/pr13092830 - 3 Sep 2025
Viewed by 659
Abstract
A pressing scientific task is the development of modern extractants that meet the increased requirements for efficiency and safety. In this work, a new three-component eutectic solvent based on bis(2,4,4-trimethylpentyl)phosphinic acid (BTMPPA), tributyl phosphate (TBP) and phenol was proposed. The formation of the [...] Read more.
A pressing scientific task is the development of modern extractants that meet the increased requirements for efficiency and safety. In this work, a new three-component eutectic solvent based on bis(2,4,4-trimethylpentyl)phosphinic acid (BTMPPA), tributyl phosphate (TBP) and phenol was proposed. The formation of the eutectic solvent was confirmed by IR and 31P NMR spectroscopy. The temperature dependences of the main physical properties of the proposed eutectic solvent—the refractive index, density and viscosity—were determined. For the first time, the extraction properties of the eutectic solvent BTMPPA/TBP/phenol (1:1:2) were studied using the example of the extraction of metal ions from aqueous nitrate solutions. The extraction efficiencies of Pr, Nd and Dy in a single stage were 34, 38 and 81%, respectively. The extraction behaviour of Pr, Nd and Dy with the eutectic solvent BTMPPA/TBP/phenol was studied as a function of pH, salting-out agent concentration, component ratio in the eutectic mixture, phase volume ratio, etc. Nitric acid with a concentration of 0.5 mol/L was chosen as a stripping agent, and the chemical stability of the eutectic solvent BTMPPA/TBP/phenol during extraction–stripping cycles was evaluated. In summary, the proposed hydrophobic eutectic solvent has good physical characteristics and enables a more efficient recovery of rare-earth elements from nitrate solutions. Full article
(This article belongs to the Special Issue Green Chemistry: From Wastes to Value-Added Products (2nd Edition))
Show Figures

Figure 1

23 pages, 2543 KB  
Article
Potential of Compost-Derived Actinomycetes for Low-Density Polyethylene Degradation
by Elżbieta Szczyrba, Tetiana Pokynbroda, Agnieszka Gąszczak, Nataliia Koretska, Stepan Tistechok, Ivan Roman and Oleksandr Gromyko
Polymers 2025, 17(17), 2318; https://doi.org/10.3390/polym17172318 - 27 Aug 2025
Viewed by 824
Abstract
The growing concern over the long-term persistence of plastic waste has driven research into biological methods of breaking down polymers. This study investigated a process that combines physicochemical pretreatment and biodegradation of low-density polyethylene (LDPE) using bacterial strains isolated from commercial compost. Four [...] Read more.
The growing concern over the long-term persistence of plastic waste has driven research into biological methods of breaking down polymers. This study investigated a process that combines physicochemical pretreatment and biodegradation of low-density polyethylene (LDPE) using bacterial strains isolated from commercial compost. Four bacterial strains were genetically identified and classified as Actinomycetes. Exposure of LDPE to these selected strains resulted in a measurable reduction in polymer sample weight, accompanied by alterations in surface hydrophobicity. Furthermore, the chemical modifications at the films’ surfaces were confirmed by the spectra obtained by Fourier transform infrared spectroscopy (FTIR). The microbial colonisation of plastic surfaces plays a key role in the overall biodegradation process. The formation of a biofilm and the subsequent morphological changes on the LDPE surface were revealed by scanning electron microscopy (SEM). The modification of the polyethylene surface by nitric acid treatment was found to be a promising strategy for enhancing the LDPE degradation. The acid-treated films exhibited the greatest weight loss, the greatest increase in carbonyl index values, and the greatest change in hydrophobicity following microbial exposure. Moreover, it was found that biodegradation under these conditions resulted in the lowest levels of phytotoxic byproducts. The transformation of polyethylene surface properties—from hydrophobic to hydrophilic—combined with the presence of oxidized functional groups made it easier for microorganisms to degrade LDPE. Full article
(This article belongs to the Special Issue Degradation of Plastics)
Show Figures

