Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = hole density multiplication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1911 KiB  
Review
Review of Directed Self-Assembly Material, Processing, and Application in Advanced Lithography and Patterning
by Xiuyan Cheng, Di Liang, Miao Jiang, Yufei Sha, Xiaonan Liu, Jinlai Liu, Qingchen Cao and Jiangliu Shi
Micromachines 2025, 16(6), 667; https://doi.org/10.3390/mi16060667 - 31 May 2025
Viewed by 1693
Abstract
Directed self-assembly (DSA) lithography, a cutting-edge technology based on the self-assembly of block copolymers (BCPs), has received significant attention in recent years. Combining DSA with established lithography technologies, such as extreme ultraviolet (EUV), deep ultraviolet (DUV), electron beam lithography, and nanoimprint lithography, significantly [...] Read more.
Directed self-assembly (DSA) lithography, a cutting-edge technology based on the self-assembly of block copolymers (BCPs), has received significant attention in recent years. Combining DSA with established lithography technologies, such as extreme ultraviolet (EUV), deep ultraviolet (DUV), electron beam lithography, and nanoimprint lithography, significantly enhances the resolution of target patterns and device density. Currently, there are two commonly used methods in DSA: graphoepitaxy, employing lithographically defined topographic templates to guide BCP assembly, and chemoepitaxy, utilizing chemically patterned surfaces with precisely controlled interfacial energies to direct nanoscale phase segregation. Through novel DSA lithography technology, nanoscale patterns with smaller feature sizes and higher densities can be obtained, realizing the miniaturization of hole and line patterns and pitch multiplication and improving the roughness and local critical dimension uniformity (LCDU). It is gradually becoming one of the most promising and advanced lithography techniques. DSA lithography technology has been applied in logic, memory, and optoelectronic device fabrications. Full article
(This article belongs to the Special Issue Recent Advances in Lithography)
Show Figures

Figure 1

20 pages, 5814 KiB  
Article
Interfacial Engineering of 0D/2D Cu2S/Ti3C2 for Efficient Photocatalytic Synchronous Removal of Tetracycline and Hexavalent Chromium
by Zengyu Wang, Zhiwei Lv, Bowen Zeng, Fafa Wang, Xiaoyu Yang and Ping Mao
Catalysts 2025, 15(5), 458; https://doi.org/10.3390/catal15050458 - 7 May 2025
Viewed by 502
Abstract
With the advancement of industrialization and urbanization, the arbitrary emission of sewage containing TC-tetracycline and hexavalent chromium (Cr(VI)) possesses a serious threat to both ecological–environment and public health. However, developing a low-toxicity and cost-effective photocatalyst for the simultaneous elimination of these two pollutants [...] Read more.
With the advancement of industrialization and urbanization, the arbitrary emission of sewage containing TC-tetracycline and hexavalent chromium (Cr(VI)) possesses a serious threat to both ecological–environment and public health. However, developing a low-toxicity and cost-effective photocatalyst for the simultaneous elimination of these two pollutants remains a formidable task. This study devised a photocatalytic sample (CSMX-X) comprised of Copper(I) sulfide (Cu2S) and Titanium carbide (Ti3C2) through a simple solvothermal method and applied it to remove TC-tetracycline and Cr(VI). The CSMX-X not only increases the specific surface area from 2.7 m2·g−1 for pure Cu2S to 30.65 m2·g−1, but also effectively addresses the problems of insufficient separation efficiency of photogenerated holes and electrons and low carrier density. The photocatalytic efficiency for an individual pollutant (10 mg·L−1 Cr(VI) or 20 mg·L−1 TC-tetracycline) can reach more than 90%, while the removal efficiency for mixed Cr(VI) and TC-tetracycline pollutants only decreases by 12%. Meanwhile, copper leaching levels under different pH conditions (0.032–0.676 mg·L−1) are considerably lower than the 2 mg·L−1 safety standard set by the World Health Organization. This study provides valuable perspectives for constructing Cu2S-based composite photocatalysts to remove multiple contaminants in real aquatic environments. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Figure 1

