Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,144)

Search Parameters:
Keywords = hydrodynamic interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 17057 KiB  
Article
Numerical Analysis of Cavitation Suppression on a NACA 0018 Hydrofoil Using a Surface Cavity
by Pankaj Kumar, Ebrahim Kadivar and Ould el Moctar
J. Mar. Sci. Eng. 2025, 13(8), 1517; https://doi.org/10.3390/jmse13081517 - 6 Aug 2025
Abstract
This study examines the hydrodynamic and acoustic performance of plain NACA0018 hydrofoil and modified NACA0018 hydrofoils (foil with a cavity on suction surface) at a Reynolds number (Re) of 40,000, which is indicative of small-scale turbines and [...] Read more.
This study examines the hydrodynamic and acoustic performance of plain NACA0018 hydrofoil and modified NACA0018 hydrofoils (foil with a cavity on suction surface) at a Reynolds number (Re) of 40,000, which is indicative of small-scale turbines and marine applications. A cavity was created on suction side surface at 40–50% of the chord length, which is chosen for its efficacy in cavitation control. The present analysis examines the impact of the cavity on lift-to-drag-ratio (L/D) and cavity length at three cavitation numbers (1.7, 1.2, and 0.93) for plain and modified hydrofoils. Simulations demonstrate a significant enhancement of 7% in the lift-to-drag ratio relative to traditional designed foils. Contrary to earlier observations, the cavity length increases instead of decreasing for the modified hydrofoil. Both periodic steady and turbulent inflow conditions are captured that simulate the complex cavity dynamics and flow–acoustic interactions. It is found that a reduction in RMS velocity with modified blade suggests flow stabilization. Spectral analysis using Mel-frequency techniques confirms the cavity’s potential to reduce low-frequency flow-induced noise. These findings offer new insights for designing quieter and more efficient hydrofoils and turbine blades. Full article
(This article belongs to the Section Ocean Engineering)
24 pages, 9695 KiB  
Article
Dynamic Response and Stress Evolution of RPC Slabs Protected by a Three-Layered Energy-Dissipating System Based on the SPH-FEM Coupled Method
by Dongmin Deng, Hanqing Zhong, Shuisheng Chen and Zhixiang Yu
Buildings 2025, 15(15), 2769; https://doi.org/10.3390/buildings15152769 - 6 Aug 2025
Abstract
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the [...] Read more.
Aiming at the lightweight design of a bridge-shed integration structure, this paper presents a three-layered absorbing system in which a part of the sand cushion is replaced by expanded polystyrene (EPS) geofoam and the reinforced concrete (RC) protective slab is arranged above the sand cushion to enhance the composite system’s safety. A three-dimensional Smoothed Particle Hydrodynamics–Finite Element Method (SPH-FEM) coupled numerical model is developed in LS-DYNA (Livermore Software Technology Corporation, Livermore, CA, USA, version R13.1.1), with its validity rigorously verified. The dynamic response of rockfall impacts on the shed slab with composite cushions of various thicknesses is analyzed by varying the thickness of sand and EPS materials. To optimize the cushion design, a specific energy dissipation ratio (SEDR), defined as the energy dissipation rate per unit mass (η/M), is introduced as a key performance metric. Furthermore, the complicated interactional mechanism between the rockfall and the optimum-thickness composite system is rationally interpreted, and the energy dissipation mechanism of the composite cushion is revealed. Using logistic regression, the ultimate stress state of the reactive powder concrete (RPC) slab is methodically analyzed, accounting for the speed and mass of the rockfall. The results are indicative of the fact that the composite cushion not only has less dead weight but also exhibits superior impact resistance compared to the 90 cm sand cushions; the impact resistance performance index SEDR of the three-layered absorbing system reaches 2.5, showing a remarkable 55% enhancement compared to the sand cushion (SEDR = 1.61). Additionally, both the sand cushion and the RC protective slab effectively dissipate most of the impact energy, while the EPS material experiences relatively little internal energy build-up in comparison. This feature overcomes the traditional vulnerability of EPS subjected to impact loads. One of the highlights of the present investigation is the development of an identification model specifically designed to accurately assess the stress state of RPC slabs under various rockfall impact conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 14083 KiB  