Graphical abstract

18 pages, 5424 KB  
Article
Preparation and Characterization of Highland Barley Distillers’ Grains Gliadin–Chitosan Nanoparticles and Composite Properties
by Qian Lv and Yiquan Zhang
Molecules 2025, 30(16), 3390; https://doi.org/10.3390/molecules30163390 - 15 Aug 2025
Viewed by 618
Abstract
In embedding systems, protein–polysaccharide complexes can be utilized as wall materials to improve the bioavailability and activity of bioactive substances during delivery. This study used the antisolvent precipitation method to manufacture gliadin from highland barley distillers’ grains (HBDGG)–chitosan (Cs) nanoparticles. Using a variety [...] Read more.
In embedding systems, protein–polysaccharide complexes can be utilized as wall materials to improve the bioavailability and activity of bioactive substances during delivery. This study used the antisolvent precipitation method to manufacture gliadin from highland barley distillers’ grains (HBDGG)–chitosan (Cs) nanoparticles. Using a variety of characterization techniques, the microstructure and interaction mechanism of HBDGG-Cs nanoparticles were examined, and their stability was assessed. In comparison to HBDGG, the results indicated that the addition of Cs enhanced the intensity of UV absorption and reduced the intensity of fluorescence. The content of α-helix dropped, while β-sheet, β-turn, and irregularly coiled content rose in the complexes. Hydrogen bonding, hydrophobic interactions, and electrostatic interactions were the primary forces that formed the nanoparticles. The contact force between HBDGG and Cs enhanced the stability of the nanoparticles. The particle size, polydispersity index (PDI), and zeta potential were 526.10 ± 11.78 nm, 0.20 ± 0.06, and 51.31 ± 0.66 mV, respectively, at a mass ratio of 1:1 between HBDGG and Cs. The nanoparticles exhibited good ionic, acid-base, and storage stability in addition to being widely distributed. This work offers a theoretical foundation for employing HBDGG-Cs nanoparticles to deliver bioactive components in food as well as a novel method for the comprehensive usage of HBDGG and Cs. Full article
Show Figures

Graphical abstract

20 pages, 4980 KB  
Article
Quinoa Protein/Sodium Alginate Complex-Stabilized Pickering Emulsion for Sustained Release of Curcumin and Enhanced Anticancer Activity Against HeLa Cells
by Yiqun Zhu, Jianan Li, Shuhong Liu, Hongli Yang, Fei Lu and Minpeng Zhu
Foods 2025, 14(15), 2705; https://doi.org/10.3390/foods14152705 - 1 Aug 2025
Cited by 1 | Viewed by 768
Abstract
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of [...] Read more.
Quinoa protein isolate (QPI) and sodium alginate (SA) have excellent biocompatibility and functional properties, making them promising candidates for food-grade delivery systems. In this study, we developed, for the first time, a QPI/SA complex-stabilized Pickering emulsion for curcumin encapsulation. The coacervation behavior of QPI and SA was investigated from pH 1.6 to 7.5, and the structural and interfacial characteristics of the complexes were analyzed using zeta potential measurements, Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle analysis. The results showed that the formation of QPI/SA complexes was primarily driven by electrostatic interactions, hydrogen bonding, and hydrophobic interactions, with enhanced amphiphilicity observed under optimal conditions (QPI/SA = 5:1, pH 5). The QPI/SA-stabilized Pickering emulsions demonstrated excellent emulsification performance and storage stability, maintaining an emulsification index above 90% after 7 d when prepared with 60% oil phase. In vitro digestion studies revealed stage-specific curcumin release, with sustained release in simulated gastric fluid (21.13%) and enhanced release in intestinal fluid (88.21%). Cytotoxicity assays using HeLa cells confirmed the biocompatibility of QPI/SA complexes (≤500 μg/mL), while curcumin-loaded emulsions exhibited dose-dependent anticancer activity. These findings suggest that QPI/SA holds significant potential for applications in functional foods and oral delivery systems. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

17 pages, 4345 KB  
Article
Preparation of Superhydrophobic P-TiO2-SiO2/HDTMS Self-Cleaning Coatings with UV-Aging Resistance by Acid Precipitation Method
by Le Zhang, Ying Liu, Xuefeng Bai, Hao Ding, Xuan Wang, Daimei Chen and Yihe Zhang
Nanomaterials 2025, 15(14), 1127; https://doi.org/10.3390/nano15141127 - 20 Jul 2025
Viewed by 705
Abstract
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. [...] Read more.
The superhydrophobic coatings for outdoor use need to be exposed to sunlight for a long time; therefore, their UV-aging resistances are crucial in practical applications. In this study, the primary product of titanium dioxide (P-TiO2) was used as the raw material. Nano-silica (SiO2) was coated onto the surface of P-TiO2 by the acid precipitation method to prepare P-TiO2-SiO2 composite particles. Then, they were modified and sprayed simply to obtain a superhydrophobic P-TiO2-SiO2/HDTMS coating. The results indicated that amorphous nano-SiO2 was coated on the P-TiO2 surface, forming a micro–nano binary structure, which was the essential structure to form superhydrophobic coatings. Additionally, the UV-aging property of P-TiO2 was significantly enhanced after being coated with SiO2. After continuous UV irradiation for 30 days, the color difference (ΔE*) and yellowing index (Δb*) values of the coating prepared with P-TiO2-SiO2 increased from 0 to 0.75 and 0.23, respectively. In contrast, the ΔE* and Δb* of the coating prepared with P-TiO2 increased from 0 to 1.68 and 0.74, respectively. It was clear that the yellowing degree of the P-TiO2-SiO2 coating was lower than that of P-TiO2, and its UV-aging resistance was significantly improved. After modification with HDTMS, the P-TiO2-SiO2 coating formed a superhydrophobic P-TiO2-SiO2/HDTMS coating. The water contact angle (WCA) and water slide angle (WSA) on the surface of the coating were 154.9° and 1.3°, respectively. Furthermore, the coating demonstrated excellent UV-aging resistance. After continuous UV irradiation for 45 days, the WCA on the coating surface remained above 150°. Under the same conditions, the WCAs of the P-TiO2/HDTMS coating decreased from more than 150° to 15.3°. This indicated that the retention of surface hydrophobicity of the P-TiO2-SiO2/HDTMS coating was longer than that of P-TiO2/HDTMS, and the P-TiO2-SiO2/HDTMS coating’s UV-aging resistance was greater. The superhydrophobic P-TiO2-SiO2/HDTMS self-cleaning coating reported in this study exhibited outstanding UV-aging resistance, and it had the potential for long-term outdoor use. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