16 pages, 4512 KiB  
Article
Experimental Study on Blocky Cuttings Transport in Shale Gas Horizontal Wells
by Di Yao, Xiaofeng Sun, Huixian Zhang and Jingyu Qu
Water 2025, 17(7), 1016; https://doi.org/10.3390/w17071016 - 30 Mar 2025
Cited by 1 | Viewed by 529
Abstract
The widespread application of horizontal drilling technology has significantly enhanced the development efficiency of unconventional resources, particularly shale gas, by overcoming key technical challenges in reservoir exploitation. However, wellbore instability remains a critical challenge during shale gas horizontal drilling, as borehole wall collapse [...] Read more.
The widespread application of horizontal drilling technology has significantly enhanced the development efficiency of unconventional resources, particularly shale gas, by overcoming key technical challenges in reservoir exploitation. However, wellbore instability remains a critical challenge during shale gas horizontal drilling, as borehole wall collapse often results in the accumulation of large-sized cuttings (or blocky cuttings), increasing the risk of stuck pipe incidents. In this study, a large-scale circulating loop experimental system was developed to investigate the hydrodynamic behavior of blocky cuttings transport under the influence of multiple factors, including rate of penetration (ROP), well inclination, flow rate, drilling fluid rheology, and block size. The experimental results reveal that when ROP exceeds 15 m/h, the annular solid-phase concentration increases non-linearly. At a well inclination of 60°, the axial and radial components of gravitational force reach a dynamic equilibrium, resulting in the maximum cuttings bed height. To enhance cuttings transport efficiency and mitigate deposition, a minimum flow rate of 35 L/s and a drill pipe rotation speed of 90 rpm are required to maintain sufficient turbulence in the annulus. Drilling fluid plastic viscosity (PV) in the range of 65–75 mPa·s optimizes suspension efficiency while minimizing circulating pressure loss. Additionally, increasing fluid density enhances the transport efficiency of large blocky cuttings. A drill pipe rotation speed of 80 rpm is recommended to prevent the formation of sand-wave-like cuttings beds. These findings provide valuable hydrodynamic insights and practical guidelines for optimizing hole-cleaning strategies, ensuring safer and more efficient drilling operations in shale gas horizontal wells. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

23 pages, 10686 KiB  
Article
Impact of Layer Materials, Their Thicknesses, and Their Reflectivities on Emission Color and NVIS Compatibility in OLED Devices for Avionic Display Applications
by Esin Uçar, Alper Ülkü, Halil Mert Kaya, Ramis Berkay Serin, Rifat Kaçar, Ahmet Yavuz Oral and Ebru Menşur
Micromachines 2025, 16(2), 191; https://doi.org/10.3390/mi16020191 - 7 Feb 2025
Viewed by 1819
Abstract
Organic Light Emitting Diode (OLED) technology is preferred in modern display applications due to its superior efficiency, color quality, and flexibility. It also carries a high potential of applicability in military displays where emission color tuning is required for MIL-STD-3009 Night Vision Imaging [...] Read more.
Organic Light Emitting Diode (OLED) technology is preferred in modern display applications due to its superior efficiency, color quality, and flexibility. It also carries a high potential of applicability in military displays where emission color tuning is required for MIL-STD-3009 Night Vision Imaging Systems (NVISs), as compatibility is critical. Herein, we report the effects of different OLED device layer materials and thicknesses such as the hole injection layer (HIL), hole transport layer (HTL), and electron transport layer (ETL) on the color coordinates, luminance, and efficiency of OLED devices designed for night vision (NVIS) compatibility. In this study, simulation tools like SETFOS® (Semi-conducting Emissive Thin Film Optics Simulator), MATLAB®, and LightTools® (Illumination Design Software) were used to verify and validate the luminance, luminance efficiency, and chromaticity coordinates of the proposed NVIS-OLED devices. We modeled the OLED device using SETFOS®, then the selection of materials for each layer for an optimal electron–hole balance was performed in the same tool. The effective reflectivity of multiple OLED layers was determined in MATLAB® in addition to an optimal device efficiency calculation in SETFOS®. The optical validation of output luminance and luminous efficiency was performed in LightTools®. Through a series of simulations for a green-emitting OLED device, we observed significant shifts in color coordinates, particularly towards the yellow spectrum, when the ETL materials and their thicknesses varied between 1 nm and 200 nm, whereas a change in the thickness of the HIL and HTL materials had a negligible impact on the color coordinates. While the critical role of ETL in color tuning and the emission characteristics of OLEDs is highlighted, our results also suggested a degree of flexibility in material selection for the HIL and HTL, as they minimally affected the color coordinates of emission. We validated via a combination of SETFOS®, MATLAB®, and LightTools® that when the ETL (3TPYMB) material thickness is optimized to 51 nm, the cathode reflectivity via the ETL-EIL stack became the minimum enabling output luminance of 3470 cd/m2 through our emissive layer within the Glass/ITO/MoO3/TAPC/(CBP:Ir(ppy)3)/3TPYMB/LiF/Aluminum OLED stack architecture, also yielding 34.73 cd/A of current efficiency under 10 mA/cm2 of current density. We infer that when stack layer thicknesses are optimized with respect to their reflectivity properties, better performances are achieved. Full article
Show Figures

