Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (545)

Search Parameters:
Keywords = hydrogel wound dressing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3100 KiB  
Review
Casein-Based Biomaterials: Fabrication and Wound Healing Applications
by Nikolay Estiven Gomez Mesa, Krasimir Vasilev and Youhong Tang
Molecules 2025, 30(15), 3278; https://doi.org/10.3390/molecules30153278 - 5 Aug 2025
Abstract
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and [...] Read more.
Casein, the main phosphoprotein in milk, has a multifaceted molecular structure and unique physicochemical properties that make it a viable candidate for biomedical use, particularly in wound healing. This review presents a concise analysis of casein’s structural composition that comprises its hydrophobic and hydrophilic nature, calcium phosphate nanocluster structure, and its response to different pH, temperature, and ionic conditions. These characteristics have direct implications for its colloidal stability, including features such as gelation, swelling capacity, and usability as a biomaterial in tissue engineering. This review also discusses industrial derivatives and recent advances in casein biomaterials based on different fabrication types such as hydrogels, electrospun fibres, films, and advanced systems. Furthermore, casein dressings’ functional and biological attributes have shown remarkable exudate absorption, retention of moisture, biocompatibility, and antimicrobial and anti-inflammatory activity in both in vivo and in vitro studies. The gathered evidence highlights casein’s versatile bioactivity and dynamic molecular properties, positioning it as a promising platform to address advanced wound dressing challenges. Full article
Show Figures

Figure 1

16 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 - 31 Jul 2025
Viewed by 245
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

18 pages, 12329 KiB  
Article
Red Cabbage Anthocyanin-Loaded Bacterial Cellulose Hydrogel for Colorimetric Detection of Microbial Contamination and Skin Healing Applications
by Hanna Melnyk, Olesia Havryliuk, Iryna Zaets, Tetyana Sergeyeva, Ganna Zubova, Valeriia Korovina, Maria Scherbyna, Lilia Savinska, Lyudmila Khirunenko, Evzen Amler, Maria Bardosova, Oleksandr Gorbach, Sergiy Rogalsky and Natalia Kozyrovska
Polymers 2025, 17(15), 2116; https://doi.org/10.3390/polym17152116 - 31 Jul 2025
Viewed by 286
Abstract
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics [...] Read more.
Developing innovative, low-cost halochromic materials for diagnosing microbial contamination in wounds and burns can effectively facilitate tissue regeneration. Here, we combine the pH-sensing capability of highly colorful red cabbage anthocyanins (RCAs) with their healing potential within a unique cellulose polymer film that mimics the skin matrix. Biological activities of RCA extract in bacterial cellulose (BC) showed no cytotoxicity and skin-sensitizing potential to human cells at concentrations of RCAs similar to those released from BC/RCA dressings (4.0–40.0 µg/mL). A decrease in cell viability and apoptosis was observed in human cancer cells with RCAs. The invisible eye detection of the early color change signal from RCAs in response to pH alteration by bacteria was recorded with a smartphone application. The incorporation of RCAs into BC polymer has altered the morphology of its matrix, resulting in a denser cellulose microfibril network. The complete coincidence of the vibrational modes detected in the absorption spectra of the cellulose/RCA composite with the modes in RCAs most likely indicates that RCAs retain their structure in the BC matrix. Affordable, sensitive halochromic BC/RCA hydrogels can be recommended for online monitoring of microbial contamination, making them accessible to patients. Full article
Show Figures

Graphical abstract

49 pages, 8322 KiB  
Review
Research Progress on the Application of Novel Wound Healing Dressings in Different Stages of Wound Healing
by Lihong Wang, Xinying Lu, Yikun Wang, Lina Sun, Xiaoyu Fan, Xinran Wang and Jie Bai
Pharmaceutics 2025, 17(8), 976; https://doi.org/10.3390/pharmaceutics17080976 - 28 Jul 2025
Viewed by 399
Abstract
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have [...] Read more.
The complex microenvironment of wounds, along with challenges such as microbial infections, tissue damage, and inflammatory responses during the healing process, renders wound repair a complex medical issue. Owing to their ease of administration, effective outcomes, and painless application, biomacromolecule-based wound dressings have become a focal point in current clinical research. In recent years, hydrogels, microneedles, and electrospun nanofibers have emerged as three novel types of wound dressings. By influencing various stages of healing, they have notably enhanced chronic wound healing outcomes and hold considerable potential for wound repair applications. This review describes the preparation methods, classification, and applications of hydrogels, microneedles, and electrospun nanofibers around the various stages of wound healing, clarifying the healing-promoting mechanisms and characteristics of the three methods in different stages of wound healing. Building upon this foundation, we further introduce smart responsiveness, highlighting the application of stimuli-responsive wound dressings in dynamic wound management, aiming to provide insights for future research. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

