Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = hole taper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4746 KiB  
Article
Experimental Study on Millisecond Laser Percussion Drilling of Heat-Resistant Steel
by Liang Wang, Changjian Wu, Yefei Rong, Long Xu and Kaibo Xia
Materials 2025, 18(15), 3699; https://doi.org/10.3390/ma18153699 - 6 Aug 2025
Abstract
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the [...] Read more.
Millisecond lasers, with their high processing efficiency and large power, are widely used in manufacturing fields such as aerospace. This study aims to investigate the effects of different processing parameters on the micro-hole processing of 316 heat-resistant steel using millisecond lasers. Through the control variable method, the study examines the impact of pulse energy, pulse count, and pulse width on the quality of micro-holes, including the entrance diameter, exit diameter, and taper. Furthermore, combined with orthogonal experiments and COMSOL Multiphysics 6.2 simulations, the study explores the influence of pulse width on the formation of blind holes. The experimental results show that when the pulse energy is 2.2 J, the taper is minimal (2.2°), while the taper reaches its peak (2.4°) at 2.4 J pulse energy. As the pulse count increases to 55–60 pulses, the exit diameter stabilizes, and the taper decreases to 1.8°. Blind holes begin to form when the pulse width exceeds 1.2 ms. When the pulse width is 1.2 ms, pulse energy is 2.4 J, and pulse count is 50, the entrance diameter of the blind hole reaches its maximum, indicating that longer pulse widths result in more significant energy reflection and thermal accumulation effects. COMSOL simulations reveal that high-energy pulses cause intense melt ejection, while longer pulse widths exacerbate thermal accumulation at the micro-hole entrance, leading to blind hole formation. This study provides important process references for laser processing of through-holes and blind holes in heat-resistant steel. Full article
Show Figures

Figure 1

15 pages, 3563 KiB  
Article
Process Optimization on Trepanning Drilling in Titanium Alloy Using a Picosecond Laser via an Orthogonal Experiment
by Liang Wang, Yefei Rong, Long Xu, Changjian Wu and Kaibo Xia
Micromachines 2025, 16(8), 846; https://doi.org/10.3390/mi16080846 - 24 Jul 2025
Viewed by 200
Abstract
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing [...] Read more.
To optimize the laser drilling process and reduce the processing time, this study investigates picosecond laser trepan drilling on the titanium alloy TC4, analyzing the effects of laser parameters on micro-hole diameter, taper, and roundness. Four independent variables were selected: laser power, defocusing distance, scanning speed, and the number of scans. An L25 (56) orthogonal array was employed for experimental design. The mean response and range analyses evaluated parameter impacts on micro-hole quality, revealing the influence mechanisms of these variables at different levels. The results indicate the following: (1) the scanning speed and laser power significantly affect entrance and exit micro-hole diameters; (2) the defocusing distance substantially influences micro-hole taper; (3) the laser power most critically impacts inlet roundness; (4) the defocusing distance, scanning speed, and laser power directly correlate with outlet roundness; (5) the number of scans exhibits weaker relationships with inlet/outlet diameters, taper, and roundness. A comprehensive balance method applied to orthogonal test results for process optimization yielded the following optimal parameters: 90% laser power (30 W total), −0.2 mm defocus, a 27 mm/s scanning speed, and 15 scans. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

25 pages, 5687 KiB  
Article
Using an Equine Cadaver Head to Investigate Associations Between Sub-Noseband Space, Noseband Tension, and Sub-Noseband Pressure at Three Locations
by Orla Doherty, Richard Conway and Paul McGreevy
Animals 2025, 15(14), 2141; https://doi.org/10.3390/ani15142141 - 19 Jul 2025
Viewed by 307
Abstract
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased [...] Read more.
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased as predicated by holes in the strap of the noseband (as supplied) through eight steps from two fingers’ space, assessed using the standard International Society for Equitation Science Taper Gauge through to zero space. Sensors were also placed at the midline frontal plane and intra-orally at the level of the second premolar tooth. A strain gauge integrated into the noseband recorded tensions within the noseband at each tightness level, and a digital taper gauge under the noseband recorded forces on the face. Pressures at the left nasal bone rose to 403 kPa, while those at the frontal nasal plane reached 185 kPa. Pressures rose rapidly once the noseband was tightened at the equivalent of 1.4 fingers’ space under the noseband. These findings may help to explain cases of bone and skin damage at the noseband location and indicate the need to ensure that nosebands can accommodate more than the equivalent of 1.4 fingers beneath them in the nasal midline. Given that pressures are expected to rise from those reported here when horses wear bits, locomote, and when the reins are under tension, we conclude that the traditional provision of two fingers’ space should be retained. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