Article
Numerical Investigations and Hydrodynamic Analysis of a Screw Propulsor for Underwater Benthic Vehicles
by Yan Kai, Pengfei Xu, Meijie Cao and Lei Yang
J. Mar. Sci. Eng. 2025, 13(8), 1500; https://doi.org/10.3390/jmse13081500 - 4 Aug 2025
Abstract
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, [...] Read more.
Screw propulsors have attracted increasing attention for their potential applications in amphibious vehicles and benthic robots, owing to their ability to perform both terrestrial and underwater locomotion. To investigate their hydrodynamic characteristics, a two-stage numerical analysis was carried out. In the first stage, steady-state simulations under various advance coefficients were conducted to evaluate the influence of key geometric parameters on propulsion performance. Based on these results, a representative configuration was then selected for transient analysis to capture unsteady flow features. In the second stage, a Detached Eddy Simulation approach was employed to capture unsteady flow features under three rotational speeds. The flow field information was analyzed, and the mechanisms of vortex generation, instability, and dissipation were comprehensively studied. The results reveal that the propulsion process is dominated by the formation and evolution of tip vortices, root vortices, and cylindrical wake vortices. As rotation speed increases, vortex structures exhibit a transition from ordered spiral wakes to chaotic turbulence, primarily driven by centrifugal instability and nonlinear vortex interactions. Vortex breakdown and energy dissipation are intensified downstream, especially under high-speed conditions, where vortex integrity is rapidly lost due to strong shear and radial expansion. This hydrodynamic behavior highlights the fundamental difference from conventional propellers, and these findings provide theoretical insight into the flow mechanisms of screw propulsion. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 4205 KiB  
Article
CFD Simulation of the Interaction Between a Macrobubble and a Dilute Dispersion of Oil Droplets in Quiescent Water
by Saad N. Saleh and Shahzad Barghi
Clean Technol. 2025, 7(3), 65; https://doi.org/10.3390/cleantechnol7030065 - 3 Aug 2025
Viewed by 153
Abstract
Wastewater generation is a growing concern in the preliminary treatment of heavy crude oil and tar sand. The separation of fine oil droplets from water by flotation is a critical process in the production of bitumen from tar sand. The flow structure from [...] Read more.
Wastewater generation is a growing concern in the preliminary treatment of heavy crude oil and tar sand. The separation of fine oil droplets from water by flotation is a critical process in the production of bitumen from tar sand. The flow structure from a high-resolution simulation of a single air macrobubble (>3 mm diameter) rising through water in the presence of a very dilute dispersion of mono-sized oil microdroplets (30 μm) under quiescent conditions is presented. A combined model of computational fluid dynamics (CFD), a volume of fluid (VOF) multiphase approach, and the discrete phase method (DPM) was developed to simulate bubble dynamics, the trajectories of the dispersed oil droplet, and the interaction between the air bubble and the oil droplet in quiescent water. The CFD–VOF–DPM combined model reproduced the interacting dynamics of the bubble and oil droplets in water at the bubble–droplet scale. With an extremely large diameter ratio between the bubble and the dispersed oil droplet, this model clearly demonstrated that the dominant mechanism for the interaction was the hydrodynamic capture of oil droplets in the wake of a rising air macrobubble. The entrainment of the oil droplets into the wake of the rising bubbles was strongly influenced by the bubble’s shape. Full article
Show Figures

