Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = high-sugar grass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3151 KiB  
Article
Epichloë gansuensis Enhances Achnatherum inebrians Seedlings Growth and Antioxidant Capacity Under UV-B Stress
by Cuiling Wan, Xiuzhang Li and Qian Shi
Agronomy 2025, 15(7), 1546; https://doi.org/10.3390/agronomy15071546 - 25 Jun 2025
Viewed by 340
Abstract
Strong UV-B radiation is one of the main climatic characteristics of the Qinghai–Tibet Plateau. Plants grown on the Tibetan Plateau are exposed to high-intensity UV radiation and therefore require effective mechanisms to adapt to these stresses. However, little attention has been paid to [...] Read more.
Strong UV-B radiation is one of the main climatic characteristics of the Qinghai–Tibet Plateau. Plants grown on the Tibetan Plateau are exposed to high-intensity UV radiation and therefore require effective mechanisms to adapt to these stresses. However, little attention has been paid to the response of grass–endophytic fungi symbiosis to UV-B radiation in this area. In this study, we investigated the relationship between Epichloë gansuensis and the growth and antioxidant responses of Achnatherum inebrians seedlings exposed to different UV-B doses, aiming to evaluate the growth and antioxidant capacity of A. inebrians seedlings under UV-B stress. The plant height, tillers, biomass, electrical conductivity, soluble sugars, malondialdehyde (MDA), proline, hydrogen peroxide (H2O2), superoxide dismutase (SOD), polyphenol oxidase (POD), and catalase (CAT) of A. inebrians seedlings were determined under different intensities of UV-B radiation treatments. The results showed that, with the increase in UV-B radiation intensity, the plant height, tiller and biomass of A. inebrians seedlings showed a decreasing trend, the electrical conductivity increased, malondialdehyde content increased, soluble sugar and proline content decreased, SOD, POD, and CAT activities showed a decreasing trend, and the content of H2O2 increased, which means that the UV-B radiation was able to inhibit the morphogenesis and aggravate the membrane lipid peroxidation of A. inebrians seedlings. The tolerance of the A. inebriansE. gansuensis symbiont to UV-B may enable it to have a high infection rate on the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

15 pages, 1691 KiB  
Article
Different Heat Tolerance of Two Creeping Bentgrass Cultivars Related to Altered Accumulation of Organic Metabolites
by Yong Du, Yue Zhao and Zhou Li
Agronomy 2025, 15(7), 1544; https://doi.org/10.3390/agronomy15071544 - 25 Jun 2025
Viewed by 325
Abstract
High-temperature stress is one of the main limiting factors for the cultivation and management of cool-season creeping bentgrass (Agrostis stolonifera). The objectives of the current study were to compare physiological changes in heat-tolerant PROVIDENCE and heat-sensitive PENNEAGLE and further identify differential [...] Read more.
High-temperature stress is one of the main limiting factors for the cultivation and management of cool-season creeping bentgrass (Agrostis stolonifera). The objectives of the current study were to compare physiological changes in heat-tolerant PROVIDENCE and heat-sensitive PENNEAGLE and further identify differential organic metabolites associated with thermotolerance in leaves. Two cultivars were cultivated under optimal conditions (23/19 °C) and high-temperature stress (38/33 °C) for 15 days. Heat stress significantly reduced leaf relative water content, chlorophyll content, and photochemical efficiency, and also resulted in severe oxidative damage to PROVIDENCE and PENNEAGLE. Heat-tolerant PROVIDENCE exhibited 10% less water deficit, 11% lower chlorophyll loss, and significantly lower oxidative damage as well as better cell membrane stability compared with PENNEAGLE under heat stress. Metabolomic analysis further found that PROVIDENCE accumulated more sugars (fructose, tagatose, lyxose, ribose, and 6-deoxy-D-glucose), amino acids (norleucine, allothreonine, and glycine), and other metabolites (lactic acid, ribitol, arabitol, and arbutin) than PENNEAGLE. These metabolites play positive roles in energy supply, osmotic adjustment, antioxidant, and membrane stability. Heat stress significantly decreased the accumulation of tricarboxylic acid cycle-related organic acids in two cultivars, resulting in a metabolic deficit for energy production. However, both PROVIDENCE and PENNEAGLE significantly up-regulated the accumulation of stigmasterol related to the stability of cell membrane systems under heat stress. The current findings provide a better understanding of differential thermotolerance in cool-season turfgrass species. In addition, the data can also be utilized in breeding programs to improve the heat tolerance of other grass species. However, the current study only focused on physiological and metabolic responses to heat stress between two genotypes. It would be better to utilize molecular techniques in future studies to better understand and validate differential heat tolerance in creeping bentgrass species. Full article
Show Figures