Figure 1

10 pages, 958 KiB  
Article
A Unified Semiconductor-Device-Physics-Based Ballistic Model for the Threshold Voltage of Modern Multiple-Gate Metal-Oxide-Semiconductor Field-Effect-Transistors
by Te-Kuang Chiang
Electron. Mater. 2024, 5(4), 321-330; https://doi.org/10.3390/electronicmat5040020 - 13 Dec 2024
Cited by 1 | Viewed by 1578
Abstract
Based on the minimum conduction band edge caused by the minimum channel potential resulting from the quasi-3D scaling theory and the 3D density of state (DOS) accompanied by the Fermi–Dirac distribution function on the source and drain sides, a unified semiconductor-device-physics-based ballistic model [...] Read more.
Based on the minimum conduction band edge caused by the minimum channel potential resulting from the quasi-3D scaling theory and the 3D density of state (DOS) accompanied by the Fermi–Dirac distribution function on the source and drain sides, a unified semiconductor-device-physics-based ballistic model is developed for the threshold voltage of modern multiple-gate (MG) transistors, including FinFET, Ω-gate MOSFET, and nanosheet (NS) MOSFET. It is shown that the thin silicon, thin gate oxide, and high work function will alleviate ballistic effects and resist threshold voltage degradation. In addition, as the device dimension is further reduced to give rise to the 2D/1D DOS, the lowest conduction band edge is increased to resist threshold voltage degradation. The nanosheet MOSFET exhibits the largest threshold voltage among the three transistors due to the smallest minimum conduction band edge caused by the quasi-3D minimum channel potential. When the n-type MOSFET (N-FET) is compared to the P-type MOSFET (P-FET), the P-FET shows more threshold voltage because the hole has a more effective mass than the electron. Full article
(This article belongs to the Special Issue Metal Oxide Semiconductors for Electronic Applications)
Show Figures