Figure 1

29 pages, 4812 KiB  
Article
Geochemical Assessment of Long-Term CO2 Storage from Core- to Field-Scale Models
by Paa Kwesi Ntaako Boison, William Ampomah, Jason D. Simmons, Dung Bui, Najmudeen Sibaweihi, Adewale Amosu and Kwamena Opoku Duartey
Energies 2025, 18(15), 4089; https://doi.org/10.3390/en18154089 - 1 Aug 2025
Viewed by 166
Abstract
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated [...] Read more.
Numerical simulations enable us to couple multiphase flow and geochemical processes to evaluate how sequestration impacts brine chemistry and reservoir properties. This study investigates these impacts during CO2 storage at the San Juan Basin CarbonSAFE (SJB) site. The hydrodynamic model was calibrated through history-matching, utilizing data from saltwater disposal wells to improve predictive accuracy. Core-scale simulations incorporating mineral interactions and equilibrium reactions validated the model against laboratory flow-through experiments. The calibrated geochemical model was subsequently upscaled into a field-scale 3D model of the SJB site to predict how mineral precipitation and dissolution affect reservoir properties. The results indicate that the majority of the injected CO2 is trapped structurally, followed by residual trapping and dissolution trapping; mineral trapping was found to be negligible in this study. Although quartz and calcite precipitation occurred, the dissolution of feldspars, phyllosilicates, and clay minerals counteracted these effects, resulting in a minimal reduction in porosity—less than 0.1%. The concentration of the various ions in the brine is directly influenced by dissolution/precipitation trends. This study provides valuable insights into CO2 sequestration’s effects on reservoir fluid dynamics, mineralogy, and rock properties in the San Juan Basin. It highlights the importance of reservoir simulation in assessing long-term CO2 storage effectiveness, particularly focusing on geochemical interactions. Full article
Show Figures

Figure 1

14 pages, 863 KiB  
Article
The Effect of the Extraction Temperature on the Colligative, Hydrodynamic and Rheological Properties of Psyllium Husk Mucilage Raw Solutions
by Anna Ptaszek, Marta Liszka-Skoczylas and Urszula Goik
Molecules 2025, 30(15), 3219; https://doi.org/10.3390/molecules30153219 - 31 Jul 2025
Viewed by 171
Abstract
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following [...] Read more.
The aim of the research was to analyse the effect of different extraction temperatures on the colligative, hydrodynamic, and rheological properties of a water-soluble AXs fractions. The research material consisted of raw water extracts of arabinoxylans obtained from the husk at the following temperatures: 40 °C (AX40), 60 °C (AX60), 80 °C (AX80), and 100 °C (AX100). These were characterised in terms of their hydrodynamic, osmotic, and rheological properties, as well as the average molecular mass of the polysaccharide fractions. An increase in extraction temperature resulted in an increase in weight-average molecular mass, from 2190 kDa (AX40) to 3320 kDa (AX100). The values of the osmotic average molecular mass were higher than those obtained from GPC, and decreased with increasing extraction temperature. The dominance of biopolymer–biopolymer interactions was evident in the shape of the autocorrelation function, which did not disappear as the extraction temperature and concentration increased. Furthermore, the values of the second virial coefficient were negative, which is indicative of the tendency of biopolymer chains to aggregate. The rheological properties of the extracts changed from being described by a power-law model (AX40 and AX60) to being described by the full non-linear De Kee model (AX80 and AX100). Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Figure 1

26 pages, 15885 KiB  
Article
Comparative Analysis of Fully Floating and Semi-Floating Ring Bearings in High-Speed Turbocharger Rotordynamics
by Kyuman Kim and Keun Ryu
Lubricants 2025, 13(8), 338; https://doi.org/10.3390/lubricants13080338 - 31 Jul 2025
Viewed by 190
Abstract
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they [...] Read more.
This study presents a detailed experimental comparison of the rotordynamic and thermal performance of automotive turbochargers supported by two distinct hydrodynamic bearing configurations: fully floating ring bearings (FFRBs) and semi-floating ring bearings (SFRBs). While both designs are widely used in commercial turbochargers, they exhibit significantly different dynamic behaviors due to differences in ring motion and fluid film interaction. A cold air-driven test rig was employed to assess vibration and temperature characteristics across a range of controlled lubricant conditions. The test matrix included oil supply pressures from 2 bar (g) to 4 bar (g) and temperatures between 30 °C and 70 °C. Rotor speeds reached up to 200 krpm (thousands of revolutions per minute), and data were collected using a high-speed data acquisition system, triaxial accelerometers, and infrared (IR) thermal imaging. Rotor vibration was characterized through waterfall and Bode plots, while jump speeds and thermal profiles were analyzed to evaluate the onset and severity of instability. The results demonstrate that the FFRB configuration is highly sensitive to oil supply parameters, exhibiting strong subsynchronous instabilities and hysteresis during acceleration–deceleration cycles. In contrast, the SFRB configuration consistently provided superior vibrational stability and reduced sensitivity to lubricant conditions. Changes in lubricant supply conditions induced a jump speed variation in floating ring bearing (FRB) turbochargers that was approximately 3.47 times larger than that experienced by semi-floating ring bearing (SFRB) turbochargers. Furthermore, IR images and oil outlet temperature data confirm that the FFRB system experiences greater heat generation and thermal gradients, consistent with higher energy dissipation through viscous shear. This study provides a comprehensive assessment of both bearing types under realistic high-speed conditions and highlights the advantages of the SFRB configuration in improving turbocharger reliability, thermal performance, and noise suppression. The findings support the application of SFRBs in high-performance automotive systems where mechanical stability and reduced frictional losses are critical. Full article
(This article belongs to the Collection Rising Stars in Tribological Research)
Show Figures