25 pages, 10123 KiB  
Article
Fabrication of Micro-Holes with High Aspect Ratios in Cf/SiC Composites Using Coaxial Waterjet-Assisted Nanosecond Laser Drilling
by Chenhu Yuan, Zenggan Bian, Yue Cao, Yinan Xiao, Bin Wang, Jianting Guo and Liyuan Sheng
Micromachines 2025, 16(7), 811; https://doi.org/10.3390/mi16070811 - 14 Jul 2025
Viewed by 272
Abstract
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly [...] Read more.
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly examined. The results reveal that, for the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in the Cf/SiC composite, the increasing of waterjet velocity enhances the material removal rate and micro-hole depth, but reduces the micro-hole diameter and taper angle. The coaxial waterjet isolates the laser-ablated region and cools down the corresponding region rapidly, leading to the formation of a mixture of SiC, SiO2, and Si on the surface. As the coaxial waterjet velocity increases, the morphology of residual surface products changes from a net-like structure to individual spheres. Coaxial waterjet-assisted nanosecond laser drilling, with a waterjet velocity of 9.61 m/s, achieves micro-holes with a good balance between efficiency and quality. For the fabrication of micro-holes with a high aspect ratio in Cf/SiC composites, micro-holes fabricated by nanosecond laser drilling in air exhibit obvious taper features, which should be ascribed to the combined effects of spattering slag, plasma, and energy dissipation. The application of coaxial waterjet-assisted nanosecond laser drilling on micro-holes fabricated by laser drilling in air effectively expands the hole diameter. The fabricated micro-holes have very small taper angles, with clean wall surfaces and almost no reaction products. This approach, combining nanosecond laser drilling in air followed by coaxial waterjet-assisted nanosecond laser drilling, offers a promising technique for fabricating high-quality micro-holes with high aspect ratios in Cf/SiC composites. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

34 pages, 6553 KiB  
Review
Recent Advances in Photonic Crystal Fiber-Based SPR Biosensors: Design Strategies, Plasmonic Materials, and Applications
by Ayushman Ramola, Amit Kumar Shakya, Vinay Kumar and Arik Bergman
Micromachines 2025, 16(7), 747; https://doi.org/10.3390/mi16070747 - 25 Jun 2025
Viewed by 1075
Abstract
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light [...] Read more.
This article presents a comprehensive overview of recent advancements in photonic crystal fiber (PCF)-based sensors, with a particular focus on the surface plasmon resonance (SPR) phenomenon for biosensing. With their ability to modify core and cladding structures, PCFs offer exceptional control over light guidance, dispersion management, and light confinement, making them highly suitable for applications in refractive index (RI) sensing, biomedical imaging, and nonlinear optical phenomena such as fiber tapering and supercontinuum generation. SPR is a highly sensitive optical phenomenon, which is widely integrated with PCFs to enhance detection performance through strong plasmonic interactions at metal–dielectric interfaces. The combination of PCF and SPR technologies has led to the development of innovative sensor geometries, including D-shaped fibers, slotted-air-hole structures, and internal external metal coatings, each optimized for specific sensing goals. These PCF-SPR-based sensors have shown promising results in detecting biomolecular targets such as excess cholesterol, glucose, cancer cells, DNA, and proteins. Furthermore, this review provides an in-depth analysis of key design parameters, plasmonic materials, and sensor models used in PCF-SPR configurations, highlighting their comparative performance metrics and application prospects in medical diagnostics, environmental monitoring, and chemical analysis. Thus, an exhaustive analysis of various sensing parameters, plasmonic materials, and sensor models used in PCF-SPR sensors is presented and explored in this article. Full article
Show Figures