Figure 1

28 pages, 10407 KiB  
Article
On the Viscous Ringed Disk Evolution in the Kerr Black Hole Spacetime
by Daniela Pugliese, Zdenek Stuchlík and Vladimir Karas
Universe 2024, 10(12), 435; https://doi.org/10.3390/universe10120435 - 22 Nov 2024
Cited by 1 | Viewed by 838
Abstract
Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with their environments, where chaotical, discontinuous accretion episodes may leave matter remnants orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly different features as different rotation [...] Read more.
Supermassive black holes (SMBHs) are observed in active galactic nuclei interacting with their environments, where chaotical, discontinuous accretion episodes may leave matter remnants orbiting the central attractor in the form of sequences of orbiting toroidal structures, with strongly different features as different rotation orientations with respect to the central Kerr BH. Such ringed structures can be characterized by peculiar internal dynamics, where co-rotating and counter-rotating accretion stages can be mixed and distinguished by tori interaction, drying–feeding processes, screening effects, and inter-disk jet emission. A ringed accretion disk (RAD) is a full general relativistic model of a cluster of toroidal disks, an aggregate of axi-symmetric co-rotating and counter-rotating disks orbiting in the equatorial plane of a single central Kerr SMBH. In this work, we discuss the time evolution of a ringed disk. Our analysis is a detailed numerical study of the evolving RAD properties formed by relativistic thin disks, using a thin disk model and solving a diffusion-like evolution equation for an RAD in the Kerr spacetime, adopting an initial wavy (ringed) density profile. The RAD reaches a single-disk phase, building accretion to the inner edge regulated by the inner edge boundary conditions. The mass flux, the radial drift, and the disk mass of the ringed disk are evaluated and compared to each of its disk components. During early inter-disk interaction, the ring components spread, destroying the internal ringed structure and quickly forming a single disk with timescales governed by ring viscosity prescriptions. Different viscosities and boundary conditions have been tested. We propose that a system of viscously spreading accretion rings can originate as a product of tidal disruption of a multiple stellar system that comes too close to an SMBH. Full article
Show Figures

Figure 1

19 pages, 20585 KiB  
Article
A Comprehensive Geophysical Exploration of Sedimentary Exhalative Deposits: An Example from the Huaniushan Lead–Zinc–Silver Polymetallic Deposit in Gansu, China
by Shunji Wang, Guanwen Gu, Ye Wu, Xingguo Niu, Lin Zhu, Zhihe Xu, Haoyuan He, Yingjie Wang, Xinglong Lin and Lai Cao
Minerals 2024, 14(11), 1066; https://doi.org/10.3390/min14111066 - 23 Oct 2024
Viewed by 1251
Abstract
The Huaniushan lead–zinc–silver deposit is a hydrothermal sedimentary exhalative deposit (SEDEX), and the mining area has complex geological conditions, with the main tectonic structure being the Huaheitan–Shuangfengshan Fault (F3), which controls the distribution of strata and magmatic rocks. Since the discovery [...] Read more.
The Huaniushan lead–zinc–silver deposit is a hydrothermal sedimentary exhalative deposit (SEDEX), and the mining area has complex geological conditions, with the main tectonic structure being the Huaheitan–Shuangfengshan Fault (F3), which controls the distribution of strata and magmatic rocks. Since the discovery of the Huaniushan lead–zinc–silver deposit, diverse interpretations of its genesis and metallogeny have been proposed, making it challenging to establish a definitive geological explanation. Moreover, using a single geophysical exploration method relies on limited rock physical parameters, making it difficult to effectively characterize underground structures. The combined use of multiple geophysical methods can effectively integrate the geophysical characteristics of different rock physical parameters, reducing the multiplicity and uncertainty of the inverse interpretation of geophysical data. The comprehensive interpretation of three-dimensional inversion based on various geophysical data, the construction of geological–geophysical models on geological grounds, the establishment of hidden ore exploration and positioning, and the rapid evaluation of geophysical technological systems are the current research trends in mineral exploration. In light of this, in this study, we conducted research on the three-dimensional inversion interpretation of gravity and magnetoelectric exploration data of the Huaniushan sedimentary exhalative lead–zinc–silver polymetallic deposit and constructed a three-dimensional geological–geophysical model of the study area based on the obtained three-dimensional physical structure of the underground density, magnetization intensity, resistivity, and polarizability of the study area, in combination with related geological and drilling hole data. Finally, we comprehensively interpreted the favorable mineralization sites in the study area. Full article
Show Figures