Figure 1

36 pages, 10414 KiB  
Article
Forces During the Film Drainage and Detachment of NMC and Spherical Graphite in Particle–Bubble Interactions Quantified by CP-AFM and Modeling to Understand the Salt Flotation of Battery Black Mass
by Jan Nicklas, Claudia Heilmann, Lisa Ditscherlein and Urs A. Peuker
Minerals 2025, 15(8), 809; https://doi.org/10.3390/min15080809 - 30 Jul 2025
Viewed by 237
Abstract
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film [...] Read more.
The salt flotation of graphite in the presence of lithium nickel manganese cobalt oxide (NMC) was assessed by performing colloidal probe atomic force microscopy (CP-AFM) on sessile gas bubbles and conducting batch flotation tests with model lithium-ion-battery black mass. The modeling of film drainage and detachment during particle–bubble interactions provides insight into the fundamental microprocesses during salt flotation, a special variant of froth flotation. The interfacial properties of particles and gas bubbles were tailored with salt solutions containing sodium chloride and sodium acetate buffer. Graphite particles can attach to gas bubbles under all tested conditions in the range pH 3 to pH 10. The attractive forces for spherical graphite are strongest at high salt concentrations and pH 3. The conditions for the attachment of NMC to gas bubbles were evaluated with simulations using the Stokes–Reynolds–Young–Laplace model for film drainage, under consideration of DLVO forces and a hydrodynamic slip to account for irregularities of the particle surface. CP-AFM measurements in the capillary force regime provide additional parameters for the modeling of salt flotation, such as the force and work of detachment. The contact angles of graphite and NMC particles during retraction and detachment from gas bubbles were obtained from a quasi-equilibrium model using CP-AFM data as input. All CP-AFM experiments and theoretical results suggest that pristine NMC particles do not attach to gas bubbles during flotation, which is confirmed by the low rate of NMC recovery in batch flotation tests. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
Show Figures

Figure 1

25 pages, 16811 KiB  
Article
Force Element Analysis of Vortex-Induced Vibration Mechanism of Three Side-by-Side Cylinders at Low Reynolds Number
by Su-Xiang Guo, Meng-Tian Song, Jie-Chao Lei, Hai-Long Xu and Chien-Cheng Chang
J. Mar. Sci. Eng. 2025, 13(8), 1446; https://doi.org/10.3390/jmse13081446 - 29 Jul 2025
Viewed by 175
Abstract
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The [...] Read more.
This study employs a force element analysis to investigate vortex-induced vibrations (VIV) of three side-by-side circular cylinders at Reynolds number Re = 100, mass ratio m* = 10, spacing ratios S/D = 3–6, and reduced velocities Ur = 2–14. The lift and drag forces are decomposed into three physical components: volume vorticity force, surface vorticity force, and surface acceleration force. The present work systematically examines varying S/D and Ur effects on vibration amplitudes, frequencies, phase relationships, and transitions between distinct vortex-shedding patterns. By quantitative force decomposition, underlying physical mechanisms governing VIV in the triple-cylinder system are elucidated, including vortex dynamics, inter-cylinder interference, and flow structures. Results indicate that when S/D < 4, cylinders exhibit “multi-frequency” vibration responses. When S/D > 4, the “lock-in” region broadens, and the wake structure approaches the patterns of an isolated single cylinder; in addition, the trajectories of cylinders become more regularized. The forces acting on the central cylinder present characteristics of stochastic synchronization, significantly different from those observed in two-cylinder systems. The results can advance the understanding of complex interactions between hydrodynamic and structural dynamic forces under different geometric parameters that govern VIV response characteristics of marine structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

