Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = human leukocyte elastase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6032 KiB  
Article
Extrusion of Neutrophil Extracellular Traps (NETs) Negatively Impacts Canine Sperm Functions: Implications in Reproductive Failure
by Marion León, Claudia Moya, Rodrigo Rivera-Concha, Felipe Pezo, Pamela Uribe, Mabel Schulz, Raúl Sánchez, Anja Taubert, Carlos Hermosilla and Fabiola Zambrano
Int. J. Mol. Sci. 2024, 25(11), 6216; https://doi.org/10.3390/ijms25116216 - 5 Jun 2024
Cited by 3 | Viewed by 1531
Abstract
Reproductive failure in dogs is often due to unknown causes, and correct diagnosis and treatment are not always achieved. This condition is associated with various congenital and acquired etiologies that develop inflammatory processes, causing an increase in the number of leukocytes within the [...] Read more.
Reproductive failure in dogs is often due to unknown causes, and correct diagnosis and treatment are not always achieved. This condition is associated with various congenital and acquired etiologies that develop inflammatory processes, causing an increase in the number of leukocytes within the female reproductive tract (FRT). An encounter between polymorphonuclear neutrophils (PMNs) and infectious agents or inflammation in the FRT could trigger neutrophil extracellular traps (NETs), which are associated with significantly decreased motility and damage to sperm functional parameters in other species, including humans. This study describes the interaction between canine PMNs and spermatozoa and characterizes the release of NETs, in addition to evaluating the consequences of these structures on canine sperm function. To identify and visualize NETs, May–Grünwald Giemsa staining and immunofluorescence for neutrophil elastase (NE) were performed on canine semen samples and sperm/PMN co-cultures. Sperm viability was assessed using SYBR/PI and acrosome integrity was assessed using PNA-FITC/PI by flow cytometry. The results demonstrate NETs release in native semen samples and PMN/sperm co-cultures. In addition, NETs negatively affect canine sperm function parameters. This is the first report on the ability of NETs to efficiently entrap canine spermatozoa, and to provide additional data on the adverse effects of NETs on male gametes. Therefore, NETs formation should be considered in future studies of canine reproductive failure, as these extracellular fibers and NET-derived pro-inflammatory capacities will impede proper oocyte fertilization and embryo implantation. These data will serve as a basis to explain certain reproductive failures of dogs and provide new information about triggers and molecules involved in adverse effects of NETosis for domestic pet animals. Full article
Show Figures

Figure 1

29 pages, 6195 KiB  
Article
Anti-Inflammatory Protein Isolated from Tamarind Promotes Better Histological Aspects in the Intestine Regardless of the Improvement of Intestinal Permeability in a Preclinical Study of Diet-Induced Obesity
by Mayara S. R. Lima, Catarina Gonçalves, Mafalda D. Neto, Maria Helena Macedo, Jaluza L. C. de Queiroz, Valéria C. da Silva, Izael de S. Costa, Christina da S. Camillo, Pedro Paulo de A. Santos, Aldo A. M. Lima, Lorenzo Pastrana, Bruna L. L. Maciel and Ana Heloneida A. Morais
Nutrients 2022, 14(21), 4669; https://doi.org/10.3390/nu14214669 - 4 Nov 2022
Cited by 3 | Viewed by 3512
Abstract
Obesity is associated with metabolic and physiological effects in the gut. In this study, we evaluated the anti-inflammatory effect of trypsin inhibitor isolated from tamarind seeds (TTI) in vitro (interaction with lipopolysaccharide (LPS) and inhibitory activity against human neutrophil elastase (HNE)), and using [...] Read more.
Obesity is associated with metabolic and physiological effects in the gut. In this study, we evaluated the anti-inflammatory effect of trypsin inhibitor isolated from tamarind seeds (TTI) in vitro (interaction with lipopolysaccharide (LPS) and inhibitory activity against human neutrophil elastase (HNE)), and using intestinal co-cultures of Caco-2:HT29-MTX cell lines inflamed with TNF-α (50 ng/mL) and a Wistar rat model of diet-induced obesity (n = 15). TTI was administered to animals by gavage (10 days), and the treated group (25 mg/kg/day) was compared to animals without treatment or treated with a nutritionally adequate diet. In the in vitro study, it showed inhibitory activity against HNE (93%). In co-cultures, there was no protection or recovery of the integrity of inflamed cell monolayers treated with TTI (1.0 mg/mL). In animals, TTI led to lower plasma concentrations of TNF-α and IL-6, total leukocytes, fasting glucose, and LDL-c (p < 0.05). The intestines demonstrated a lower degree of chronic enteritis, greater preservation of the submucosa, and greater intestinal wall thickness than the other groups (p = 0.042). Therefore, the better appearance of the intestine not reflected in the intestinal permeability added to the in vitro activity against HNE point to possibilities for new studies and applications related to this activity. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