14 pages, 2691 KB  
Article
Probiotic Lacticaseibacillus paracasei E10 Ameliorates Dextran Sulfate Sodium-Induced Colitis by Enhancing the Intestinal Barrier and Modulating Microbiota
by Yuanyuan Dai, Ziming Lin, Xiaoyue Zhang, Yiting Wang, Yingyue Sheng, Ruonan Gao, Yan Geng, Yuzheng Xue and Yilin Ren
Foods 2025, 14(14), 2526; https://doi.org/10.3390/foods14142526 - 18 Jul 2025
Viewed by 704
Abstract
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder associated with gut microbiota dysbiosis and impaired intestinal barrier function. Probiotic interventions have shown potential in alleviating intestinal inflammation and restoring microbial balance. This study explores the protective effects of Lacticaseibacillus paracasei (L. [...] Read more.
Inflammatory bowel disease (IBD) is a chronic gastrointestinal disorder associated with gut microbiota dysbiosis and impaired intestinal barrier function. Probiotic interventions have shown potential in alleviating intestinal inflammation and restoring microbial balance. This study explores the protective effects of Lacticaseibacillus paracasei (L. paracasei) E10 in mice. L. paracasei E10 demonstrated strong gastrointestinal transit tolerance, high mucosal adhesion, and probiotic properties such as hydrophobicity and aggregation ability (p < 0.05). The oral administration of L. paracasei E10 significantly alleviated colitis symptoms by reducing the disease activity index, preserving colonic architecture, increasing goblet cell density, and upregulating tight junction proteins, thereby enhancing intestinal barrier integrity. 16S rRNA sequencing revealed that L. paracasei E10 supplementation enriched microbial diversity, increased the abundance of Muribaculaceae, and modulated the Firmicutes/Bacteroidetes ratio, contributing to gut homeostasis. These findings indicate that L. paracasei E10 is a potential candidate for IBD management. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

10 pages, 4764 KB  
Article
A Direct Preparation of Cellulose Nanocrystals by ZnCl2-Based Deep Eutectic Solvent
by Hoai An Vu, Quang Tung Le and Van Quyen Nguyen
Polysaccharides 2025, 6(3), 61; https://doi.org/10.3390/polysaccharides6030061 - 8 Jul 2025
Viewed by 1208
Abstract
Here, we demonstrated a direct method to produce cellulose nanocrystals (CNCs) with a rod-like shape from microcrystalline cellulose by a ZnCl2-based deep eutectic solvent (DES) with a high yield (~80.1%). We obtained CNCs, crystalline index (68.9%), with a width of ~30–50 [...] Read more.
Here, we demonstrated a direct method to produce cellulose nanocrystals (CNCs) with a rod-like shape from microcrystalline cellulose by a ZnCl2-based deep eutectic solvent (DES) with a high yield (~80.1%). We obtained CNCs, crystalline index (68.9%), with a width of ~30–50 nm and a length of 200–400 nm. Importantly, we were able to functionalize the CNCs with an acetyl, -(CO)CH3, group, which could potentially modulate the hydrophobic property of the CNCs. We attributed the formation of the CNCs to the Lewis acid effect of ZnCl2, which can hydrolyze the amorphous cellulose regime. Our study opens a new path to directly isolate cellulose nanocrystals with several functional groups on the surface of CNCs. Full article
(This article belongs to the Special Issue Recent Progress on Lignocellulosic-Based Materials)
Show Figures