38 pages, 21156 KiB  
Review
A Review of the Application of Seal Whiskers in Vortex-Induced Vibration Suppression and Bionic Sensor Research
by Jinying Zhang, Zhongwei Gao, Jiacheng Wang, Yexiaotong Zhang, Jialin Chen, Ruiheng Zhang and Jiaxing Yang
Micromachines 2025, 16(8), 870; https://doi.org/10.3390/mi16080870 - 28 Jul 2025
Viewed by 308
Abstract
Harbor seals (Phoca vitulina) have excellent perception of water disturbances and can still sense targets as far as 180 m away, even when they lose their vision and hearing. This exceptional capability is attributed to the undulating structure of its vibrissae. [...] Read more.
Harbor seals (Phoca vitulina) have excellent perception of water disturbances and can still sense targets as far as 180 m away, even when they lose their vision and hearing. This exceptional capability is attributed to the undulating structure of its vibrissae. These specialized whiskers not only effectively suppress vortex-induced vibrations (VIVs) during locomotion but also amplify the vortex street signals generated by the wake of a target, thereby enhancing the signal-to-noise ratio (SNR). In recent years, researchers in fluid mechanics, bionics, and sensory biology have focused on analyzing the hydrodynamic characteristics of seal vibrissae. Based on bionic principles, various underwater biomimetic seal whisker sensors have been developed that mimic this unique geometry. This review comprehensively discusses research on the hydrodynamic properties of seal whiskers, the construction of three-dimensional geometric models, the theoretical foundations of fluid–structure interactions, the advantages and engineering applications of seal whisker structures in suppressing VIVs, and the design of sensors inspired by bionic principles. Full article
Show Figures

Figure 1

14 pages, 3283 KiB  
Review
Impact of Internal Solitary Waves on Marine Suspended Particulate Matter: A Review
by Zhengrong Zhang, Xuezhi Feng, Xiuyao Fan, Yuchen Lin and Chaoqi Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1433; https://doi.org/10.3390/jmse13081433 - 27 Jul 2025
Viewed by 197
Abstract
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of [...] Read more.
Suspended particulate matter (SPM) plays a pivotal role in marine source-to-sink sedimentary systems. Internal solitary waves (ISWs), a prevalent hydrodynamic phenomenon, significantly influence vertical mixing, cross-shelf material transport, and sediment resuspension. Acting as energetic nonlinear waves, ISWs can disrupt the settling trajectories of suspended particles, enhance lateral transport above the pycnocline, and generate nepheloid layers nearshore. Meanwhile, intense turbulent mixing induced by ISWs accumulates large quantities of SPM at both the leading surface and trailing bottom of the waves, thereby altering the structure and dynamics of the intermediate nepheloid layers. This review synthesizes recent advances in the in situ observational techniques for SPM under the influence of ISWs and highlights the key mechanisms governing their interactions. Particular attention is given to representative field cases in the SCS, where topographic complexity and strong stratification amplify ISWs–sediment coupling. Finally, current limitations in observational and modeling approaches are discussed, with suggestions for future interdisciplinary research directions that better integrate hydrodynamic and sediment transport processes. Full article
(This article belongs to the Special Issue Marine Geohazards: Characterization to Prediction)
Show Figures