Figure 1

11 pages, 7386 KiB  
Article
Directed Self-Assembly of Cylinder-Forming Block Copolymers Using Pillar Topographic Patterns
by June Huh
Polymers 2024, 16(7), 881; https://doi.org/10.3390/polym16070881 - 23 Mar 2024
Cited by 1 | Viewed by 2769
Abstract
We conducted a computational study on the self-assembly behavior of cylinder-forming block copolymers, directed by a guide pattern of hexagonally or tetragonally arrayed pillars, using mesoscale density functional theory simulations. By adjusting the spacing (Lp) and diameter (D) [...] Read more.
We conducted a computational study on the self-assembly behavior of cylinder-forming block copolymers, directed by a guide pattern of hexagonally or tetragonally arrayed pillars, using mesoscale density functional theory simulations. By adjusting the spacing (Lp) and diameter (D) of the pillars in relation to the intrinsic cylinder-to-cylinder distance (L2) of the cylinder-forming block copolymer, we investigated the efficiency of multiple-replicating cylinders, generated by the block copolymer, through the pillar-directed self-assembly process. The simulations demonstrated that at specific values of normalized parameters L˜2=L2/Lp and D˜=D/Lp coupled with suitable surface fields, triple and quadruple replications are achievable with a hexagonally arrayed pillar pattern, while only double replication is attainable with a tetragonally arrayed pillar pattern. This work, offering an extensive structure map encompassing a wide range of possible parameter spaces, including L˜2 and D˜, serves as a valuable guide for designing the contact hole patterning essential in nanoelectronics applications. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Figure 1

19 pages, 5634 KiB  
Article
Morphology and Compressive Properties of Extruded Polyethylene Terephthalate Foam
by Zhicheng Zhang, Chunling Xin, Chiyuan Ma, Wenchong Xu, Feng Ren and Yadong He
Polymers 2024, 16(6), 776; https://doi.org/10.3390/polym16060776 - 12 Mar 2024
Viewed by 1992
Abstract
The cell structure and compressive properties of extruded polyethylene terephthalate (PET) foam with different densities were studied. The die of the PET foaming extruder is a special multi-hole breaker plate, which results in a honeycomb-shaped foam block. The SEM analysis showed that the [...] Read more.
The cell structure and compressive properties of extruded polyethylene terephthalate (PET) foam with different densities were studied. The die of the PET foaming extruder is a special multi-hole breaker plate, which results in a honeycomb-shaped foam block. The SEM analysis showed that the aspect ratio and cell wall thickness of the strand border is greater than that of the strand body. The cells are elongated and stronger in the extruding direction, and the foam anisotropy of the structure and compressive properties decrease with increasing density. The compression results show typical stress–strain curves even though the extruded PET foam is composed of multiple foamed strands. The compression properties of PET foam vary in each of the three directions, with the best performing direction (i.e., extrusion direction) showing stretch-dominated structures, while the other two directions show bending-dominated structures. Foam mechanics models based on both rectangular and elongated Kelvin cell geometries were considered to predict the compressive properties of PET foams in terms of relative density, structure anisotropy, and the properties of the raw polymer. The results show that the modulus and strength anisotropy of PET foam can be reasonably predicted by the rectangular cell model, but more accurate predictions were obtained with an appropriately assumed elongated Kelvin model. Full article
(This article belongs to the Special Issue Polymer Microcellular Foam Molding and Its Functionalization)
Show Figures

