Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (199)

Search Parameters:
Keywords = high-resolution pollutant estimates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 4658 KB  
Article
Development of Life Course Exposure Estimates Using Geospatial Data and Residence History
by Stuart Batterman, Md Kamrul Islam and Stephen Goutman
Int. J. Environ. Res. Public Health 2025, 22(11), 1629; https://doi.org/10.3390/ijerph22111629 - 26 Oct 2025
Viewed by 337
Abstract
Life course exposure estimates developed using geospatial datasets must address issues of individual mobility, missing and incorrect data, and incompatible scaling of the datasets. We propose methods to assess and resolve these issues by developing individual exposure histories for an adult cohort of [...] Read more.
Life course exposure estimates developed using geospatial datasets must address issues of individual mobility, missing and incorrect data, and incompatible scaling of the datasets. We propose methods to assess and resolve these issues by developing individual exposure histories for an adult cohort of patients with amyotrophic lateral sclerosis (ALS) and matched controls using residence history and PM2.5, black carbon, NO2, and traffic intensity estimates. The completeness of the residence histories was substantially improved by adding both date and age questions to the survey and by accounting for the preceding and following residence. Information for the past five residences fully captured a 20-year exposure window for 95% of the cohort. A novel spatial multiple imputation approach dealt with missing or incomplete address data and avoided biases associated with centroid approaches. These steps boosted the time history completion to 99% and the geocoding success to 92%. PM2.5 and NO2, but not black carbon, had moderately high agreement with observed data; however, the 1 km resolution of the pollution datasets did not capture fine scale spatial heterogeneity and compressed the range of exposures. This appears to be the first study to examine the mobility of an older cohort for long exposure windows and to utilize spatial imputation methods to estimate exposure. The recommended methods are broadly applicable and can improve the completeness, reliability, and accuracy of life course exposure estimates. Full article
Show Figures

Figure 1

27 pages, 10609 KB  
Article
High-Resolution Traffic Flow Prediction and Vehicle Emission Inventory Estimation for Chinese Cities Using Geo-Spatial Data of Jinan City, China
by Xuejun Yan, Qi Yang, Jingyang Fan, Ziyuan Cai, Pan Wang, Xiuli Zhang, Hengzhi Wang, Chenxi Zhu, Dongquan He and Chunxiao Hao
Atmosphere 2025, 16(10), 1213; https://doi.org/10.3390/atmos16101213 - 20 Oct 2025
Viewed by 254
Abstract
Motor vehicle emissions are a major air quality concern in Chinese cities. However, traditional population-based emission inventory methods fail to capture the spatial and temporal variations in emissions for effective policy design. This study proposes a high-resolution approach for traffic flow prediction and [...] Read more.
Motor vehicle emissions are a major air quality concern in Chinese cities. However, traditional population-based emission inventory methods fail to capture the spatial and temporal variations in emissions for effective policy design. This study proposes a high-resolution approach for traffic flow prediction and vehicle emission inventory estimation, using Jinan City, China, as a case study. We leverage multi-source geospatial data and employ a two-fold random forest model to predict hourly traffic flow at a road-segment level. Speed-aligned emission factors were then combined with these data to calculate hourly and road-level vehicle emission estimates. Compared to traditional methods, our approach offers substantial improvements: (1) improved spatiotemporal resolution; (2) enhanced accuracy of traffic flow prediction; and (3) support for more effective vehicle emission control strategies. Results show that heavy-duty vehicles, particularly freight trucks operating on inter-regional corridors through Jinan, contribute 78% more to NOX emissions than local light-duty vehicles. These transient emissions are typically overlooked in static inventories but constitute a significant source of urban pollution. This study offers valuable insights for combining geospatial data and machine learning to improve the accuracy and resolution of vehicle emission inventories, supporting urban air quality policy and planning. Full article
(This article belongs to the Special Issue Recent Advances in Mobile Source Emissions (2nd Edition))
Show Figures