Figure 1

28 pages, 6610 KiB  
Article
The Impact of the Natural Grass-Growing Model on the Development of Korla Fragrant Pear Fruit, as Well as Its Influence on Post-Harvest Sugar Metabolism and the Expression of Key Enzyme Genes Involved in Fruit Sugar Synthesis
by Mingyang Yu, Lanfei Wang, Yan Chen, Weifan Fan, Hao Wang, Kailu Guo, Shutian Tao, Xin Gong and Jianping Bao
Agriculture 2025, 15(7), 792; https://doi.org/10.3390/agriculture15070792 - 7 Apr 2025
Viewed by 526
Abstract
In this study, the effects of natural grass cultivation and clear cultivation on the physiological characteristics of Korla fragrant pear during fruit development and storage were investigated, providing a scientific basis for high-quality fragrant pear cultivation. Sugar components, enzyme activities, and gene expression [...] Read more.
In this study, the effects of natural grass cultivation and clear cultivation on the physiological characteristics of Korla fragrant pear during fruit development and storage were investigated, providing a scientific basis for high-quality fragrant pear cultivation. Sugar components, enzyme activities, and gene expression levels in the pulp and peel were comprehensively analyzed during fruit development and storage. A classification model was constructed using machine learning algorithms (RF, KNN, SVM), and particle swarm optimization (PSO) was employed to identify key factors. The results showed that natural grass cultivation significantly enhanced sugar accumulation in the fruits, particularly at 120 and 150 days after flowering, with fructose content increasing by 9.09 mg·g−1 and 12.59 mg·g−1, respectively, and glucose content also rising significantly. Additionally, natural grass cultivation promoted the relative expression levels of GK, PFK, and FK genes in the pulp. During fruit storage, enzyme activities in the natural grass cultivation group were consistently higher than those in the clear cultivation group across different periods, with PFK activity being 23.73 U/L higher at 150 days of storage. The model identified the activities of glyceraldehyde kinase, phosphofructokinase, and fructokinase as key factors influencing sugar content. A significant negative correlation was observed between peel phosphofructokinase activity and fruit fructose content, though this relationship requires further investigation. This study elucidates the regulatory mechanism by which cultivation methods affect fruit quality through enzyme activity and photosynthetic product distribution. Our findings provide a critical scientific foundation for the high-quality cultivation of Korla fragrant pear and are expected to advance the efficient development of the fragrant pear industry, helping farmers improve both fruit quality and income. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

18 pages, 6621 KiB  
Article
Comparative Analysis of the Effects of Different Mulching Materials on Microclimate and Fruit Quality in Apricot Orchards
by Yixin Li, Jialong Li, Wanting Ma and Ling Guo
Horticulturae 2025, 11(4), 355; https://doi.org/10.3390/horticulturae11040355 - 25 Mar 2025
Viewed by 484
Abstract
The ‘Diaoganxing’ is the experimental material, with natural grass cover as the control, to compare the effects of 5 different mulching materials. The aim was to identify the most effective mulching type for improving orchard microenvironments and fruit quality. The results demonstrated that [...] Read more.
The ‘Diaoganxing’ is the experimental material, with natural grass cover as the control, to compare the effects of 5 different mulching materials. The aim was to identify the most effective mulching type for improving orchard microenvironments and fruit quality. The results demonstrated that waterproof, breathable film and reflective film significantly enhanced orchard microenvironments and fruit quality (p ≤ 0.05). Specifically, the waterproof, breathable film effectively regulated soil temperature and moisture, reducing soil temperature by 4.60% and increasing soil moisture by 17.09% in the 0–60 cm soil layer. Meanwhile, the reflective film optimized light distribution in the mid-lower canopy, increasing light intensity by 161.04–208.71% and reflectance by 2.6–3.3 times. In terms of fruit quality, the reflective film accelerated ripening by 10 d, increased carotenoid content by 15.34%, and achieved a peel color index (CCI) of 6.23. On the other hand, the waterproof breathable film advanced maturation by 7 d and significantly improved vitamin C, soluble sugar, and soluble solids content by 23.26%, 30.77%, and 12.76%, respectively. This study provides a scientific basis for the efficient and high-quality production of apricots in southern Xinjiang through the use of mulching practices. Full article
(This article belongs to the Special Issue Advances in Ecophysiology of Horticultural Crops)
Show Figures