19 pages, 3200 KiB  
Article
Polyphosphoramidate Glycohydrogels with Biorecognition Properties and Potential Antibacterial Activity
by Zornica Todorova, Oyundari Tumurbaatar, Violeta Mitova, Neli Koseva, Iva Ugrinova, Penka Petrova and Kolio Troev
Molecules 2025, 30(15), 3140; https://doi.org/10.3390/molecules30153140 - 26 Jul 2025
Viewed by 245
Abstract
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG [...] Read more.
In the present study, for the first time, a biodegradable and non-toxic polyphosphoramidate glycohydrogel (PPAGHGel) was prepared by crosslinking a polyphosphoramidate glycoconjugate (PPAG) with hexamethylene diisocyanate (HMDI) under mild conditions. Poly(oxyethylene H-phosphonate) (POEHP) was used as a precursor and was converted into PPAG via the Staudinger reaction with glucose-containing azide (2-p-azidobenzamide-2-deoxy-1,3,4,6-tetra-O-trimethylsilyl-α-D-glucopyranose). Then, crosslinking of PPAG was performed to yield PPAGHGel, which was thoroughly characterized. The gel showed a gel fraction of 83%, a swelling degree of 1426 ± 98%, and G″ = 1560 ± 65 Pa. The gel was fully degraded by alkaline phosphatase (400 U/L, pH 9) in 19 days, while hydrolytically, up to 52% degradation was observed under similar conditions. Multivalent studies of the obtained hydrogel with lectin–Concanavalin A were performed. PPAGHGel binds 92% of Concanavalin A within 24 h and the complex remains stable until the amount of glucose reaches 0.3 mM. PPAGHGel acts as a stabilizer for silver nanoparticles (12 nm). SEM shows pores measuring 10 µm (surface) and 0.1 mm (interior) with capillary channels, confirming the gel’s suitability for biosensors, drug delivery, or wound dressings. The cytotoxic (IC50) and cell-adhesive properties of the obtained hydrogel were investigated on human cell lines (HeLa). Antibacterial activity tests were also performed with gel containing silver nanoparticles against skin-associated pathogenic bacteria. The results show that PPAGHGel possesses excellent biocompatibility, non-adhesive properties and antibacterial activity. Full article
Show Figures

Figure 1

15 pages, 2230 KiB  
Article
Exploring the Rheological Properties of 3D Bioprinted Alginate-Based Hydrogels for Tissue Engineering
by R. Palacín-García, L. Goñi and T. Gómez-del Río
Biomimetics 2025, 10(8), 491; https://doi.org/10.3390/biomimetics10080491 - 24 Jul 2025
Viewed by 439
Abstract
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how [...] Read more.
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how the alginate concentration and curing speed impact their mechanical properties. Rheological testing was employed to examine the viscoelastic behavior of alginate/polyacrylamide hydrogels manufactured using a 3D bioprinting technique. The relaxation behavior and dynamic response of these hydrogels were analyzed under torsional stress, with relaxation curves fitted using a two-term Prony series. Fourier Transform Infrared (FTIR) spectroscopy was also employed to assess biocompatibility and the conversion of acrylamide. This study successfully demonstrated the printability of alginate/polyacrylamide hydrogels with varying alginate contents. The rheological results indicated that 3D bioprinted hydrogels exhibited significantly high stiffness, viscoelasticity, and long relaxation times. The curing speed had a minimal impact on these properties. Additionally, the FTIR analysis confirmed the complete conversion of polyacrylamide, ensuring no harmful effects in biological applications. The study concludes that 3D bioprinting significantly enhances the mechanical properties of alginate/polyacrylamide hydrogels, with the alginate concentration playing a key role in the shear modulus. These hydrogels show promising potential for biocompatible applications such as wound healing dressings. Full article
(This article belongs to the Special Issue Biological and Bioinspired Materials and Structures: 2nd Edition)
Show Figures