Figure 1

33 pages, 6714 KB  
Article
Spatiotemporal Characterization of Atmospheric Emissions from Heavy-Duty Diesel Trucks on Port-Connected Expressways in Shanghai
by Qifeng Yu, Lingguang Wang, Siyu Pan, Mengran Chen, Kun Qiu and Xiqun Huang
Atmosphere 2025, 16(10), 1183; https://doi.org/10.3390/atmos16101183 - 14 Oct 2025
Viewed by 288
Abstract
Heavy-duty diesel trucks (HDDTs) are recognized as significant sources of air pollutants and greenhouse gases (GHGs) along freight corridors in port cities. Despite their impact, few studies have provided detailed spatiotemporal insights into their emissions within port-adjacent highway systems. This study presents a [...] Read more.
Heavy-duty diesel trucks (HDDTs) are recognized as significant sources of air pollutants and greenhouse gases (GHGs) along freight corridors in port cities. Despite their impact, few studies have provided detailed spatiotemporal insights into their emissions within port-adjacent highway systems. This study presents a high-resolution, hourly emission inventory at the road-segment level for six major expressways in Shanghai, one of China’s leading port cities. The emission estimates are derived using a locally adapted COPERT V model, calibrated with HDDT GPS trajectory data and detailed road network information from OpenStreetMap. The inventory quantifies emissions of CO2, NOx, CO, PM, and VOCs, highlighting distinct temporal and spatial variation patterns. Weekday emissions consistently exceed those of weekends, with three prominent traffic-related peaks occurring between 5:00–7:00, 10:00–12:00, and 14:00–16:00. Spatial analysis identifies the G1503 and S20 expressways as major emission corridors, with S20 exhibiting particularly high emission intensity relative to its length. Combined spatiotemporal patterns reveal that weekday emission hotspots are more concentrated, reflecting typical freight activity cycles such as morning dispatch and afternoon return. The findings provide a scientific basis for formulating more precise emission control measures targeting HDDT operations in urban port environments. Full article
(This article belongs to the Special Issue Traffic Related Emission (3rd Edition))
Show Figures

Figure 1

31 pages, 10459 KB  
Article
Ship Air Emission and Their Air Quality Impacts in the Panama Canal Area: An Integrated AIS-Based Estimation During Hotelling Mode in Anchorage Zone
by Yongchan Lee, Youngil Park, Gaeul Kim, Jiye Yoo, Cesar Pinzon-Acosta, Franchesca Gonzalez-Olivardia, Edmanuel Cruz and Heekwan Lee
J. Mar. Sci. Eng. 2025, 13(10), 1888; https://doi.org/10.3390/jmse13101888 - 2 Oct 2025
Viewed by 662
Abstract
This study presents an integrated assessment of anchorage-related emissions and air quality impacts in the Panama Canal region through Automatic Identification System (AIS) data, bottom-up emission estimation, and atmospheric dispersion modeling. One year of terrestrial AIS observations (July 2024–June 2025) captured 4641 vessels [...] Read more.
This study presents an integrated assessment of anchorage-related emissions and air quality impacts in the Panama Canal region through Automatic Identification System (AIS) data, bottom-up emission estimation, and atmospheric dispersion modeling. One year of terrestrial AIS observations (July 2024–June 2025) captured 4641 vessels with highly variable waiting times: mean 15.0 h, median 4.9 h, with maximum episodes exceeding 1000 h. Annual emissions totaled 1,390,000 tons of CO2, 20,500 tons of NOx, 4250 tons of SO2, 656 tons of PM10, and 603 tons of PM2.5, with anchorage activities contributing 497,000 tons of CO2, 7010 tons of NOx, 1520 tons of SO2, 232 tons of PM10, and 214 tons of PM2.5. Despite the main engines being shut down during anchorage, these activities consistently accounted for 34–36% of the total emissions across all pollutants. High-resolution emission mapping revealed hotspots concentrated in anchorage zones, port berths, and canal approaches. Dispersion simulations revealed strong meteorological control: northwesterly flows transported emissions offshore, sea–land breezes produced afternoon fumigation peaks affecting Panama City, and southerly winds generated widespread onshore impacts. These findings demonstrate that anchorage operations constitute a major source of shipping-related pollution, highlighting the need for operational efficiency improvements and meteorologically informed mitigation strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