Graphical abstract

16 pages, 3744 KiB  
Article
Effects of Water-Based and Underwater Assistance Methods on the Hole Quality of Silicon Nitride Ceramics Using a Picosecond Laser
by Jie Zhang, Liang Wang, Yongchao Shi, Song Yao and Kaibo Xia
Micromachines 2025, 16(6), 651; https://doi.org/10.3390/mi16060651 - 29 May 2025
Cited by 1 | Viewed by 525
Abstract
This study investigated the effects of water-based and underwater assistance methods on the quality of picosecond laser-drilled microholes in silicon nitride ceramics, analyzing the influence of laser power variations in air and aqueous environments on entrance/exit diameters, taper angles, internal wall morphology, surface [...] Read more.
This study investigated the effects of water-based and underwater assistance methods on the quality of picosecond laser-drilled microholes in silicon nitride ceramics, analyzing the influence of laser power variations in air and aqueous environments on entrance/exit diameters, taper angles, internal wall morphology, surface roughness, and oxygen content. Water-based assistance involved submerging the workpiece’s lower surface while keeping the upper surface in the air, whereas underwater processing involved fully immersing the specimen. The experimental results demonstrated that both aqueous environments effectively improved microhole quality compared to air processing. The water-assisted methods significantly enhanced the entrance/exit morphology by reducing ablation traces and slag deposits. The aqueous medium increased the entrance/exit diameters while decreasing the taper angles and effectively removing debris, thereby reducing internal wall roughness. Underwater processing achieved lower roughness at the hole entrances and middle sections compared to water-based assistance. Both water-assisted methods produced superior internal wall morphology to air processing, with comparable performance. These findings provide valuable references for optimizing water-assisted picosecond laser drilling processes. Full article
(This article belongs to the Special Issue Laser Micro/Nano Fabrication, Second Edition)
Show Figures

Figure 1

22 pages, 14111 KiB  
Article
High-Speed Bearing Reliability: Analysis of Tapered Roller Bearing Performance and Cage Fracture Mechanisms
by Qingsong Li, Jiaao Ning, Hang Liang and Muzhen Yang
Metals 2025, 15(6), 592; https://doi.org/10.3390/met15060592 - 26 May 2025
Viewed by 543
Abstract
This investigation examines the fracture mechanisms of 31,311 tapered roller bearing cages using finite element analysis (FEA) and the Gurson–Tvergaard–Needleman (GTN) damage model. Static, dynamic, modal, and harmonic response analyses identify critical stress concentrations at the contact interface between the rolling elements and [...] Read more.
This investigation examines the fracture mechanisms of 31,311 tapered roller bearing cages using finite element analysis (FEA) and the Gurson–Tvergaard–Needleman (GTN) damage model. Static, dynamic, modal, and harmonic response analyses identify critical stress concentrations at the contact interface between the rolling elements and the outer ring, with maximum deformation occurring in the inner ring. Modal analysis excludes resonance as a potential failure cause. Crack initiation and propagation studies reveal that cracks predominantly form at the pocket bridge corners, propagating circumferentially. The propagation angle increases under circumferential and coupled loading conditions while remaining constant under longitudinal loading. Based on the GTN model, this study is the first to examine the crack propagation and fracture toughness of the cage under various loading conditions. The results indicate that longitudinal loading (Load II) yields the highest fracture toughness, significantly surpassing those under circumferential (Load I) and coupled loading (Load III). Load II exhibits the strongest crack growth resistance, with a peak CTODc of 0.598 mm, attributed to plastic strain accumulation. Fracture toughness decreases with crack depth, as CTODc declines by 66.5%, 20.1%, and 58.4% for Loads I, II, and III, respectively. Crack deflection angles show the greatest variation under Load I (35% increase), while Loads II and III demonstrate minimal sensitivity (<10% change). The optimization of the bearing cage pocket hole fillet radius from 0 mm to 0.75 mm demonstrates a maximum stress concentration reduction of 38.2% across different load conditions. This work introduces a novel methodology for predicting cage fracture behavior and optimizing design, offering valuable insights to enhance the reliability and longevity of systems in high-speed, high-load applications. Full article
Show Figures