38 pages, 52805 KiB  
Review
Herbal Arsenal against Skin Ailments: A Review Supported by In Silico Molecular Docking Studies
by Abdel Nasser B. Singab, Nada M. Mostafa, Iten M. Fawzy, Deepika Bhatia, Pooja Tanaji Suryawanshi and Atul Kabra
Molecules 2022, 27(19), 6207; https://doi.org/10.3390/molecules27196207 - 21 Sep 2022
Cited by 6 | Viewed by 3981
Abstract
Maintaining healthy skin is important for a healthy body. At present, skin diseases are numerous, representing a major health problem affecting all ages from neonates to the elderly worldwide. Many people may develop diseases that affect the skin, including cancer, herpes, and cellulitis. [...] Read more.
Maintaining healthy skin is important for a healthy body. At present, skin diseases are numerous, representing a major health problem affecting all ages from neonates to the elderly worldwide. Many people may develop diseases that affect the skin, including cancer, herpes, and cellulitis. Long-term conventional treatment creates complicated disorders in vital organs of the body. It also imposes socioeconomic burdens on patients. Natural treatment is cheap and claimed to be safe. The use of plants is as old as mankind. Many medicinal plants and their parts are frequently used to treat these diseases, and they are also suitable raw materials for the production of new synthetic agents. A review of some plant families, viz., Fabaceae, Asteraceae, Lamiaceae, etc., used in the treatment of skin diseases is provided with their most common compounds and in silico studies that summarize the recent data that have been collected in this area. Full article
(This article belongs to the Special Issue The Natural Products in Topical Infections and Wound Healing)
Show Figures

Figure 1

20 pages, 6914 KiB  
Article
Neutrophil Elastase Increases Vascular Permeability and Leukocyte Transmigration in Cultured Endothelial Cells and Obese Mice
by Chinchu Jagadan Ushakumari, Qiong L. Zhou, Yu-Hua Wang, Sijia Na, Michael C. Rigor, Cindy Y. Zhou, Max K. Kroll, Benjamin D. Lin and Zhen Y. Jiang
Cells 2022, 11(15), 2288; https://doi.org/10.3390/cells11152288 - 25 Jul 2022
Cited by 24 | Viewed by 5093
Abstract
Neutrophil elastase (NE) plays a pivotal role in inflammation. However, the mechanism underlying NE-mediated inflammation in obesity remains unclear. Here, we report that NE activates protease-activated receptor-2 (PAR2), stimulates actin filament (F-actin) formation, decreases intercellular junction molecule VE-cadherin expression, and increases the permeability [...] Read more.
Neutrophil elastase (NE) plays a pivotal role in inflammation. However, the mechanism underlying NE-mediated inflammation in obesity remains unclear. Here, we report that NE activates protease-activated receptor-2 (PAR2), stimulates actin filament (F-actin) formation, decreases intercellular junction molecule VE-cadherin expression, and increases the permeability of human arterial endothelial cells (hECs). NE also prompts degradation of VE-cadherin and its binding proteins p120- and β-catenins via MG132-sensitive proteasomes. NE stimulates phosphorylation of myosin light-chain (MLC) and its regulator myosin phosphatase target subunit-1 (MYPT1), a target of Rho kinase (ROCK). Inhibitors of PAR2 and ROCK prohibit NE-induced F-actin formation, MLC phosphorylation, and VE-cadherin reduction in hECs, and impede monocyte transmigration through hEC monolayer pretreated with either neutrophils or NE. Further, administration of an NE inhibitor GW311616A significantly attenuates vascular leakage, leukocyte infiltration, and the expression of proinflammatory cytokines in the white adipose tissue from high-fat diet (HFD)-induced obese mice. Likewise, NE-deficient mice are resistant to HFD-induced vascular leakage in the heart. Together, NE regulates actomyosin cytoskeleton activity and VE-cadherin expression by activating PAR2 signaling in the endothelial cells, leading to increased vascular permeability and leukocyte extravasation. Hence, inhibition of NE is a potential approach to mitigate vascular injury and leukocyte infiltration in obesity-related systemic inflammation. Full article
Show Figures