Figure 1

11 pages, 5690 KiB  
Article
Ballistic Performance of Quasi-One-Dimensional Hafnium Disulfide Field-Effect Transistors
by Mislav Matić and Mirko Poljak
Electronics 2024, 13(6), 1048; https://doi.org/10.3390/electronics13061048 - 11 Mar 2024
Cited by 4 | Viewed by 1641
Abstract
Hafnium disulfide (HfS2) monolayer is one of the most promising two-dimensional (2D) materials for future nanoscale electronic devices, and patterning it into quasi-one-dimensional HfS2 nanoribbons (HfS2NRs) enables multi-channel architectures for field-effect transistors (FETs). Electronic, transport and ballistic device characteristics [...] Read more.
Hafnium disulfide (HfS2) monolayer is one of the most promising two-dimensional (2D) materials for future nanoscale electronic devices, and patterning it into quasi-one-dimensional HfS2 nanoribbons (HfS2NRs) enables multi-channel architectures for field-effect transistors (FETs). Electronic, transport and ballistic device characteristics are studied for sub-7 nm-wide and ~15 nm-long zigzag HfS2NR FETs using non-equilibrium Green’s functions (NEGF) formalism with density functional theory (DFT) and maximally localized Wannier functions (MLWFs). We provide an in-depth analysis of quantum confinement effects on ON-state performance. We show that bandgap and hole transport mass are immune to downscaling effects, while the ON-state performance is boosted by up to 53% but only in n-type devices. Finally, we demonstrate that HfS2NR FETs can fulfill the industry requirements for future technology nodes, which makes them a promising solution for FET architectures based on multiple nanosheets or nanowires. Full article
(This article belongs to the Special Issue Feature Papers in Semiconductor Devices)
Show Figures

Figure 1

13 pages, 2936 KiB  
Article
An Improved Model of Single-Event Transients Based on Effective Space Charge for Metal–Oxide–Semiconductor Field-Effect Transistor
by Yutao Zhang, Hongliang Lu, Chen Liu, Yuming Zhang, Ruxue Yao and Xingming Liu
Micromachines 2023, 14(11), 2085; https://doi.org/10.3390/mi14112085 - 11 Nov 2023
Cited by 1 | Viewed by 1493
Abstract
In this paper, a single-event transient model based on the effective space charge for MOSFETs is proposed. The physical process of deposited and moving charges is analyzed in detail. The influence of deposited charges on the electric field in the depletion region is [...] Read more.
In this paper, a single-event transient model based on the effective space charge for MOSFETs is proposed. The physical process of deposited and moving charges is analyzed in detail. The influence of deposited charges on the electric field in the depletion region is investigated. The electric field decreases in a short time period due to the neutralization of the space charge. After that, the electric field increases first and then decreases when the deposited charge is moved out. The movement of the deposited charge in the body mainly occurs through ambipolar diffusion because of its high-density electrons and holes. The derivation of the variation in electric field in the depletion region is modeled in the physical process according to the analysis. In combination with the ambipolar diffusion model of excessive charge in the body, a physics-based model is built to describe the current pulse in the drain terminal. The proposed model takes into account the influence of multiple factors, like linear-energy transfer (LET), drain bias, and the doping concentration of the well. The model results are validated with the simulation results from TCAD. Through calculation, the root-mean-square error (RMSE) between the simulation and model is less than 3.7 × 10−4, which means that the model matches well with the TCAD results. Moreover, a CMOS inverter is simulated using TCAD and SPICE to validate the applicability of the proposed model in a circuit-level simulation. The proposed model captures the variation in net voltage in the inverter. The simulation result obviously shows the current plateau effect, while the relative error of the pulse width is 23.5%, much better than that in the classic model. In comparison with the classic model, the proposed model provides an RMSE of 7.59 × 10−5 for the output current curve and an RMSE of 0.158 for the output voltage curve, which are significantly better than those of the classic model. In the meantime, the proposed model does not produce extra simulation time compared with the classic double exponential model. So, the model has potential for application to flow estimation of the soft error rate (SER) at the circuit level to improve the accuracy of the results. Full article
(This article belongs to the Special Issue High-Reliability Semiconductor Devices and Integrated Circuits)
Show Figures