15 pages, 2475 KB  
Article
Nationwide Decline of Wet Sulfur Deposition in China from 2013 to 2023
by Yue Xi, Qiufeng Wang, Jianxing Zhu, Tianxiang Hao, Qiongyu Zhang, Yanran Chen, Zihan Tai, Quanhong Lin and Hao Wang
Sustainability 2025, 17(19), 8815; https://doi.org/10.3390/su17198815 - 1 Oct 2025
Viewed by 502
Abstract
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. [...] Read more.
Atmospheric sulfur (S) deposition, a key component of acid deposition, poses risks to ecosystems, human health, and sustainable development. In China, decades of coal-dominated energy use caused severe S pollution, but recent emission-control policies and energy restructuring have sought to reverse this trend. However, the effectiveness and regional differences in these measures remain insufficiently quantified. Here, we combined continuous observations from 43 monitoring sites (2013–2023), satellite-derived SO2 vertical column density, and multi-source environmental datasets to construct a high-resolution record of wet S deposition. A random forest model, validated with R2 = 0.52 and RMSE = 1.2 kg ha−1 yr−1, was used to estimate fluxes and spatial patterns, while ridge regression and SHAP analysis quantified the relative contributions of emissions, precipitation, and socioeconomic factors. This framework allows us to assess both the environmental and health-related sustainability implications of sulfur deposition. Results show a nationwide decline of more than 50% in wet S deposition during 2013–2023, with two-thirds of sites and 95% of grids showing significant decreases. Historical hotspots such as the North China Plain and Sichuan Basin improved markedly, while some southern provinces (e.g., Guizhou, Hunan, Jiangxi) still exhibited high deposition (>20 kg ha−1 yr−1). Over 90% of the reduction was attributable to emission declines, confirming the dominant effect of sustained policy-driven measures. This study extends sulfur deposition records to 2023, demonstrates the value of integrating ground monitoring with remote sensing and machine learning, and provides robust evidence that China’s emission reduction policies have delivered significant environmental and sustainability benefits. The findings offer insights for region-specific governance and for developing countries balancing economic growth with ecological protection. Full article
Show Figures

Figure 1

30 pages, 401 KB  
Systematic Review
Explainable Artificial Intelligence and Machine Learning for Air Pollution Risk Assessment and Respiratory Health Outcomes: A Systematic Review
by Israel Edem Agbehadji and Ibidun Christiana Obagbuwa
Atmosphere 2025, 16(10), 1154; https://doi.org/10.3390/atmos16101154 - 1 Oct 2025
Viewed by 698
Abstract
Air pollution is a leading environmental risk that causes respiratory morbidity and mortality. The increasing availability of high-resolution environmental data and air pollution-related health cases have accelerated the use of machine learning models (ML) to estimate environmental exposure–response relationships, forecast health risks and [...] Read more.
Air pollution is a leading environmental risk that causes respiratory morbidity and mortality. The increasing availability of high-resolution environmental data and air pollution-related health cases have accelerated the use of machine learning models (ML) to estimate environmental exposure–response relationships, forecast health risks and call for the needed policy and practical interventions. Unfortunately, ML models are opaque, in a sense that, it is unclear how these models combine various data inputs to make a concise decision. Thus, limiting its trust and use in clinical matters. Explainable artificial intelligence (xAI) models offer the necessary techniques to ensure transparent and interpretable models. This systematic review explores online data repositories through the lens of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline to synthesize articles from 2020 to 2025. Various inclusion and exclusion criteria were established to narrow the search to a final selection of 92 articles, which were thoroughly reviewed by independent researchers to reduce bias in article assessment. Equally, the ROBINS-I (Risk Of Bias In Non-randomized Studies of Interventions) domain strategy was helpful in further reducing any possible risk in the article assessment and its reproducibility. The findings reveal a growing adoption of ML techniques such as random forests, XGBoost, parallel lightweight diagnosis models and deep neural networks for health risk prediction, with SHAP (SHapley Additive exPlanations) emerging as the dominant technique for these models’ interpretability. The extremely randomized tree (ERT) technique demonstrated optimal performance but lacks explainability. Moreover, the limitations of these models include generalizability, data limitations and policy translation. This review’s outcome suggests limited research on the integration of LIME (Local Interpretable Model-Agnostic Explanations) in the current ML model; it recommends that future research could focus on causal-xAI-ML models. Again, the use of such models in respiratory health issues may be complemented with a medical professional’s opinion. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