Figure 1

33 pages, 2265 KiB  
Review
From Sea to Therapy: Marine Biomaterials for Drug Delivery and Wound Healing
by Mansi Chilwant, Valentina Paganini, Mariacristina Di Gangi, Sofia Gisella Brignone, Patrizia Chetoni, Susi Burgalassi, Daniela Monti and Silvia Tampucci
Pharmaceuticals 2025, 18(8), 1093; https://doi.org/10.3390/ph18081093 - 23 Jul 2025
Viewed by 536
Abstract
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive [...] Read more.
Marine biomass represents a valuable yet underexploited resource for the development of high-value biomaterials. Recent advances have highlighted the significant potential of marine-derived polysaccharides, proteins, and peptides in biomedical applications, most notably in drug delivery and wound healing. This review provides a comprehensive synthesis of current research on the extraction, processing and pharmaceutical valorization of these biopolymers, with a focus on their structural and functional properties that allow these materials to be engineered into nanocarriers, hydrogels, scaffolds, and smart composites. Key fabrication strategies such as ionic gelation, desolvation, and 3D bioprinting are critically examined for their role in drug encapsulation, release modulation, and scaffold design for regenerative therapies. The review also covers preclinical validation, scale-up challenges, and relevant regulatory frameworks, offering a practical roadmap from sustainable sourcing to clinical application. Special attention is given to emerging technologies, including stimuli-responsive biomaterials and biosensor-integrated wound dressings, as well as to the ethical and environmental implications of marine biopolymer sourcing. By integrating materials science, pharmaceutical technology and regulatory insight, this review aims to provide a multidisciplinary perspective for researchers and industrial stakeholders seeking sustainable and multifunctional pharmaceutical platforms for precision medicine and regenerative therapeutics. Full article
(This article belongs to the Collection Feature Review Collection in Pharmaceutical Technology)
Show Figures

Graphical abstract

23 pages, 2594 KiB  
Article
Formation and Characterization of Xylitol-Modified Glycidyl Methacrylate-co-Ethyl Methacrylate Matrices for Controlled Release of Antimicrobial Compounds
by Adam Chyzy, Przemysław Gnatowski, Edyta Piłat, Maciej Sienkiewicz, Katarzyna Wozniak, Marta Wojnicka, Krzysztof Brzezinski and Marta E. Plonska-Brzezinska
Molecules 2025, 30(15), 3083; https://doi.org/10.3390/molecules30153083 - 23 Jul 2025
Viewed by 195
Abstract
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, [...] Read more.
Wounds are undeniably important gateways for pathogens to enter the body. In addition to their detrimental local effects, they can also cause adverse systemic effects. For this reason, developing methods for eradicating pathogens from wounds is a challenging medical issue. Polymers, particularly hydrogels, are one of the more essential materials for designing novel drug-delivery systems, thanks to the ease of tuning their structures. This work exploits this property by utilizing copolymerization, microwave modification, and drug-loading processes to obtain antibacterial gels. Synthesized xylitol-modified glycidyl methacrylate-co-ethyl methacrylate ([P(EMA)-co-(GMA)]-Xyl]) matrices were loaded with bacitracin, gentian violet, furazidine, and brilliant green, used as active pharmaceutical ingredients (APIs). The hydrophilic properties, API release mechanism, and antibacterial properties of the obtained hydrogels against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis containing [P(EMA)-co-(GMA)]-Xyl] were studied. The hydrogels with the APIs efficiently inhibit bacteria growth with low doses of drugs, and our findings are statistically significant, confirmed with ANOVA analysis at p = 0.05. The results confirmed that the proposed system is hydrophilic and has extended the drug-release capabilities of APIs with a controlled burst effect based on [P(EMA)-co-(GMA)]-Xyl] content in the hydrogel. Hydrogels are characterized by the prolonged release of APIs in a very short time (a few minutes). Although the amount of released APIs is about 10%, it still exceeds the minimum inhibitory concentrations of drugs. Several kinetic models (first-order, second-order, Baker–Lonsdale, and Korsmeyer–Peppas) were applied to fit the API release data from the [P(EMA)-co-(GMA)]-Xyl-based hydrogel. The best fit of the Korsmeyer–Peppas kinetic model to the experimental data was determined, and it was confirmed that a diffusion-controlled release mechanism of the APIs from the studied hydrogels is dominant, which is desirable for applications requiring a consistent, controlled release of therapeutic agents. A statistical analysis of API release using Linear Mixed Model was performed, examining the relationship between % mass of API, sample (hydrogels and control), time, sample–time interaction, and variability between individuals. The model fits the data well, as evidenced by the determination coefficients close to 1. The analyzed interactions in the data are reliable and statistically significant (p < 0.001). The outcome of this study suggests that the presented acrylate-based gel is a promising candidate for developing wound dressings. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