Figure 1

14 pages, 2018 KiB  
Article
The Effect of Different Altitude Conditions on the Quality Characteristics of Turnips (Brassica rapa)
by Peng Jin, Min Liu, Meirong Chen, Weiwai Zhao, Xuemin Zhang, Tao Mou, Wang A., Zongsong Wang, Xingliang Xu and Lili Jiang
Agronomy 2025, 15(3), 750; https://doi.org/10.3390/agronomy15030750 - 20 Mar 2025
Viewed by 626
Abstract
The turnip (Brassica rapa) is a multipurpose crop traditionally utilized for food, fodder, and medicinal materials in China. However, it remains unclear how it adapts to harsh environments in Xizang. To clarify the gap, this study investigates the impact of altitude [...] Read more.
The turnip (Brassica rapa) is a multipurpose crop traditionally utilized for food, fodder, and medicinal materials in China. However, it remains unclear how it adapts to harsh environments in Xizang. To clarify the gap, this study investigates the impact of altitude on the nutritional profile of the “Zhongke 1” turnip across five altitude gradients (3300 m, 3600 m, 4270 m, 4300 m and 4450 m). Comprehensive post-harvest analyses of key nutritional parameters were conducted to evaluate quality variations at different altitudes. The results indicated that both the relative fodder value and relative grass quality of the turnips reached levels comparable to high-quality forage grasses. Additionally, the sugar and soluble carbohydrate content of the turnips exhibited a distinct pattern, initially declining and then rising with altitude. Total digestible nutrients exceeded 60%, while the crude protein content remained above 14% across all elevations. The lignin content in the belowground part of the turnip at 4450 m was more than two times higher than at 3300 m (6.59% vs. 2.96%). Notably, most nutritional indicators remained stable even at the highest elevation of 4450 m, highlighting the strong adaptability of turnips to the diverse environmental conditions of Xizang. The study further identified soil chemical properties, rather than temperature or precipitation, as the primary factors driving nutritional variations across altitudes. In conclusion, the turnip variety showed significant potential as a high-quality and high-productivity forage crop in high-altitude regions more than 4000 m above sea level. This study is of great significance for understanding the altitude adaptability of turnip quality and promoting the development of animal husbandry in the high altitude area of the Xizang Autonomous Region. Full article
Show Figures

Figure 1

13 pages, 1094 KiB  
Article
Enzymatic Activity and Nutrient Profile Assessment of Three Pleurotus Species Under Pasteurized Cenchrus fungigraminus Cultivation
by Nsanzinshuti Aimable, Hatungimana Mediatrice, Irambona Claude, Jules Biregeya, Yingping Hu, Hengyu Zhou, Penghu Liu, Jing Li, Zhanxi Lin, Guodong Lu and Dongmei Lin
Curr. Issues Mol. Biol. 2025, 47(3), 143; https://doi.org/10.3390/cimb47030143 - 22 Feb 2025
Viewed by 685
Abstract
Oyster mushrooms are regarded as one of the most significant edible mushrooms in terms of commercial value because of their rich nutritional profile. Many bioactive extracts from Pleurotus species have been found to exhibit antitumor and antioxidant activities. However, to grow oyster mushrooms [...] Read more.
Oyster mushrooms are regarded as one of the most significant edible mushrooms in terms of commercial value because of their rich nutritional profile. Many bioactive extracts from Pleurotus species have been found to exhibit antitumor and antioxidant activities. However, to grow oyster mushrooms in this study, the pasteurized Cenchrus fungigraminus was used as culture material, a type of grass that proliferates and has a high root growth rate. It contains high levels of sugar and protein and yields a large amount of biomass. Because of these characteristics, it is considered an efficient and cost-effective energy crop with various applications, including phytoremediation and fodder production. A pasteurization technique for this grass that is suited for the simplest formulation is simple and cost-effective for growing oyster mushrooms on small farms. This study used pasteurized Cenchrus fungigraminus as a substrate to grow three mushroom species: Pleurotus ostreatus, Pleurotus pulmonarius and Pleurotus florida. The aim was to evaluate their enzyme activities, growth rate, and yields. The findings demonstrated that the average growth rate of three species grown in pasteurized C. fungigraminus was between 25 days and 36 days. Therefore, the mycelium growth rate of P. ostreatus was faster than other pleurotus species in this study. The highest biological efficiency was recorded with P. ostreatus at 78.23%, then P. pulmonarius at 59.88, and lastly, 39.66% P. florida. The changes in five enzyme activities in distinct developmental stages of three different pleurotus species were evaluated. Therefore, the laccase had the highest peak with 13.8 U/g on the 20th day during the growth phase and gradually decreased to the fruiting body stage of P. ostreatus. The expression of manganese peroxidase reached the highest activity of 3.6 U/g in P. ostreatus compared to P. florida and P. pulmonarius on the 10th day. The expression of other enzymes varied between species and developmental phases. The results indicate the usefulness of pasteurized C. fungigraminus for cultivating Pleurotus species and expression enzyme activity in different Pleurotus species. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