Figure 1

13 pages, 5874 KiB  
Article
Fano Resonance Mach–Zehnder Modulator Based on a Single Arm Coupled with a Photonic Crystal Nanobeam Cavity for Silicon Photonics
by Enze Shi, Guang Chen, Lidan Lu, Yingjie Xu, Jieyu Yang and Lianqing Zhu
Sensors 2025, 25(10), 3240; https://doi.org/10.3390/s25103240 - 21 May 2025
Viewed by 795
Abstract
Recently, Fano resonance modulators and photonic crystal nanobeam cavities (PCNCs) have attracted more and more attention due to their superior performance, such as high modulation efficiency and high extinction ratio (ER). In this paper, a silicon Fano resonance Mach–Zehnder modulator (MZM) based on [...] Read more.
Recently, Fano resonance modulators and photonic crystal nanobeam cavities (PCNCs) have attracted more and more attention due to their superior performance, such as high modulation efficiency and high extinction ratio (ER). In this paper, a silicon Fano resonance Mach–Zehnder modulator (MZM) based on a single arm coupled with a PCNC is theoretically analyzed, designed, and numerically simulated. By optimizing the coupling length, lattice constant, coupling gap, and the number of holes in the mirror/taper region, the ER of our MZM can achieve 34 dB. When the applied voltage of the MZM is biased at 4.3 V and the non-return-to-zero on–off keying (NRZ-OOK) signal at a data rate of 10 Gbit/s is modulated, the sharpest asymmetric resonant peak and the most remarkable Fano line shape can be obtained around a wavelength of 1550.68 nm. Compared with the traditional nanobeam cavities, along with the varying radii, our PCNC design has holes with a fixed radius of 90 nm, which is suitable to be fabricated by a 180 nm passive silicon photonic multi-project wafer (MPW). Therefore, our compacted lab-on-chip, resonance-based silicon photonic MZM that is coupled with a PCNC has the advantages of superior performance and easy fabrication, which provide support for photonic integrated circuit designs and can be beneficial to various silicon photonic application fields, including photonic computing, photonic convolutional neural networks, and optical communications, in the future. Full article
(This article belongs to the Special Issue Advances in Microwave Photonics)
Show Figures

Figure 1

17 pages, 6072 KiB  
Article
Parameter Investigations of Waveguide-Integrated Lithium Niobate Photonic Crystal Microcavity
by Sohail Muhammad, Dingwei Chen, Chengwei Xian, Jun Zhou, Zhongke Lei, Pengju Kuang, Liang Ma, Guangjun Wen, Boyu Fan and Yongjun Huang
Photonics 2025, 12(5), 475; https://doi.org/10.3390/photonics12050475 - 12 May 2025
Viewed by 671
Abstract
Despite significant progress, fabricating two-dimensional (2D) lithium niobate (LN)-based photonic crystal (PhC) cavities integrated with tapered and PhC waveguides remains challenging, due to structural imperfections. Notable, especially, are variations in hole radius (r) and inclination angle (°), which induce bandgap shifts [...] Read more.
Despite significant progress, fabricating two-dimensional (2D) lithium niobate (LN)-based photonic crystal (PhC) cavities integrated with tapered and PhC waveguides remains challenging, due to structural imperfections. Notable, especially, are variations in hole radius (r) and inclination angle (°), which induce bandgap shifts and degrade quality factors (Q-factor). These fabrication errors underscore the critical need to address nanoscale tolerances. Here, we systematically investigate the impacts of key geometric parameters on optical performance and optimize a 2D LN-based cavity integrated with taper and PhC waveguide system. Using a 3D Finite-Difference Time-Domain (FDTD) and varFDTD simulations, we identify stringent fabrication thresholds. The a must exceed 0.72 µm to sustain Q > 107; reducing a to 0.69 µm collapses Q-factors below 104, due to under-coupled modes and bandgap misalignment, which necessitates ±0.005 µm precision. When an r < 0.22 µm weakens confinement, Q plummets to 2 × 104 at r = 0.20 µm (±0.01 µm etching tolerance). Inclination angles < 70° induce 100× Q-factor losses, requiring ±2° alignment for symmetric modes. Air slot width (s) variations shift resonant wavelengths and require optimization in coordination with the inclination angle. By optimizing s and the inclination angle (at 70°), we achieve a record Q-factor of 6.21 × 106, with, in addition, C-band compatibility (1502–1581 nm). This work establishes rigorous design–fabrication guidelines, demonstrating the potential for LN-based photonic devices with high nano-fabrication robustness. Full article
(This article belongs to the Special Issue Advances in Integrated Photonics)
Show Figures