13 pages, 4726 KiB  
Article
Interpretable Prediction and Analysis of PVA Hydrogel Mechanical Behavior Using Machine Learning
by Liying Xu, Siqi Liu, Anqi Lin, Zichuan Su and Daxin Liang
Gels 2025, 11(7), 550; https://doi.org/10.3390/gels11070550 - 16 Jul 2025
Viewed by 341
Abstract
Polyvinyl alcohol (PVA) hydrogels have emerged as versatile materials due to their exceptional biocompatibility and tunable mechanical properties, showing great promise for flexible sensors, smart wound dressings, and tissue engineering applications. However, rational design remains challenging due to complex structure–property relationships involving multiple [...] Read more.
Polyvinyl alcohol (PVA) hydrogels have emerged as versatile materials due to their exceptional biocompatibility and tunable mechanical properties, showing great promise for flexible sensors, smart wound dressings, and tissue engineering applications. However, rational design remains challenging due to complex structure–property relationships involving multiple formulation parameters. This study presents an interpretable machine learning framework for predicting PVA hydrogel tensile strain properties with emphasis on mechanistic understanding, based on a comprehensive dataset of 350 data points collected from a systematic literature review. XGBoost demonstrated superior performance after Optuna-based optimization, achieving R2 values of 0.964 for training and 0.801 for testing. SHAP analysis provided unprecedented mechanistic insights, revealing that PVA molecular weight dominates mechanical performance (SHAP importance: 84.94) through chain entanglement and crystallization mechanisms, followed by degree of hydrolysis (72.46) and cross-linking parameters. The interpretability analysis identified optimal parameter ranges and critical feature interactions, elucidating complex non-linear relationships and reinforcement mechanisms. By addressing the “black box” limitation of machine learning, this approach enables rational design strategies and mechanistic understanding for next-generation multifunctional hydrogels. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

37 pages, 2784 KiB  
Review
A Recent Insight into Research Pertaining to Collagen-Based Hydrogels as Dressings for Chronic Skin Wounds
by Andreea Mariana Negrescu and Anisoara Cimpean
Gels 2025, 11(7), 527; https://doi.org/10.3390/gels11070527 - 8 Jul 2025
Viewed by 651
Abstract
Affecting millions of individuals each year, chronic wounds place a substantial strain on both the healthcare system and healthcare providers, becoming a global health issue that requires a rapid and efficient solution. Unlike acute wounds that heal naturally without any external intervention, chronic [...] Read more.
Affecting millions of individuals each year, chronic wounds place a substantial strain on both the healthcare system and healthcare providers, becoming a global health issue that requires a rapid and efficient solution. Unlike acute wounds that heal naturally without any external intervention, chronic wounds necessitate proper medical treatment in order to promote the wound-healing process and avoid any arising complications. However, the traditional therapeutic strategies are often limited when it comes to treating chronic wounds, which is why new approaches that facilitate the timely and effective healing of skin have been explored. Due to their unique properties, collagen-based hydrogels have been widely investigated as potential candidates for the management of chronic skin wounds, owing to their good biocompatibility, high water retention capacity, which provides a moist microenvironment, and capacity to promote cell adhesion, proliferation, migration, and differentiation for optimal tissue repair. In this context, the current paper discusses the recent advancements in collagen-based hydrogels as wound dressings, thus highlighting their potential as a future therapeutic approach for skin chronic wound care. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Applications of Collagen-Based Gels)
Show Figures