23 pages, 3771 KiB  
Article
Study on the Adaptability of 15 Oat Varieties in Different Ecological Regions
by Guanlu Zhang, Jikuan Chai, Guiqin Zhao and Liang Zeng
Agronomy 2025, 15(2), 391; https://doi.org/10.3390/agronomy15020391 - 31 Jan 2025
Viewed by 1031
Abstract
The planting of oat varieties is influenced by factors such as their inherent traits, ecological regional climate, altitude conditions, and resistance differences, resulting in a decrease in both forage yield and quality. It is crucial to carefully select appropriate oat varieties for different [...] Read more.
The planting of oat varieties is influenced by factors such as their inherent traits, ecological regional climate, altitude conditions, and resistance differences, resulting in a decrease in both forage yield and quality. It is crucial to carefully select appropriate oat varieties for different ecological regions in order to enhance forage yield and quality, thereby facilitating the advancement of the grass industry. The correlation between the indices and the relationship between the indices and varieties were investigated through rigorous correlation analysis and principal component analysis. By employing gray correlation analysis, the 21 indices were transformed into 15 independent comprehensive indices. Subsequently, based on a comprehensive analysis, oat varieties suitable for cultivation in different ecological regions were identified. In this study, fifteen domestic and foreign oat varieties were cultivated in the semi-arid region of Weiqi Town and the alpine region of Damaying Town in Shandan County throughout 2023. Among the yield traits, Everleaf 126 exhibited a significantly lower plant height while possessing the largest leaf area, the highest number of effective tillers, and achieving the highest hay and seed yields (p < 0.05), which were 13,199 kg/ha and 5136 kg/ha, respectively. The plant height of Longyan No.3 in Damaying Town was significantly higher than that of other varieties. This variety also demonstrated the highest number of effective tillers, along with the greatest hay yield (7783 kg/ha) and seed yield (5033 kg/ha). Among the evaluated quality traits, Everleaf 126 in Weiqi Town exhibited the highest leaf–stem ratio, crude protein content, and crude fat content (p < 0.05). In contrast, Mengshi in Damaying Town had the highest leaf–stem ratio, while Longyan No.3 demonstrated the highest levels of crude protein and crude fat content. Furthermore, Molasses displayed the highest soluble sugar content in both locations (p < 0.05). The resistance of 15 oat varieties to pests and diseases was found to be lower in Weiqi Town compared to Damaying Town. Notably, Everleaf 126 exhibited the highest resistance to powdery mildew, red leaf disease, leaf spot disease, and aphids among the varieties tested in Weiqi Town. In contrast, Longyan No.3 demonstrated superior resistance in Damaying Town. In conclusion, based on a comprehensive analysis of the gray correlation degree, in the semi-arid region, Everleaf 126 exhibited the most superior performance, followed by Molasses and Longyan No.3. In the alpine region, Longyan No.3 demonstrated the highest overall performance, followed closely by Molasses and Mengshi. These varieties exhibit significant potential for promotion as high-yield, high-quality forage oats in semi-arid and alpine environments. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