Figure 1

18 pages, 2562 KB  
Article
Analysis of Mechanical Durability, Hydrophobicity, Pyrolysis and Combustion Properties of Solid Biofuel Pellets Made from Mildly Torrefied Biomass
by Kanageswari Singara veloo, Anthony Lau and Shahab Sokhansanj
Energies 2025, 18(13), 3464; https://doi.org/10.3390/en18133464 - 1 Jul 2025
Cited by 3 | Viewed by 975
Abstract
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet [...] Read more.
The production of solid biofuels from torrefied biomass holds significant potential for renewable energy applications. Durable pellet formation from severely torrefied biomass is hindered by the loss of natural binding properties, yet studies on mild torrefaction that preserves sufficient binding capacity for pellet production without external binders or changes to die conditions remain scarce. This paper investigated the production of fuel pellets from torrefied biomass without using external binders or adjusting pelletization parameters. Experiments were conducted using a mild torrefaction temperature (230 °C and 250 °C) and shorter residence time (10, 15, and 30 min). The torrefied materials were then subjected to pelletization using a single-pellet press; and the influence of torrefaction on the mechanical durability, hydrophobicity, and fuel characteristics of the pellets was examined. Results indicated that the mass loss ranging from 10 to 20% among the mild torrefaction treatments was less than the typical extent of mass loss due to severe torrefaction. Pellets made from torrefied biomass (torrefied pellets) had improvement in the hydrophobicity (moisture resistance) when compared to pellets made from untreated biomass (untreated pellets). Improved hydrophobicity is important for storage and transportation of pellets that are exposed to humid environmental conditions, as it reduces the risk of pellet degradation and spoilage. Thermogravimetric analysis of the pyrolysis and combustion behaviour of torrefied pellets indicated the improvement of fuel characteristics in terms of a much higher comprehensive pyrolysis index and greater thermal stability compared to untreated pellets, as evidenced by the prolonged burnout time and reduced combustion characteristics index. Residence time had a more significant impact on pellet durability than temperature, but the durability of the torrefied pellets was lower than that of the untreated pellets. Further research is required to explore the feasibility of producing binder-free durable pellets under mild torrefaction conditions. Overall, the study demonstrated that mild torrefaction could enhance the fuel quality and moisture resistance of biomass pellets, offering promising advantages for energy applications, despite some trade-offs in mechanical durability. Full article
Show Figures

Figure 1

21 pages, 3961 KB  
Article
Mechanical Characteristics of Tara Gum/Orange Peel Films Influenced by the Synergistic Effect on the Rheological Properties of the Film-Forming Solutions
by Nedelka Juana Ortiz Cabrera, Luis Felipe Miranda Zanardi and Martin Alberto Masuelli
Polymers 2025, 17(13), 1767; https://doi.org/10.3390/polym17131767 - 26 Jun 2025
Viewed by 762
Abstract
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final [...] Read more.
Film-forming solutions were prepared using Tara gum (TG), with glycerol (GL) as a plasticizer and orange peel powder (OP) as a filler. A TG stock solution (10 g/L) was initially prepared to facilitate homogenization, from which appropriate dilutions were made to obtain final concentrations of 0.6%, 0.8%, and 1.0% (w/v). GL (30% and 50%) and OP (0%, 20%, and 50%) were incorporated based on the dry weight of TG, meaning their amounts were calculated relative to TG content to ensure consistent formulation ratios. Rheological parameters, including the flow behavior index, consistency coefficient, storage modulus (G′), and loss modulus (G″), were characterized via steady shear and oscillatory rheometry. Mechanical properties, such as the Young’s modulus, tensile strength, and elongation at break, were also evaluated. A strong positive correlation (R2 = 0.840) was observed between G′ and the Young’s modulus, indicating that solutions with higher internal network strength yield films with greater stiffness. The synergistic interaction between TG and OP was critical: TG primarily enhanced stiffness and mechanical reinforcement, whereas OP improved structural cohesion and stability. GL functioned as a plasticizer, increasing film flexibility while reducing stiffness. These interactions led to a reduction in film solubility by up to 62.43%, particularly in formulations without orange peel powder. In contrast, mechanical strength increased by up to 50.21% in films containing orange peel powder, as those without it exhibited significantly lower tensile strength. Flexibility, expressed as elongation at break, was enhanced by up to 78.86% in formulations with higher glycerol content. Barrier properties were also improved, demonstrated by decreased water vapor permeability and increased hydrophobicity, attributed to the TG–OP synergy. A regression model (R2 = 0.928) substantiated the contributions of TG to stiffness, OP to matrix reinforcement, and GL to flexibility modulation. This study underscores the pivotal role of rheological behavior in defining film performance and presents a novel analytical framework applicable to the design of sustainable, high-performance biopolymeric materials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

Back to TopTop