Figure 1

24 pages, 3541 KiB  
Review
Towards Intelligent Wound Care: Hydrogel-Based Wearable Monitoring and Therapeutic Platforms
by Yan Niu, Ziyao Zhao, Lihong Yang, Dan Lv, Rui Sun, Ting Zhang, Yuhan Li, Qianqian Bao, Mingqing Zhang, Lanzhong Wang, Wei Yan, Fei Han and Biwei Yan
Polymers 2025, 17(13), 1881; https://doi.org/10.3390/polym17131881 - 6 Jul 2025
Viewed by 1022
Abstract
Chronic wounds present clinical challenges due to persistent inflammation, infection, and dysregulated tissue repair, often exacerbated by the passive nature of conventional wound dressings. Recent advancements in hydrogel-based wearable technologies have transformed these biomaterials into multifunctional platforms capable of integrating real-time monitoring and [...] Read more.
Chronic wounds present clinical challenges due to persistent inflammation, infection, and dysregulated tissue repair, often exacerbated by the passive nature of conventional wound dressings. Recent advancements in hydrogel-based wearable technologies have transformed these biomaterials into multifunctional platforms capable of integrating real-time monitoring and targeted therapy, ushering in a new era of intelligent wound care. In this review, we show innovative diagnostic and therapeutic strategies, including wound-monitoring devices and multifunctional healing-promoted platforms, highlighting integrated closed-loop systems that dynamically adapt treatments to wound microenvironments, thus merging diagnostics and therapeutics. Challenges in fabrication engineering and clinical application are discussed, alongside emerging trends like AI-driven analytics and 3D-bioprinted technology. By bridging fragmented research, this work underscores the potential of hydrogels to enable intelligent wound management. Full article
(This article belongs to the Special Issue New Progress in the Polymer-Based Biomaterials)
Show Figures

Figure 1

20 pages, 4236 KiB  
Article
Study of PVP and PLA Systems and Fibers Obtained by Solution Blow Spinning for Chlorhexidine Release
by Oliver Rosas, Manuel Acevedo and Itziar Vélaz
Polymers 2025, 17(13), 1839; https://doi.org/10.3390/polym17131839 - 30 Jun 2025
Viewed by 362
Abstract
Antimicrobial resistance arises from treatment non-adherence and ineffective delivery systems. Optimal wound dressings combine localized drug release, exudate management, and bacterial encapsulation through hydrogel-forming nanofibers for enhanced therapy. In this work, polylactic acid (PLA) and polyvinylpyrrolidone (PVP) fibers loaded with chlorhexidine (CHX) were [...] Read more.
Antimicrobial resistance arises from treatment non-adherence and ineffective delivery systems. Optimal wound dressings combine localized drug release, exudate management, and bacterial encapsulation through hydrogel-forming nanofibers for enhanced therapy. In this work, polylactic acid (PLA) and polyvinylpyrrolidone (PVP) fibers loaded with chlorhexidine (CHX) were developed using Solution Blow Spinning (SBS), a scalable electrospinning alternative that enables in situ deposition. Molecular interactions between CHX and polymers in solution (by UV-Vis and fluorescence spectroscopy) and in solid state (by FTIR, XRD and thermal analysis) were studied. The morphology of the polymeric fibers was determined by optical microscopy, showing that PVP fibers are thinner (1625 nm) and more uniform than those of PLA (2237 nm). Finally, drug release from single-polymer fibers discs, overlapping fibers discs (PLA/PVP/PLA and PVP/PLA/PVP), and solid dispersions was determined by UV-Vis spectrometry. PVP-based fibers exhibited faster CHX release due to their hydrophilic nature, while PLA fibers proved sustained release, attributed to their hydrophobic matrix. This study highlights the potential of PLA/PVP-CHX fibers made from SBS as advanced wound dressings, combining biocompatibility and personalized drug delivery, offering a promising platform for localized and controlled antibiotic delivery. Full article
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
by Xuli Li, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan and Shefeng Li
J. Funct. Biomater. 2025, 16(7), 235; https://doi.org/10.3390/jfb16070235 - 26 Jun 2025
Viewed by 664
Abstract
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), [...] Read more.
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), with the ethylenediaminetetraacetic acid calcium disodium salt hydrate (EDTA·Na2Ca) incorporated to provide a secondary ionic crosslinker (i.e., Ca2+) and modulate the cascade reaction diffusion process. The copper wire electrodes serve as templates for electrochemical oxidation and enable a copper ion (i.e., Cu2+)-induced tubular hydrogel coating formation, while pulsed electric fields regulate layer-by-layer deposition. The dual-cation-crosslinked interpenetrating hydrogels (CMC/SA-Cu/Ca) exhibit rapid growth rates and tailored mechanical strength, along with excellent antibacterial performance. By integrating the unique pulsed electro-fabrication with biomimetic self-assembly, this study addresses challenges in vessel-mimicking structural complexity and mechanical compatibility. The approach enables scalable production of customizable multilayered hydrogels for artificial vessel grafts, smart wound dressings, and bioengineered organ interfaces, demonstrating broad biomedical potential. Full article
Show Figures