17 pages, 1456 KiB  
Article
Grass Cover in Vineyards as a Multifunctional Solution for Sustainable Grape Growing: A Case Study of Cabernet Sauvignon Cultivation in Serbia
by Zoran Pržić, Aleksandar Simić, Snežana Brajević, Nebojša Marković, Ana Vuković Vimić, Mirjam Vujadinović Mandić and Mariana Niculescu
Agronomy 2025, 15(2), 253; https://doi.org/10.3390/agronomy15020253 - 21 Jan 2025
Viewed by 1196
Abstract
Faced with the challenges posed by climate change, Serbian viticulture is looking for sustainable solutions for adaptable production. This study shows that grass is a multifunctional tool for overcoming the challenges of intensive viticulture while maintaining the quality of the grapes. In a [...] Read more.
Faced with the challenges posed by climate change, Serbian viticulture is looking for sustainable solutions for adaptable production. This study shows that grass is a multifunctional tool for overcoming the challenges of intensive viticulture while maintaining the quality of the grapes. In a three-year research experiment (2020–2022), the maintenance of an inter-row sward in a vineyard with four certified high-quality French Cabernet Sauvignon clones was investigated, and its effects on the ampelographic composition of the grapes and the quality of the grape juice (must) were studied as a function of wine quality. A grass sward was established between the rows as a biological soil management system and as a climate change adaptation measure in a high-intensity viticultural system. A grass–legume mixture was used as an inter-row cover crop, with nitrogen applied in two doses (50 and 100 kg ha−1) in spring. The growth of the grasses responded to the nitrogen fertilisation, which was reflected in the biomass production, surface cover and nitrogen content in the biomass. At the end of the study, the biomass of the grass increased threefold when a high dose of nitrogen was applied compared to the non-fertilised grass. In contrast to the effects of nitrogen on the sward, N has no effect on the quantitative or qualitative parameters of the grapes. Clone 169 was separated for most grape mechanical parameters such as the bunch mass, all berries and the bunch stem; clone 15 showed the best grape juice quality parameters such as the sugar content and glycoacidometric index. The results show an option for climate change adaptation in viticulture that can mitigate the effects of rising temperatures, contribute to soil conservation and carbon storage in biomass and enable timely interventions in vineyards after heavy rainfall by creating accessible paths within the vineyards. The three-year effect of the different nutrient management of the sward in the inter-rows of Cabernet Sauvignon showed that the interaction between the two systems, sward and vine, is low and has no negative impact on the ampelographic and qualitative grape parameters. Full article
(This article belongs to the Special Issue Adaptations and Responses of Cropping Systems to Climate Change)
Show Figures

Figure 1

14 pages, 6043 KiB  
Article
Developing Site-Specific Prescription Maps for Sugarcane Weed Control Using High-Spatial-Resolution Images and Light Detection and Ranging (LiDAR)
by Kerin F. Romero and Muditha K. Heenkenda
Land 2024, 13(11), 1751; https://doi.org/10.3390/land13111751 - 25 Oct 2024
Cited by 1 | Viewed by 1735
Abstract
Sugarcane is a perennial grass species mainly for sugar production and one of the significant crops in Costa Rica, where ideal growing conditions support its cultivation. Weed control is a critical aspect of sugarcane farming, traditionally managed through preventive or corrective mechanical and [...] Read more.
Sugarcane is a perennial grass species mainly for sugar production and one of the significant crops in Costa Rica, where ideal growing conditions support its cultivation. Weed control is a critical aspect of sugarcane farming, traditionally managed through preventive or corrective mechanical and chemical methods. However, these methods can be time-consuming and costly. This study aimed to develop site-specific, variable rate prescription maps for weed control using remote sensing. High-spatial-resolution images (5 cm) and Light Detection And Ranging (LiDAR) were acquired using a Micasense Rededge-P camera and a DJI L1 sensor mounted on a drone. Precise locations of weeds were collected for calibration and validation. Normalized Difference Vegetation Index derived from multispectral images separated vegetation coverage and soil. A deep learning (DL) algorithm further classified vegetation coverage into sugarcane and weeds. The DL model performed well without overfitting. The classification accuracy was 87% compared to validation samples. The density and average heights of weed patches were extracted from the canopy height model (LiDAR). They were used to derive site-specific prescription maps for weed control. This efficient and precise alternative to traditional methods could optimize weed control, reduce herbicide usage and provide more profitable yield. Full article
Show Figures