Figure 1

23 pages, 12169 KiB  
Article
Effect of Quasi-Static Door Operation on Shear Layer Bifurcations in Supersonic Cavities
by Skyler Baugher, Datta Gaitonde, Bryce Outten, Rajan Kumar, Rachelle Speth and Scott Sherer
Aerospace 2025, 12(8), 668; https://doi.org/10.3390/aerospace12080668 - 26 Jul 2025
Viewed by 203
Abstract
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena [...] Read more.
Span-wise homogeneous supersonic cavity flows display complicated structures due to shear layer breakdown, flow acoustic resonance, and even non-linear hydrodynamic-acoustic interactions. In practical applications, such as aircraft bays, the cavity is of finite width and has doors, both of which introduce distinctive phenomena that couple with the shear layer at the cavity lip, further modulating shear layer bifurcations and tonal mechanisms. In particular, asymmetric states manifest as ‘tornado’ vortices with significant practical consequences on the design and operation. Both inward- and outward-facing leading-wedge doors, resulting in leading edge shocks directed into and away from the cavity, are examined at select opening angles ranging from 22.5° to 90° (fully open) at Mach 1.6. The computational approach utilizes the Reynolds-Averaged Navier–Stokes equations with a one-equation model and is augmented by experimental observations of cavity floor pressure and surface oil-flow patterns. For the no-doors configuration, the asymmetric results are consistent with a long-time series DDES simulation, previously validated with two experimental databases. When fully open, outer wedge doors (OWD) yield an asymmetric flow, while inner wedge doors (IWD) display only mildly asymmetric behavior. At lower door angles (partially closed cavity), both types of doors display a successive bifurcation of the shear layer, ultimately resulting in a symmetric flow. IWD tend to promote symmetry for all angles observed, with the shear layer experiencing a pitchfork bifurcation at the ‘critical angle’ (67.5°). This is also true for the OWD at the ‘critical angle’ (45°), though an entirely different symmetric flow field is established. The first observation of pitchfork bifurcations (‘critical angle’) for the IWD is at 67.5° and for the OWD, 45°, complementing experimental observations. The back wall signature of the bifurcated shear layer (impingement preference) was found to be indicative of the 3D cavity dynamics and may be used to establish a correspondence between 3D cavity dynamics and the shear layer. Below the critical angle, the symmetric flow field is comprised of counter-rotating vortex pairs at the front and back wall corners. The existence of a critical angle and the process of door opening versus closing indicate the possibility of hysteresis, a preliminary discussion of which is presented. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

22 pages, 3781 KiB  
Article
Enhancing Parenteral Nutrition via Supplementation with Antioxidant Lutein in Human Serum Albumin-Based Nanosuspension
by Izabela Żółnowska, Aleksandra Gostyńska-Stawna, Katarzyna Dominiak, Barbara Jadach and Maciej Stawny
Pharmaceutics 2025, 17(8), 971; https://doi.org/10.3390/pharmaceutics17080971 - 26 Jul 2025
Viewed by 475
Abstract
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein [...] Read more.
Background/Objectives: Parenteral nutrition (PN) supports patients unable to receive nutrients via the gastrointestinal tract, but it lacks the health-promoting natural bioactive compounds found in a typical oral diet. This study aimed to develop a human serum albumin-based intravenous delivery system for lutein (an antioxidant carotenoid with vision-supportive and hepatoprotective properties) as a PN additive. Methods: An albumin–lutein nanosuspension (AlbLuteN) was synthesized using a modified nanoparticle albumin-bound (nabTM) technology and characterized physicochemically. The nanoformulation was added to four commercial PN admixtures to assess the supplementation safety throughout the maximum infusion period. Visual inspection and measurements of fat globules larger than 5 µm (PFAT5) and the mean hydrodynamic diameter (Z-average), zeta potential, pH, osmolality, and lutein content were performed to detect potential interactions and evaluate the physicochemical stability. Results: AlbLuteN consisted of uniform particles (Z-average of 133.5 ± 2.8 nm) with a zeta potential of −28.1 ± 1.8 mV, lutein content of 4.76 ± 0.39%, and entrapment efficiency of 84.4 ± 6.3%. Differential scanning calorimetry confirmed the amorphous state of lutein in the nanosuspension. AlbLuteN was successfully incorporated into PN admixtures, without visible phase separation or significant changes in physicochemical parameters. The PFAT5 and Z-average values remained within pharmacopeial limits over 24 h. No substantial shifts in zeta potential, pH, or osmolality were observed. The lutein content remained stable, with losses below 3%. Conclusions: AlbLuteN can be safely added to representative PN admixtures without compromising their stability. This approach offers a novel strategy for intravenous lutein delivery and may contribute to improving the nutritional profile of PN. Full article
Show Figures