Figure 1

24 pages, 26458 KiB  
Article
An Innovative Tube Hydro-Joining Process Combining Piercing, Hole Flanging and Nut Inlaying
by Yeong-Maw Hwang, Hong-Nhan Pham, Ze-Wei Ho and Yu-Jen Wang
Materials 2025, 18(9), 1990; https://doi.org/10.3390/ma18091990 - 28 Apr 2025
Viewed by 483
Abstract
This paper proposes a novel tube hydro-joining process, which combines piercing, hole flanging, and nut inlaying. The nut punch shape design proposed by this paper can deliver three advantages of no scrap, no oil leakage, and longer flange length, which can achieve stronger [...] Read more.
This paper proposes a novel tube hydro-joining process, which combines piercing, hole flanging, and nut inlaying. The nut punch shape design proposed by this paper can deliver three advantages of no scrap, no oil leakage, and longer flange length, which can achieve stronger clamping force and accordingly increase the pull out load. First, we use the finite element analysis to investigate the elasto-plastic deformation of the aluminum alloy A6063 tube during the hydro-joining process. A punch-shaped nut with a tapered locking part is designed to increase the elasto-binding strength of the pierced tube and the pull out load of the inlayed nut. The effects of hydro-joining loading paths on the formability of the A6063 tubes and punch-shaped nuts are examined. Additionally, the effects of fit zone size, nut punch stroke length, internal pressure, nut diameter, and the die hole diameter on the pull out load and twisting torque are explored. Finally, experiments on hydro-joining of A6063 tubes are conducted to validate the finite element modeling and the simulation results. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Figure 1

26 pages, 21993 KiB  
Article
Improvement of Micro-Hole Processing in SiCf/SiC Ceramic Matrix Composite Using Efficient Two-Step Laser Drilling
by Yue Cao, Bin Wang, Zhehang Li, Jiajia Wang, Yinan Xiao, Qingyang Zeng, Xinfeng Wang, Wenwu Zhang, Qunli Zhang and Liyuan Sheng
Micromachines 2025, 16(4), 430; https://doi.org/10.3390/mi16040430 - 2 Apr 2025
Cited by 3 | Viewed by 1053
Abstract
SiCf/SiC ceramic matrix composite (CMC), a hard and brittle material, faces significant challenges in efficient and high-quality processing of small-sized shapes. To address these challenges, the nanosecond laser was used to process micro-holes in the SiCf/SiC CMC using a [...] Read more.
SiCf/SiC ceramic matrix composite (CMC), a hard and brittle material, faces significant challenges in efficient and high-quality processing of small-sized shapes. To address these challenges, the nanosecond laser was used to process micro-holes in the SiCf/SiC CMC using a two-step drilling method, including laser pre-drilling in air and laser final-drilling with a water jet. The results of the single-parameter variation and optimized orthogonal experiments reveal that the optimal parameters for laser pre-drilling in air to process micro-holes are as follows: 1000 processing cycles, 0.7 mJ single-pulse energy, −4 mm defocus, 15 kHz pulse-repetition frequency, and 85% overlap rate. With these settings, a micro-hole with an entrance diameter of 343 μm and a taper angle of 1.19° can be processed in 100 s, demonstrating high processing efficiency. However, the entrance region exhibits spattering slags with oxidation, while the sidewall is covered by the recast layer with a wrinkled morphology and attached oxides. These effects are primarily attributed to the presence of oxygen, which enhances processing efficiency but promotes oxidation. For the laser final-drilling with a water jet, the balanced parameters for micro-hole processing are as follows: 2000 processing cycles, 0.6 mJ single-pulse energy, −4 mm defocus, 10 kHz pulse-repetition frequency, 85% overlap rate, and a 4.03 m/s water jet velocity. Using these parameters, the pre-drilled micro-hole can be finally processed in 96 s, yielding an entrance diameter of 423 μm and a taper angle of 0.36°. Due to the effective elimination of spattering slags and oxides by the water jet, the final micro-hole exhibits a clean sidewall with microgrooves, indicating high-quality micro-hole processing. The sidewall morphology could be ascribed to the different physical properties of SiC fiber and matrix, with steam explosion and cavitation erosion. This two-step laser drilling may provide new insights into the high-quality and efficient processing of SiCf/SiC CMC with small-sized holes. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