Figure 1

20 pages, 2346 KiB  
Article
Effects of Water, Fertilizer and Heat Coupling on Soil Hydrothermal Conditions and Yield and Quality of Annona squamosa
by Weihua Wang, Ting Bai and Xingwen Liu
Agronomy 2024, 14(10), 2189; https://doi.org/10.3390/agronomy14102189 - 24 Sep 2024
Cited by 1 | Viewed by 1114
Abstract
Seasonal drought and summer soil high-temperature stress in Southern China often lead to decreased yield and quality of Annona squamosa. It is important to explore reasonable and effective water and fertilizer management measures as well as cover measures to improve the soil [...] Read more.
Seasonal drought and summer soil high-temperature stress in Southern China often lead to decreased yield and quality of Annona squamosa. It is important to explore reasonable and effective water and fertilizer management measures as well as cover measures to improve the soil hydrothermal conditions in orchards to realize the increase in yield and quality of Annona squamosa. This study involved a two-year (2022–2023) field experiment in Yun County, Lincang City, Yunnan Province, using three factors and a three-level orthogonal test, resulting in nine different experimental treatments for water, fertilizer and heat. The three irrigation levels were W1 (soil moisture content of 55% of field moisture capacity), W2 (soil moisture content of 75% of field moisture capacity) and W3 (soil moisture content of 85% of field moisture capacity). The three fertilizer levels were F1 (1666 kg·hm−2), F2 (2083 kg·hm−2) and F3 (2500 kg·hm−2), and the three cover methods were A1 (no cover), A2 (fresh grass cover) and A3 (straw cover). The effects of these treatments on soil hydrothermal conditions, growth indices and fruit yield and quality of Annona s1uamosa were systematically monitored and analyzed, and the relationships between these treatments and yield and quality was analyzed based on a Mantel test. The results showed that T5 (W2F2A3) had the highest average soil moisture content over two years, followed by T7 (W3F1A3). The T7 (W3F1A3) treatment effectively reduced soil temperature by 5 °C compared to T1 (W1F1A1). T5 (W2F2A3) had the highest average yield over two years, with an increase of 33.99% compared to T1 (W1F1A1). Additionally, T5 (W2F2A3) has the highest average soluble solids, soluble sugars and vitamin C content over two years, with increases of 28.13%, 13.36% and 4.86%, respectively, compared to T1 (W1F1A1). A Pearson correlation analysis showed that there was a significant correlation between Annona squamosa growth and soil moisture content and soil temperature, and the Mantel test showed that soil hydrothermal conditions had significant influence on the growth and yield. T5 (W2F2A3) has the highest comprehensive benefit in promoting growth, increasing yield and improving quality for the plant. The effects of different irrigation quantities, fertilizer amounts and different cover measures on the coupling interaction for soil hydrothermal status in the root zone, growth, yield and quality of Annona squamosa were investigated, providing reliable theoretical support for the scientific planting model of Annona squamosa in the low-heat river valley of Yunnan Province. Full article
(This article belongs to the Special Issue Advances in Tillage Methods to Improve the Yield and Quality of Crops)
Show Figures

Figure 1

27 pages, 6778 KiB  
Article
Effects of High Salinity and Water Stress on Wetland Grasses from the Spanish Mediterranean Coast
by Adrián Sapiña-Solano, Monica Boscaiu, Francisco Collado, Oscar Vicente and Mario X. Ruiz-González
Plants 2024, 13(14), 1939; https://doi.org/10.3390/plants13141939 - 15 Jul 2024
Cited by 2 | Viewed by 3553
Abstract
The impacts of climate change are reaching unprecedented levels, heightening the risk of species loss and ecosystem service degradation. Wetlands, highly threatened ecosystems, serve vital ecological functions by capturing carbon, filtering water, and harbouring diverse wildlife. Coastal wetlands encounter many challenges, such as [...] Read more.
The impacts of climate change are reaching unprecedented levels, heightening the risk of species loss and ecosystem service degradation. Wetlands, highly threatened ecosystems, serve vital ecological functions by capturing carbon, filtering water, and harbouring diverse wildlife. Coastal wetlands encounter many challenges, such as increased drought periods and escalating salinity levels, severely impacting plant biodiversity. Assessing how plants respond to various environmental stress factors is imperative for devising successful conservation strategies. In the present study, we examined three representative grass species found in various habitats within the Albufera Natural Park, close to the city of Valencia on the Spanish Mediterranean coast: Imperata cylindrica, Phragmites australis, and Saccharum ravennae. High salinity and water stress conditions were induced by subjecting the plants to irrigation with solutions containing 200, 400, 600, and 800 mM NaCl or withholding irrigation altogether to mimic coastal flooding and drought scenarios. The treatments were maintained until noticeable wilting of the plants occurred, at which point a range of stress biomarkers were determined, including photosynthetic pigments, ions, osmolytes, oxidative stress markers, and antioxidant metabolites, as well as antioxidant enzyme activities. Saccharum ravennae displayed the highest sensitivity to salt stress, whereas I. cylindrica appeared to be the most tolerant. The primary salinity tolerance mechanism observed in I. cylindrica and P. australis was a blockage of ion transport from the root zone to the aerial part, together with the salt-induced accumulation of proline and soluble sugars to high concentrations in the former. No significant effects of the water deficit treatment on the growth or biochemical parameters were observed for any of the analysed species. These findings offer valuable information for the effective management and conservation of coastal wetlands facing the challenges posed by climate change. Full article
Show Figures