Figure 1

24 pages, 17104 KiB  
Article
Seismic Performance of Large Underground Water Tank Structures Considering Fluid–Structure Interaction
by Fengyuan Xu, Chengshun Xu, Mohamed Hesham El Naggar and Xiuli Du
Buildings 2025, 15(15), 2643; https://doi.org/10.3390/buildings15152643 - 26 Jul 2025
Viewed by 418
Abstract
The widespread application of large underground water tank structures in urban areas necessitates reliable design guidelines to ensure their safety as critical infrastructure. This paper investigated the seismic response of large underground water tank structures considering fluid–structure interaction (FSI). Coupled Eulerian–Lagrangian (CEL) was [...] Read more.
The widespread application of large underground water tank structures in urban areas necessitates reliable design guidelines to ensure their safety as critical infrastructure. This paper investigated the seismic response of large underground water tank structures considering fluid–structure interaction (FSI). Coupled Eulerian–Lagrangian (CEL) was employed to analyze the highly nonlinear FSI caused by intense fluid sloshing during earthquakes. The patterns of fluid sloshing amplitude observed from the finite element model were summarized based on analyses of fluid velocity, hydrodynamic stress components, and overall kinetic energy. In addition, the seismic response of the water tank structure was thoroughly assessed and compared with the simulation results of the empty tank structure. The results indicate that significant fluid sloshing occurs within the structure under seismic excitation. The amplitude of fluid sloshing increases horizontally from the center toward the edges of the structure, corresponding to higher hydrodynamic loads at the side area of the structure. By comparing the analysis results of the water tank structure with and without water, it was concluded that FSI is the primary cause of structural damage during an earthquake. The hydrodynamic loads on the roof, diversion walls, and external walls lead to significant localized damage. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A New Depth-Averaged Eulerian SPH Model for Passive Pollutant Transport in Open Channel Flows
by Kao-Hua Chang, Kai-Hsin Shih and Yung-Chieh Wang
Water 2025, 17(15), 2205; https://doi.org/10.3390/w17152205 - 24 Jul 2025
Viewed by 274
Abstract
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. [...] Read more.
Various nature-based solutions (NbS)—such as constructed wetlands, drainage ditches, and vegetated buffer strips—have recently demonstrated strong potential for mitigating pollutant transport in open channels and river systems. Numerical modeling is a widely adopted and effective approach for assessing the performance of these interventions. This study presents the first development of a two-dimensional (2D) meshless advection–diffusion model based on an Eulerian smoothed particle hydrodynamics (SPH) framework, specifically designed to simulate passive pollutant transport in open channel flows. The proposed model marks a pioneering application of the ESPH technique to environmental pollutant transport problems. It couples the 2D depth-averaged shallow water equations with an advection–diffusion equation to represent both fluid motion and pollutant concentration dynamics. A uniform particle arrangement ensures that each fluid particle interacts symmetrically with eight neighboring particles for flux computation. To represent the pollutant transport process, the dispersion coefficient is defined as the sum of molecular and turbulent diffusion components. The turbulent diffusion coefficient is calculated using a prescribed turbulent Schmidt number and the eddy viscosity obtained from a Smagorinsky-type mixing-length turbulence model. Three analytical case studies, including one-dimensional transcritical open channel flow, 2D isotropic and anisotropic diffusion in still water, and advection–diffusion in a 2D uniform flow, are employed to verify the model’s accuracy and convergence. The model demonstrates first-order convergence, with relative root mean square errors (RRMSEs) of approximately 0.2% for water depth and velocity, and 0.1–0.5% for concentration. Additionally, the model is applied to a laboratory experiment involving 2D pollutant dispersion in a 90° junction channel. The simulated results show good agreement with measured velocity and concentration distributions. These findings indicate that the developed model is a reliable and effective tool for evaluating the performance of NbS in mitigating pollutant transport in open channels and river systems. Full article
Show Figures

Figure 1

Back to TopTop