24 pages, 4286 KB  
Article
Validation of Anthropogenic Emission Inventories in Japan: A WRF-Chem Comparison of PM2.5, SO2, NOx and CO Against Observations
by Kenichi Tatsumi and Nguyen Thi Hong Diep
Data 2025, 10(9), 151; https://doi.org/10.3390/data10090151 - 22 Sep 2025
Viewed by 676
Abstract
Reliable, high-resolution emission inventories are essential for accurately simulating air quality and for designing evidence-based mitigation policies. Yet their performance over Japan—where transboundary inflow, strict fuel regulations, and complex source mixes coexist—remains poorly quantified. This study therefore benchmarks four widely used anthropogenic inventories—REAS [...] Read more.
Reliable, high-resolution emission inventories are essential for accurately simulating air quality and for designing evidence-based mitigation policies. Yet their performance over Japan—where transboundary inflow, strict fuel regulations, and complex source mixes coexist—remains poorly quantified. This study therefore benchmarks four widely used anthropogenic inventories—REAS v3.2.1, CAMS-GLOB-ANT v6.2, ECLIPSE v6b, and HTAP v3—by coupling each to WRF-Chem (10 km grid) and comparing simulated surface PM2.5, SO2, CO, and NOx with observations from >900 stations across eight Japanese regions for the years 2010 and 2015. All simulations shared identical meteorology, chemistry, and natural-source inputs (MEGAN 2.1 biogenic VOCs; FINN v1.5 biomass burning) so that differences in model output isolate the influence of anthropogenic emissions. HTAP delivered the most balanced SO2 and CO fields (regional mean biases mostly within ±25%), whereas ECLIPSE reproduced NOx spatial gradients best, albeit with a negative overall bias. REAS captured industrial SO2 reliably but over-estimated PM2.5 and NOx in western conurbations while under-estimating them in rural prefectures. CAMS-GLOB-ANT showed systematic biases—under-estimating PM2.5 and CO yet markedly over-estimating SO2—highlighting the need for Japan-specific sulfur-fuel adjustments. For several pollutant–region combinations, absolute errors exceeded 100%, confirming that emissions uncertainty, not model physics, dominates regional air quality error even under identical dynamical and chemical settings. These findings underscore the importance of inventory-specific and pollutant-specific selection—or better, multi-inventory ensemble approaches—when assessing Japanese air quality and formulating policy. Routine assimilation of ground and satellite data, together with inverse modeling, is recommended to narrow residual biases and improve future inventories. Full article
Show Figures