Figure 1

12 pages, 2338 KiB  
Article
Accelerated Wound Border Closure Using a Microemulsion Containing Non-Inhibitory Recombinant α1-Antitrypsin
by Alon Gimmon, Lior Sherker, Lena Kojukarov, Melodie Zaknoun, Yotam Lior, Tova Fadel, Ronen Schuster, Eli C. Lewis and Eldad Silberstein
Int. J. Mol. Sci. 2022, 23(13), 7364; https://doi.org/10.3390/ijms23137364 - 1 Jul 2022
Cited by 8 | Viewed by 2193
Abstract
Wound healing requires a non-compromising combination of inflammatory and anti-inflammatory processes. Human α1-antitrypsin (hAAT), a circulating glycoprotein that rises during acute-phase responses and during healthy pregnancies, is tissue-protective and tolerance-inducing; although anti-inflammatory, hAAT enhances revascularization. hAAT blocks tissue-degrading enzymes, including neutrophil elastase; it [...] Read more.
Wound healing requires a non-compromising combination of inflammatory and anti-inflammatory processes. Human α1-antitrypsin (hAAT), a circulating glycoprotein that rises during acute-phase responses and during healthy pregnancies, is tissue-protective and tolerance-inducing; although anti-inflammatory, hAAT enhances revascularization. hAAT blocks tissue-degrading enzymes, including neutrophil elastase; it is, therefore, unclear how wound healing might improve under hAAT-rich conditions. Here, wound healing was examined in the presence of recombinant hAAT (hAATWT) and protease-inhibition-lacking hAAT (hAATCP). The impact of both hAAT forms was determined by an epithelial cell gap closure assay, and by excisional skin injuries via a microemulsion optimized for open wounds. Neutrophilic infiltration was examined after 8 h. According to results, both hAAT forms accelerated epithelial gap closure and excisional wound closure, particularly at early time points. Unlike dexamethasone-treated wounds, both resulted in closed borders at the 8-h time point. In untreated and hAATCP-treated wounds, leukocytic infiltrates were widespread, in hAATWT-treated wounds compartmentalized and in dexamethasone-treated wounds, scarce. Both hAAT forms decreased interleukin-1β and increased VEGF gene expression. In conclusion hAAT improves epithelial cell migration and outcomes of in vivo wounds irrespective of protease inhibition. While both forms of hAAT allow neutrophils to infiltrate, only native hAAT created discrete neutrophilic tissue clusters. Full article
(This article belongs to the Special Issue Wound Repair and Regeneration 2022)
Show Figures

Figure 1

17 pages, 2369 KiB  
Article
Modulation of HIV Replication in Monocyte-Derived Macrophages (MDM) by Host Antiviral Factors Secretory Leukocyte Protease Inhibitor and Serpin Family C Member 1 Induced by Steroid Hormones
by Santanu Biswas, Emily Chen, Yamei Gao, Sherwin Lee, Indira Hewlett and Krishnakumar Devadas
Viruses 2022, 14(1), 95; https://doi.org/10.3390/v14010095 - 6 Jan 2022
Cited by 4 | Viewed by 2875
Abstract
The impact of steroid hormones estrogen and progesterone on human immunodeficiency virus type 1 (HIV-1) replication is well documented. However, the exact mechanism involved in the regulation of HIV-1 replication by estrogen and progesterone is still unclear. In the present study, we wanted [...] Read more.
The impact of steroid hormones estrogen and progesterone on human immunodeficiency virus type 1 (HIV-1) replication is well documented. However, the exact mechanism involved in the regulation of HIV-1 replication by estrogen and progesterone is still unclear. In the present study, we wanted to elucidate the molecular mechanisms underlying the modulation of HIV-1 replication by estrogen and progesterone. To achieve this goal, we used real-time quantitative PCR arrays (PCR arrays) to identify differentially expressed host genes in response to hormone treatments that are involved in antiviral responses. Our in vitro results suggest that treatment with high doses of estrogen and progesterone promotes the expression of host antiviral factors Secretory leukocyte protease inhibitor (SLPI) and Serpin family C member 1 (SERPIN C1) among others produced in response to HIV-1 infection. SLPI is an enzyme that inhibits human leukocyte elastase, human cathepsin G, human trypsin, neutrophil elastase, and mast cell chymase. SERPIN C1 is a plasma protease inhibitor that regulates the blood coagulation cascade by the inhibition of thrombin and other activated serine proteases of the coagulation system. A dose dependent downmodulation of HIV-1 replication was observed in monocyte-derived macrophages (MDMs) pre-treated with the two proteins SLPI and SERPIN C1. Further investigations suggests that the host antiviral factors, SLPI and SERPIN C1 act at the pre-integration stage, inhibiting HIV-1 viral entry and leading to the observed downmodulation of HIV-1 replication. Our studies would help identify molecular mechanisms and pathways involved in HIV-1 pathogenesis. Full article
(This article belongs to the Special Issue HIV and SARS-CoV-2 Pathogenesis and Vaccine Development)
Show Figures