12 pages, 2139 KiB  
Article
Biofilm Growth on Different Materials Used in Contemporary Femoral Head Prosthesis: An In Vitro Study
by Yonggyun Moon, Jaeyoung Hong, Sookyung Choi, Hyoungtae Kim, Hong Moon Sohn and Suenghwan Jo
J. Clin. Med. 2025, 14(5), 1722; https://doi.org/10.3390/jcm14051722 - 4 Mar 2025
Viewed by 858
Abstract
Background/Objectives: Periprosthetic joint infection (PJI) primarily results from bacterial biofilms adhering to prosthetic surfaces, making treatment challenging without prosthesis removal. This in vitro study aims to investigate whether the materials used in contemporary femoral head prosthesis influences bacterial biofilm development. Methods: Femoral [...] Read more.
Background/Objectives: Periprosthetic joint infection (PJI) primarily results from bacterial biofilms adhering to prosthetic surfaces, making treatment challenging without prosthesis removal. This in vitro study aims to investigate whether the materials used in contemporary femoral head prosthesis influences bacterial biofilm development. Methods: Femoral head prostheses made of three different materials—cobalt–chrome, oxinium, and ceramic—were inoculated with either Staphylococcus aureus or Pseudomonas aeruginosa in separate experiments, with each pathogen tested independently. The samples were cultured under shaking conditions at 37 °C for 96 h to promote biofilm formation. Scanning electron microscopy (SEM) was used to confirm the presence of biofilms, and adherent biofilms were quantified by counting colony-forming units (CFUs) after sonication. Additionally, crystal violet staining was performed to assess biofilm distribution on the femoral head surfaces. Statistical analyses compared CFU counts across the different materials. Results: The mean CFU counts for S. aureus were 7.6 × 105 ± 9.7 × 104 for cobalt–chrome, 6.9 × 105 ± 3.6 × 105 for oxinium, and 1.1 × 106 ± 3.0 × 105 for ceramic femoral head prostheses. For P. aeruginosa, the CFU counts were 2.3 × 106 ± 7.2 × 105, 3.7 × 106 ± 2.5 × 106, and 2.2 × 106 ± 8.9 × 105, respectively. Regardless of the bacterial strain, differences among the three materials were within one log range, and no statistical significance was observed. While biofilms were confirmed using SEM, limited adherence was observed on the bearing surface, with the biofilm predominantly localized in the taper hole. Conclusions: The findings suggest that the material used in contemporary femoral head prostheses has minimal impact on bacterial biofilm formation. Surgeons’ choice of femoral head prosthesis material should base their material selection on factors other than PJI prevention. Full article
(This article belongs to the Special Issue Clinical Advances in Orthopedic Infections)
Show Figures

Figure 1

18 pages, 5444 KiB  
Article
The Effects of Static- and Flowing-Water-Assisted Methods on the Quality of Femtosecond Laser Drilling of Thermal-Barrier-Coated Superalloys
by Naifei Ren, Jie Zhang, Zhen Li, Dehu Qi, Hongmei Zhang and Kaibo Xia
Metals 2025, 15(3), 261; https://doi.org/10.3390/met15030261 - 28 Feb 2025
Cited by 1 | Viewed by 834
Abstract
Under high fluence and a high repetition rate, femtosecond laser drilling still produces defects due to heat accumulation. In order to suppress these defects, this study conducted research on water-assisted femtosecond laser drilling. This study focused on the impact of two different water-assisted [...] Read more.
Under high fluence and a high repetition rate, femtosecond laser drilling still produces defects due to heat accumulation. In order to suppress these defects, this study conducted research on water-assisted femtosecond laser drilling. This study focused on the impact of two different water-assisted methods, static-water-based and flowing-water-based approaches, on the quality of microholes made using layer-by-layer helical drilling with a femtosecond laser in thermal-barrier-coated superalloys. Furthermore, the effects of single-pulse laser energy on the hole entrance/exit diameter, taper angle, sidewall morphology, sidewall roughness, and sidewall oxygen content in the two water environments were compared and analyzed. Water-based-assisted laser drilling is an auxiliary method where the lower surface of the workpiece is placed in water while the upper surface remains in the air. On the other hand, the water flows horizontally in the flowing-water-based method. The experimental results demonstrate that both static- and flowing-water-based methods can significantly improve the quality of femtosecond laser drilling. Notably, the improvement effect was more pronounced with the flowing-water-based method. At a laser pulse energy of 50 μJ, the hole taper angle in the flowing-water environment was reduced by 38.80% compared with that in the air. With flowing-water-based assistance, the hole sidewall roughness was lower and the melt was less. Flowing water was better at carrying away the debris and heat generated by processing. The oxygen content of the hole sidewalls decreased significantly in both kinds of water-assisted environments. The experimental results provide a valuable reference for optimizing water-assisted femtosecond laser drilling. Full article
Show Figures