Figure 1

11 pages, 2252 KiB  
Article
Screening Lactic Acid Bacteria Strains for Their Tolerance to Increased Osmotic Pressure and Their Suitability to Ensile High Dry Matter Forages
by Siriwan D. Martens, Wolfgang Wagner, Mariana Schneider, Klaus Hünting, Susanne Ohl and Christof Löffler
Agriculture 2024, 14(6), 825; https://doi.org/10.3390/agriculture14060825 - 25 May 2024
Viewed by 1410
Abstract
Lactic acid bacteria (LAB) should not only survive, but also perform under increased osmotic pressure in the process of ensiling, which results from the best practice of wilting forage. Simple laboratory protocols are needed to select suitable LAB strains as inoculants for high [...] Read more.
Lactic acid bacteria (LAB) should not only survive, but also perform under increased osmotic pressure in the process of ensiling, which results from the best practice of wilting forage. Simple laboratory protocols are needed to select suitable LAB strains as inoculants for high dry matter (DM) conditions. The aim of this study was to simulate conditions of high osmolality without inducing salt stress and to select a suitable indicator of LAB performance. For that, an MRS medium was enriched with increasing concentrations of glucose and fructose plus a maximum of 28 g KCl/L until achieving an osmolality of 2.4 osmol/kg. Both, growth in the inoculated medium and pH decline, were then compared to the LAB performance in the basic medium. The latter was clearly delayed in the new medium. Finally, the method was validated by comparing the pH of small-scale grass silages of 30–35 and 45–49% target DM after 3–5 days of ensiling to the pH values of the microbiological growth medium. The pH levels of treatments with the homofermentative LAB were clearly attributable to the dry matter or the sugar concentration, respectively. The developed liquid growth medium sufficiently approximates high DM conditions to select for the osmotolerant homofermentative LAB. Full article
(This article belongs to the Special Issue Silage Preparation, Processing and Efficient Utilization)
Show Figures

Figure 1

19 pages, 15844 KiB  
Article
Physiological and Biochemical Responses of Melilotus albus to Saline and Alkaline Stresses
by Zhao Wang, Jia You, Xiaoyue Xu, Ying Yang, Jianli Wang, Dongmei Zhang, Linlin Mu, Xu Zhuang, Zhongbao Shen and Changhong Guo
Horticulturae 2024, 10(3), 297; https://doi.org/10.3390/horticulturae10030297 - 19 Mar 2024
Cited by 6 | Viewed by 2042
Abstract
Sweet clover (Melilotus albus) is a high-quality leguminous forage grass with salinity tolerance, drought tolerance, and cold hardiness. We selected four varieties of sweet clover with different sensitivities (061898, 061930, No. 55 white flower, and Ningxia white flower) and analyzed the [...] Read more.
Sweet clover (Melilotus albus) is a high-quality leguminous forage grass with salinity tolerance, drought tolerance, and cold hardiness. We selected four varieties of sweet clover with different sensitivities (061898, 061930, No. 55 white flower, and Ningxia white flower) and analyzed the effects of different concentrations of three sodium salts (Na2CO3, NaHCO3, and NaCl) on their physiology and biochemistry responses. Growth and development indexes (such as germination rate, root length, shoot length), chlorophyll content, osmotic regulators (proline, soluble sugar), malondialdehyde (MDA), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were determined under saline–alkali stress. Seed germination and seedling growth of all four clover species were significantly inhibited under saline–alkali stress. During germination, seed germination rate, root length, and shoot length decreased with increasing saline and alkaline concentration. Under saline–alkali stress, chlorophyll content tended to increase and then decrease, cell damage and death increased, and malondialdehyde, soluble sugar, and proline content tended to increase and then decrease. Moreover, the activities of SOD, POD, and CAT all increased and then decreased. Under Na2CO3 stress, the decrease in chlorophyll content of the resistant variety 061898 was less than in the sensitive Ningxia white flower variety. As the concentrations of Na2CO3, NaHCO3, and NaCl increased, the maximum photochemical efficiency of PSII was significantly affected. The resistant 061898 is capable of maintaining higher photosynthetic efficiency. Furthermore, under treatments with the three kinds of saline–alkali solutions, cell damage and death for Ningxia white flower were greater than in 061898. For 061898, the increases in soluble sugar and proline content were greater and the increase in malondialdehyde content was less, while the antioxidant enzyme activities were higher than those in Ningxia white flower. All four sweet clover varieties had higher stress resistance with neutral than with alkaline salts. When stressed by medium to high saline–alkali concentrations, sweet clover seedlings had increased osmotic substance content, enhanced antioxidant enzyme activity, and regulated physiological metabolism. Additionally, sweet clovers regulated the expression of WRKY33, GH3, CYCD3, OXI1, MKK2, MYC2, JAZ, COI1, PYL, PP2C, TGA, and MPK3 to adapt to the saline–alkali environment and improve saline–alkali tolerance. Our analysis of the sweet clover salinity tolerance mechanism contributes to its further use and is of significant importance for addressing land salinization and promoting sustainable agricultural and pastoral practices in China. Full article
Show Figures