Figure 1

20 pages, 14993 KiB  
Article
Effect of Rigid Aquatic Bank Weeds on Flow Velocities and Bed Morphology
by Elzahry Farouk M. Elzahry, Mahmoud Ali R. Eltoukhy, Mohamed S. Abdelmoaty, Ola Mohamed Eraky and Ibrahim G. Shaaban
Water 2023, 15(18), 3173; https://doi.org/10.3390/w15183173 - 5 Sep 2023
Cited by 2 | Viewed by 1731
Abstract
The prediction of changes in velocity distribution and channel bed morphology is significant in open channel management and design. This paper implements experimental work to realize and quantify the effect of rigid aquatic bank weeds on vertical velocity profiles and channel bed morphology. [...] Read more.
The prediction of changes in velocity distribution and channel bed morphology is significant in open channel management and design. This paper implements experimental work to realize and quantify the effect of rigid aquatic bank weeds on vertical velocity profiles and channel bed morphology. In the experimental work, weeds were given a staggered distribution using three distances of 25, 50, and 75 mm, unilaterally and bilaterally, with Froude numbers ranging from 0.11 to 0.30, achieving 168 scenarios. Results for the tested weed cases showed that the average velocity was directly proportional to the weed density and approached the Froude number. By comparing the smooth and weeded velocities, it was found that the velocity inside the infested reach was close to the downstream velocity and exceeded the upstream velocity by about 10% and 41%, respectively. Scour depths along the centerline of the vegetated reach for the bilateral weeds were higher by 11% to 33% than those for the unilateral weeds. The maximum observed depth of the scour holes along the smooth bank was about 30% to 60% of the maximum scour depth at the middle line. Finally, to quantify the results, multiple regression analysis was performed to develop empirical equations to assist in the water management process. Full article
Show Figures

Figure 1

13 pages, 4526 KiB  
Article
Investigation of the Performance of Perovskite Solar Cells with ZnO-Covered PC61BM Electron Transport Layer
by Ting-Chun Chang, Chen-Yi Liao, Ching-Ting Lee and Hsin-Ying Lee
Materials 2023, 16(14), 5061; https://doi.org/10.3390/ma16145061 - 18 Jul 2023
Cited by 7 | Viewed by 1818
Abstract
Due to its high carrier mobility and electron transmission, the phenyl-C61-butyric acid methyl ester (PC61BM) is usually used as an electron transport layer (ETL) in perovskite solar cell (PSC) configurations. However, PC61BM films suffer from poor coverage [...] Read more.
Due to its high carrier mobility and electron transmission, the phenyl-C61-butyric acid methyl ester (PC61BM) is usually used as an electron transport layer (ETL) in perovskite solar cell (PSC) configurations. However, PC61BM films suffer from poor coverage on perovskite active layers because of their low solubility and weak adhesive ability. In this work, to overcome the above-mentioned shortcomings, 30 nm thick PC61BM ETLs with different concentrations were modeled. Using a 30 nm thick PC61BM ETL with a concentration of 50 mg/mL, the obtained performance values of the PSCs were as follows: an open-circuit voltage (Voc) of 0.87 V, a short-circuit current density (Jsc) of 20.44 mA/cm2, a fill factor (FF) of 70.52%, and a power conversion efficiency (PCE) of 12.54%. However, undesired fine cracks present on the PC61BM surface degraded the performance of the resulting PSCs. To further improve performance, multiple different thicknesses of ZnO interface layers were deposited on the PC61BM ETLs to release the fine cracks using a thermal evaporator. In addition to the pavement of fine cracks, the ZnO interface layer could also function as a hole-blocking layer due to its larger highest occupied molecular orbital (HOMO) energy level. Consequently, the PCE was improved to 14.62% by inserting a 20 nm thick ZnO interface layer in the PSCs. Full article
(This article belongs to the Special Issue Feature Papers in Thin Films and Interfaces)
Show Figures