Figure 1

33 pages, 2788 KiB  
Review
Why Venous Leg Ulcers Have Difficulty Healing: Overview on Pathophysiology, Clinical Consequences, and Treatment
by Joseph D. Raffetto, Daniela Ligi, Rosanna Maniscalco, Raouf A. Khalil and Ferdinando Mannello
J. Clin. Med. 2021, 10(1), 29; https://doi.org/10.3390/jcm10010029 - 24 Dec 2020
Cited by 212 | Viewed by 30371
Abstract
Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often [...] Read more.
Venous leg ulcers (VLUs) are one of the most common ulcers of the lower extremity. VLU affects many individuals worldwide, could pose a significant socioeconomic burden to the healthcare system, and has major psychological and physical impacts on the affected individual. VLU often occurs in association with post-thrombotic syndrome, advanced chronic venous disease, varicose veins, and venous hypertension. Several demographic, genetic, and environmental factors could trigger chronic venous disease with venous dilation, incompetent valves, venous reflux, and venous hypertension. Endothelial cell injury and changes in the glycocalyx, venous shear-stress, and adhesion molecules could be initiating events in VLU. Increased endothelial cell permeability and leukocyte infiltration, and increases in inflammatory cytokines, matrix metalloproteinases (MMPs), reactive oxygen and nitrogen species, iron deposition, and tissue metabolites also contribute to the pathogenesis of VLU. Treatment of VLU includes compression therapy and endovenous ablation to occlude the axial reflux. Other interventional approaches such as subfascial endoscopic perforator surgery and iliac venous stent have shown mixed results. With good wound care and compression therapy, VLU usually heals within 6 months. VLU healing involves orchestrated processes including hemostasis, inflammation, proliferation, and remodeling and the contribution of different cells including leukocytes, platelets, fibroblasts, vascular smooth muscle cells, endothelial cells, and keratinocytes as well as the release of various biomolecules including transforming growth factor-β, cytokines, chemokines, MMPs, tissue inhibitors of MMPs (TIMPs), elastase, urokinase plasminogen activator, fibrin, collagen, and albumin. Alterations in any of these physiological wound closure processes could delay VLU healing. Also, these histological and soluble biomarkers can be used for VLU diagnosis and assessment of its progression, responsiveness to healing, and prognosis. If not treated adequately, VLU could progress to non-healed or granulating VLU, causing physical immobility, reduced quality of life, cellulitis, severe infections, osteomyelitis, and neoplastic transformation. Recalcitrant VLU shows prolonged healing time with advanced age, obesity, nutritional deficiencies, colder temperature, preexisting venous disease, deep venous thrombosis, and larger wound area. VLU also has a high, 50–70% recurrence rate, likely due to noncompliance with compression therapy, failure of surgical procedures, incorrect ulcer diagnosis, progression of venous disease, and poorly understood pathophysiology. Understanding the molecular pathways underlying VLU has led to new lines of therapy with significant promise including biologics such as bilayer living skin construct, fibroblast derivatives, and extracellular matrices and non-biologic products such as poly-N-acetyl glucosamine, human placental membranes amnion/chorion allografts, ACT1 peptide inhibitor of connexin 43, sulodexide, growth factors, silver dressings, MMP inhibitors, and modulators of reactive oxygen and nitrogen species, the immune response and tissue metabolites. Preventive measures including compression therapy and venotonics could also reduce the risk of progression to chronic venous insufficiency and VLU in susceptible individuals. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