Figure 1

33 pages, 1478 KiB  
Review
Comparative Analysis of Acidic and Alkaline Pretreatment Techniques for Bioethanol Production from Perennial Grasses
by Lovisa Panduleni Johannes and Tran Dang Xuan
Energies 2024, 17(5), 1048; https://doi.org/10.3390/en17051048 - 22 Feb 2024
Cited by 18 | Viewed by 5205
Abstract
This review paper examines acid and alkaline pretreatments on perennial grasses for second-generation (2G) bioethanol production, a relatively unexplored area in this field. It compares the efficiency of these pretreatments in producing fermentable sugar and bioethanol yield. This study finds that alkaline pretreatment [...] Read more.
This review paper examines acid and alkaline pretreatments on perennial grasses for second-generation (2G) bioethanol production, a relatively unexplored area in this field. It compares the efficiency of these pretreatments in producing fermentable sugar and bioethanol yield. This study finds that alkaline pretreatment is more effective than acidic pretreatment in removing lignin and increasing sugar yield, leading to higher ethanol yields. However, it is costlier and requires longer reaction times than acidic pretreatment, while acidic pretreatment often leads to the formation of inhibitory compounds at higher temperatures, which is undesirable. The economic and environmental impacts of lignocellulosic biomass (LCB) are also assessed. It is revealed that LCB has a lower carbon but higher water footprint and significant costs due to pretreatment compared to first-generation biofuels. This review further explores artificial intelligence (AI) and advanced technologies in optimizing bioethanol production and identified the gap in literature regarding their application to pretreatment of perennial grasses. This review concludes that although perennial grasses hold promise for 2G bioethanol, the high costs and environmental challenges associated with LCB necessitate further research. This research should focus on integrating AI to optimize the pretreatment of LCB, thereby improving efficiency and sustainability in 2G biofuel production. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy—2nd Edition)
Show Figures

Figure 1

13 pages, 283 KiB  
Article
The Influence of Mineral NPK Fertiliser Rates on Potassium Dynamics in Soil: Data from a Long-Term Agricultural Plant Fertilisation Experiment
by Jonas Arbačauskas, Zigmas Jonas Vaišvila, Gediminas Staugaitis, Lina Žičkienė, Aistė Masevičienė and Donatas Šumskis
Plants 2023, 12(21), 3700; https://doi.org/10.3390/plants12213700 - 27 Oct 2023
Cited by 7 | Viewed by 3533
Abstract
A fertilisation experiment, with the aim to determine the effects of different potassium fertiliser rates and their interactions with nitrogen and phosphorus on field-rotation productivity, potassium balance, fertiliser utilization, and changes in the content of potassium in soil, was carried out in Lithuania [...] Read more.
A fertilisation experiment, with the aim to determine the effects of different potassium fertiliser rates and their interactions with nitrogen and phosphorus on field-rotation productivity, potassium balance, fertiliser utilization, and changes in the content of potassium in soil, was carried out in Lithuania between 1971 and 2020. The multi-factorial scheme with 45 treatment plots, where seven rates (including zero) of nitrogen, phosphorus, and potassium fertilisers were studied. The experimental treatments during the study period were carried out on winter wheat, spring wheat, spring barley, sugar beet, spring rapeseed, and annual and perennial grasses. It was found that potassium fertilisers were the most effective on agricultural crops when used in combination with other major plant nutrients—i.e., nitrogen and phosphorus. The required balance of potassium (K2O) in the soil was measured, when nitrogen and phosphorus fertilisers were applied together to compensate for potassium removal; when applying low nitrogen (N) (72 kg ha−1) and phosphorus (P2O5) (64 kg ha−1) fertiliser rates, 128 kg ha−1 of potassium fertilisers are required. When using high nitrogen (180 kg ha−1) and phosphorus (160 kg ha−1) fertiliser rates, 160 kg ha−1 of potassium is needed. The highest potassium uptake, reaching 51.6%, was achieved when plants had been fertilised with nitrogen (108 kg ha−1), phosphorus (96 kg ha−1), and potassium (96 kg ha−1). When fertilising with potassium fertilisers alone, the content of plant-available K2O content in the soil increased, whereas with fertilisation with nitrogen and phosphorus combined K2O content is decreased, except in the plots where the plants had been fertilised with potassium fertiliser at rates of 128 kg ha−1 and higher. Due to the influence of fertilisers, the amount of non-exchangeable potassium in the soil also increased, but relatively little compared to the amount of available potassium content. Thus, one of the main conditions for the effective use of potassium fertilisers is ensuring optimal plant nutrition with other nutrition elements, especially nitrogen and phosphorus. Full article
Back to TopTop