Figure 1

15 pages, 4305 KiB  
Article
Mechanism of Nozzle Position Affecting Coalbed Methane Mining in High-Pressure Air Blasting
by Huaibao Chu, Donghui Wang, Xiaolin Yang, Mengfei Yu, Bo Sun, Shaoyang Yan, Guangran Zhang and Jie Xu
Sustainability 2023, 15(14), 11171; https://doi.org/10.3390/su151411171 - 18 Jul 2023
Cited by 3 | Viewed by 1383
Abstract
The use of clean energy is an important part of promoting sustainable energy development. As a clean energy source, coalbed methane, during the mining process, the position of the nozzle can influence coalbed methane extraction efficiency by affecting the cracking effect of coal. [...] Read more.
The use of clean energy is an important part of promoting sustainable energy development. As a clean energy source, coalbed methane, during the mining process, the position of the nozzle can influence coalbed methane extraction efficiency by affecting the cracking effect of coal. To investigate the impact of nozzles on the effect of coal fracture, a test of simulated coal by high-pressure air blasting was executed using nozzles 100 mm, 200 mm, and 250 mm from the orifice. Based on the test results and theories of fracture damage mechanics, two damage fracture models were established for the nozzles located in the middle-upper and middle-lower of the blasthole, respectively. The fracturing process and increased permeability mechanism of the coal were revealed by these two models. The results show that: when the nozzle is 100 mm from the orifice, the high-pressure air impacts the blasthole wall first, similar to a uniform expansion. Multiple longitudinal cracks are formed penetrating the coal. The permeability of the coal seam is greatly improved. When the nozzle is 200 mm and 250 mm from the orifice, the high-pressure air first impacts the bottom of the blasthole. The bottom hole angle and apex hole angle first form horizontal cracks while longitudinal cracks only appear at the same depth as the blasthole. The nozzle is 250 mm from the orifice to form a compaction zone at the bottom of the blasthole. The crack density is small and the tangential depth is shallow, which is not conducive to coalbed methane mining. The results of the research offer a theoretical framework and point of reference for the use of high-pressure air blasting technology in the extraction of coalbed methane (CBM). Full article
Show Figures

Figure 1

26 pages, 9061 KiB  
Article
A Multimodel Framework for Quantifying Flow and Advective Transport Controlled by Earthquake-Induced Canister Failures in a Reference Case for Radioactive Waste Geological Disposal
by Yun-Chen Yu, Chi-Jen Chen, Chih-Cheng Chung, Chuen-Fa Ni, I-Hsien Lee, Yuan-Chieh Wu and Tzu-Yu Lin
Energies 2023, 16(13), 5081; https://doi.org/10.3390/en16135081 - 30 Jun 2023
Cited by 3 | Viewed by 1786
Abstract
Characterizing flow and transport for earthquake-induced shear canister failure is critical for the performance and safety assessment of radioactive waste geological disposal. The study presents a modeling framework that integrates multiple models to account for fractures produced by shear displacements, evaluate canister failures, [...] Read more.
Characterizing flow and transport for earthquake-induced shear canister failure is critical for the performance and safety assessment of radioactive waste geological disposal. The study presents a modeling framework that integrates multiple models to account for fractures produced by shear displacements, evaluate canister failures, and simulate flow and advective transport in a conceptual repository site based on a selected reference case in an offshore island in western Taiwan. The typical KBS-3 disposal concept associated with 500 realizations of the shear-induced fracture properties is employed to quantify the uncertainty of flow and advective transport in the geological disposal site. The radionuclides in canisters are assumed to migrate through the shear-induced fractures surrounding the deposition holes. The results from 500 realizations show that two types of fractures produce a high potential to destroy canisters induced by the shear displacements. The earliest canister failure time influenced by possible shear movements is 0.23 million years for the reference case. The modeling framework identifies five canisters and the associated shear-induced fractures for flow and advective transport simulations. Based on the results of the density-dependent flow fields, the particle tracking algorithm enables the calculations of flow and transport parameters, including equivalent initial flux, equivalent flow rate, path length, travel time, and flow-related transport resistance for the identified five canisters. These parameters are critical for the performance and safety assessments of buffer erosion and canister corrosion near the disposal repository and the far field of the radioactive waste disposal site. Full article
(This article belongs to the Special Issue Mathematics and Computational Methods in Nuclear Energy Technology)
Show Figures

Figure 1

Back to TopTop