Figure 1

29 pages, 6293 KiB  
Review
Advances in Nanohybrid Hydrogels for Wound Healing: From Functional Mechanisms to Translational Prospects
by Yunfei Mo, Tao Zhou, Weichang Li, Yuqing Niu and Chialin Sheu
Gels 2025, 11(7), 483; https://doi.org/10.3390/gels11070483 - 23 Jun 2025
Viewed by 864
Abstract
Chronic wounds, such as diabetic ulcers and pressure injuries, remain a major global health burden, affecting over 40 million people worldwide and imposing significant socioeconomic strain. Hydrogel-based wound dressings have gained clinical attention for their ability to maintain moisture, mimic the extracellular matrix, [...] Read more.
Chronic wounds, such as diabetic ulcers and pressure injuries, remain a major global health burden, affecting over 40 million people worldwide and imposing significant socioeconomic strain. Hydrogel-based wound dressings have gained clinical attention for their ability to maintain moisture, mimic the extracellular matrix, and support tissue regeneration. However, traditional hydrogels often lack the mechanical robustness, antimicrobial efficacy, and dynamic responsiveness needed to treat complex wound environments effectively. To address these limitations, nanohybrid hydrogels, composite systems that integrate functional nanomaterials into hydrogel matrices, have emerged as intelligent platforms for advanced wound care. These systems enable multifunctional therapeutic action, including antibacterial activity, antioxidant regulation, angiogenesis promotion, immune modulation, and stimuli-responsive drug delivery. This review synthesizes recent advances in nanohybrid hydrogel design, beginning with an overview of traditional polymeric systems and their constraints. We categorize functional mechanisms according to biological targets and classify nanohybrid architectures by material type, including metal-based nanoparticles, nanozymes, carbon-based nanomaterials, polymeric nanogels, and metal–organic frameworks. Representative studies are summarized in a comparative table, and challenges related to biosafety, clinical translation, and design optimization are discussed. Nanohybrid hydrogels represent a rapidly evolving frontier in wound care, offering bioresponsive, multifunctional platforms with the potential to transform chronic wound management. Full article
(This article belongs to the Special Issue Chemical Properties and Application of Gel Materials)
Show Figures

Figure 1

19 pages, 5358 KiB  
Review
Chitosan-Based Dressing Materials for Burn Wound Healing
by Shiyu Li, Wenlong Pan, Ming Zhang, Kailu Song, Ziqian Zhou, Qilong Zhao, Guang-Zhao Li and Chongyu Zhu
Polymers 2025, 17(12), 1647; https://doi.org/10.3390/polym17121647 - 13 Jun 2025
Cited by 1 | Viewed by 1192
Abstract
The treatment of burn injuries remains a significant global challenge. Although conventional cellulose-based dressings are still the dominant clinical choice, chitosan-based burn wound dressing materials have emerged as a promising alternative due to their unique physicochemical properties and biocompatibility. In this mini-review, we [...] Read more.
The treatment of burn injuries remains a significant global challenge. Although conventional cellulose-based dressings are still the dominant clinical choice, chitosan-based burn wound dressing materials have emerged as a promising alternative due to their unique physicochemical properties and biocompatibility. In this mini-review, we aim to provide a summary of recent advances in chitosan-based dressing materials and highlight their advantages in the treatment of burn wounds. Specifically, we first outline the chemical structure and synthesis methods of chitosan and its derivatives. Subsequently, various forms of chitosan-based dressings are introduced, with a particular focus on hydrogels and micro/nanofibers dressings, along with an overview of their preparation methods. Considering the microenvironment of the burn wound site, we then summarize the design principles and clinical efficacy of chitosan-based dressings with antimicrobial and/or antioxidative activity. Additionally, the applications of chitosan dressings in tissue engineering for burn treatment are also discussed, including growth factor delivery, gene therapy, and stem cell-based treatments. Finally, we examine the main challenges of chitosan-based dressing materials and the potential future directions. Through this mini-review, we expect to provide new perspectives for the development of wound dressings for burn care. Full article
Show Figures

Graphical abstract

Back to TopTop