10 pages, 1325 KiB  
Article
The Efficacy of MAG-DHA for Correcting AA/DHA Imbalance of Cystic Fibrosis Patients
by Caroline Morin, André M. Cantin, Félix-Antoine Vézina and Samuel Fortin
Mar. Drugs 2018, 16(6), 184; https://doi.org/10.3390/md16060184 - 26 May 2018
Cited by 16 | Viewed by 5136
Abstract
Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementations are thought to improve essential fatty acid deficiency (EFAD) as well as reduce inflammation in Cystic Fibrosis (CF), but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the [...] Read more.
Omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementations are thought to improve essential fatty acid deficiency (EFAD) as well as reduce inflammation in Cystic Fibrosis (CF), but their effectiveness in clinical studies remains unknown. The aim of the study was to determine how the medical food containing docosahexaenoic acid monoglyceride (MAG-DHA) influenced erythrocyte fatty acid profiles and the expression levels of inflammatory circulating mediators. We conducted a randomized, double blind, pilot trial including fifteen outpatients with Cystic Fibrosis, ages 18–48. The patients were divided into 2 groups and received MAG-DHA or a placebo (sunflower oil) for 60 days. Patients took 8 × 625 mg MAG-DHA softgels or 8 × 625 mg placebo softgels every day at bedtime for 60 days. Lipid analyses revealed that MAG-DHA increased docosahexaenoic acid (DHA) levels and decrease arachidonic acid (AA) ratio (AA/DHA) in erythrocytes of CF patients following 1 month of daily supplementation. Data also revealed a reduction in plasma human leukocyte elastase (pHLE) complexes and interleukin-6 (IL-6) expression levels in blood samples of MAG-DHA supplemented CF patients. This pilot study indicates that MAG-DHA supplementation corrects erythrocyte AA/DHA imbalance and may exert anti-inflammatory properties through the reduction of pHLE complexes and IL6 in blood samples of CF patients. Trial registration: Pro-resolving Effect of MAG-DHA in Cystic Fibrosis (PREMDIC), NCT02518672. Full article
Show Figures

Figure 1

25 pages, 214 KiB  
Article
2-Amino- and 2-Alkylthio-4H-3,1-benzothiazin-4-ones: Synthesis, Interconversion and Enzyme Inhibitory Activities
by Hans-Georg Häcker, Florian Grundmann, Friederike Lohr, Philipp A. Ottersbach, Jing Zhou, Gregor Schnakenburg and Michael Gütschow
Molecules 2009, 14(1), 378-402; https://doi.org/10.3390/molecules14010378 - 14 Jan 2009
Cited by 21 | Viewed by 48930
Abstract
The synthetic access to 2-sec-amino-4H-3,1-benzothiazin-4-ones 2 was explored. Compounds 2 were available from methyl 2-thioureidobenzoates 1, 2-thioureidobenzoic acids 3, and novel 2-thioureidobenzamides 6, respectively, under different conditions. 2-Alkylthio-4H-3,1-benzothiazin-4-ones 5 have been prepared from anthranilic acid following a [...] Read more.
The synthetic access to 2-sec-amino-4H-3,1-benzothiazin-4-ones 2 was explored. Compounds 2 were available from methyl 2-thioureidobenzoates 1, 2-thioureidobenzoic acids 3, and novel 2-thioureidobenzamides 6, respectively, under different conditions. 2-Alkylthio-4H-3,1-benzothiazin-4-ones 5 have been prepared from anthranilic acid following a two step route. Both, benzothiazinones 2 and 5 underwent ring cleavage reactions to produce thioureas 1 and 6, respectively. Twelve benzothiazinones were evaluated as inhibitors against a panel of eight proteases and esterases to identify one selective inhibitor of human cathepsin L, 2b, and one selective inhibitor of human leukocyte elastase, 5i. Full article
Show Figures

Graphical abstract

Back to TopTop