Figure 1

8 pages, 2981 KiB  
Proceeding Paper
Experimental Analysis of Vibration Reduction of Boring Bar with Tapered Mass-Rubber Dynamic Vibration Absorber (MR-DVA)
by Firsty Azzah Athifah and Wiwiek Hendrowati
Eng. Proc. 2025, 84(1), 65; https://doi.org/10.3390/engproc2025084065 - 18 Feb 2025
Viewed by 427
Abstract
One of the machining processes that can be performed on a lathe machine is the boring process, which is used to enlarge holes in a workpiece using a cutting tool called a boring bar. During the boring process, excessive vibration or chatter occurs, [...] Read more.
One of the machining processes that can be performed on a lathe machine is the boring process, which is used to enlarge holes in a workpiece using a cutting tool called a boring bar. During the boring process, excessive vibration or chatter occurs, which can significantly degrade the surface quality of the workpiece. To reduce these vibrations, a system called the Mass-Rubber Dynamic Vibration Absorber (MR-DVA) is used. A tapered MR-DVA is used, and it is located on the cavity of the customized boring bar. The absorber mass is made of brass, and the absorber stiffness is made of natural rubber. The MR-DVA is designed with various dimension ratios: 10/21, 14/21, and 16/21. The boring bar designed consists of a regular boring bar and a customized boring bar (with MR-DVA) with a diameter of 32 mm and a length-to-diameter (L/D) ratio of 7. The experiment was carried out with variations in cutting parameters such as the cutting speed, feed rate, and depth of cut as well as the variations in the taper ratio of the MR-DVA. The experiment shows that a customized boring bar with a tapered MR-DVA can reduce vibration, and the combination of variation that is optimal to reduce vibration is a customized boring bar with a taper ratio of 14/21. With the obtained optimal parameters for reducing vibrations, the manufacturing efficiency and product quality will be enhanced. Full article
Show Figures

Figure 1

15 pages, 6639 KiB  
Article
Triple Rings Trepanning Technology for Holes Ablated Using Nanosecond Pulse Laser in Al2O3 Ceramics Substrate
by Linzheng Ye, Wanqi Zhang, Xijing Zhu, Yao Liu, Shida Chuai, Boyang Lv and Tengwei Li
Machines 2024, 12(12), 864; https://doi.org/10.3390/machines12120864 - 28 Nov 2024
Viewed by 861
Abstract
The drilling pattern significantly impacts the quality of the holes and the efficiency of laser holes processing. This study utilized triple rings laser trepanning technology to process holes in Al2O3 ceramics substrates, which were 0.25 mm thick, using a fiber [...] Read more.
The drilling pattern significantly impacts the quality of the holes and the efficiency of laser holes processing. This study utilized triple rings laser trepanning technology to process holes in Al2O3 ceramics substrates, which were 0.25 mm thick, using a fiber nanosecond laser. The effects of the number of laser scans, laser scanning speed, the amount of defocusing, and the laser power on the geometrical features of the holes such as the hole diameter, hole roundness, and taper angle were studied. The results show that in the case of unsaturated holes, both the entrance and exit diameters expanded as the number of laser scans increased, and the taper angle reduced. In contrast, the diameter and taper angle of saturated holes remained relatively stable as the number of laser scans increased. The diameter of the holes gradually decreased as the laser scanning speed rose. The taper angle of the holes gradually increased as the laser scanning speed rose. At a scanning speed of 50 mm/s, the hole taper angle decreased to 5.51°. With a defocusing amount of 0 mm, the laser energy density on the workpiece surface was maximized, resulting in the largest exit diameter and the smallest taper angle for the hole. It is deemed appropriate to process Al2O3 ceramics substrate at a power of 30 W. Furthermore, the average roundnesses at the entrance to the holes obtained by the laser triple rings trepanning technology processed in this paper were all above 0.95, and the average roundness at the exit from the holes was above 0.93. The roundness at the entrance to the holes was better than at the exit from the holes. The results of this study will find potential application in the field of ceramic manufacturing. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

Back to TopTop