Figure 1

19 pages, 11804 KB  
Article
Assessing the Impact of Ammonia Emissions from Mink Farming in Denmark on Human Health and Critical Load Exceedance
by Lise Marie Frohn, Jesper Leth Bak, Jørgen Brandt, Jesper Heile Christensen, Steen Gyldenkærne and Camilla Geels
Atmosphere 2025, 16(8), 966; https://doi.org/10.3390/atmos16080966 - 15 Aug 2025
Viewed by 1083
Abstract
In this study, the objective is to assess the impacts of NH3 emissions from mink farming on human health and nature, which are sensitive to atmospheric nitrogen deposition. The impact-pathway approach is applied to follow the emissions from source to impact on [...] Read more.
In this study, the objective is to assess the impacts of NH3 emissions from mink farming on human health and nature, which are sensitive to atmospheric nitrogen deposition. The impact-pathway approach is applied to follow the emissions from source to impact on human health in Europe (including Denmark) and from source to critical nitrogen load exceedances for NH3-sensitive nature in Denmark. The Danish Eulerian Hemispheric Model (DEHM) is used for modelling the air pollution concentrations in Europe and nitrogen depositions on land and water surfaces in Denmark arising from NH3 emissions from mink farming in Denmark. The Economic Valuation of Air (EVA) pollution model system is applied for deriving the health effects and corresponding socio-economic costs in Denmark and Europe arising from the emissions from mink farming. On a local scale in Denmark, the deposition resulting from the NH3 emissions from mink farming is modelled using the results from the OML-DEP model at a high resolution to derive the critical nitrogen load exceedances for Danish nature areas sensitive to NH3. From the analysis of the impacts through human exposure to the air pollutants PM2.5, NO2, and O3, it is concluded that in total, ~60 premature deaths annually in Europe, including Denmark, can be attributed to the emissions of NH3 to the atmosphere from the mink farming sector in Denmark. This corresponds to annual socio-economic costs on the order of EUR 142 million. From the analysis of critical load exceedances, it is concluded that an exceedance of the critical load of nitrogen deposition of ~14,600 hectares (ha) of NH3-sensitive nature areas in Denmark can be attributed to NH3 emissions from mink farming. The cost for restoring nature areas of this size, damaged by eutrophication from excess nitrogen deposition, is estimated to be ~EUR 110 million. In 2020, the mink sector in Denmark was shut down in connection with the COVID-19 pandemic. All mink were culled by order of the Danish Government, and now in 2025, the process of determining the level of financial compensation to the farmers is still ongoing. The socio-economic costs following the impacts on human health in Europe and nitrogen-sensitive nature in Denmark of NH3 emissions from the now non-existing mink sector can therefore be viewed as socio-economic benefits. In this study, these benefits are compared with the expected level of compensation from the Danish Government to the mink farmers, and the conclusion is that the compensation to the mink farmers breaks even with the benefits from reduced NH3 emissions over a timescale of ~20 years. Full article
Show Figures

Figure 1

19 pages, 13565 KB  
Article
Estimation of Ultrahigh Resolution PM2.5 in Urban Areas by Using 30 m Landsat-8 and Sentinel-2 AOD Retrievals
by Hao Lin, Siwei Li, Jiqiang Niu, Jie Yang, Qingxin Wang, Wenqiao Li and Shengpeng Liu
Remote Sens. 2025, 17(15), 2609; https://doi.org/10.3390/rs17152609 - 27 Jul 2025
Viewed by 967
Abstract
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate [...] Read more.
Ultrahigh resolution fine particulate matter (PM2.5) mass concentration remote sensing products are crucial for atmospheric environmental monitoring, pollution source verification, health exposure risk assessment, and other fine-scale applications in urban environments. This study developed an ultrahigh resolution retrieval algorithm to estimate 30 m resolution PM2.5 mass concentrations over urban areas from Landsat-8 and Sentinel-2A/B satellite measurements. The algorithm utilized aerosol optical depth (AOD) products retrieved from the Landsat-8 OLI and Sentinel-2 MSI measurements from 2017 to 2020, combined with multi-source auxiliary data to establish a PM2.5-AOD relationship model across China. The results showed an overall high coefficient of determination (R2) of 0.82 and 0.76 for the model training accuracy based on samples and stations, respectively. The model prediction accuracy in Beijing and Wuhan reached R2 values of 0.86 and 0.85. Applications in both cities demonstrated that ultrahigh resolution PM2.5 has significant advantages in resolving fine-scale spatial patterns of urban air pollution and pinpointing pollution hotspots. Furthermore, an analysis of point source pollution at a typical heavy pollution emission enterprise confirmed that ultrahigh spatial resolution PM2.5 can accurately identify the diffusion trend of point source pollution, providing fundamental data support for refined monitoring of urban air pollution and air pollution prevention and control. Full article
Show Figures

Figure 1

24 pages, 5899 KB  
Article
Unveiling Spatiotemporal Differences and Responsive Mechanisms of Seamless Hourly Ozone in China Using Machine Learning
by Jiachen Fan, Tijian Wang, Qingeng Wang, Mengmeng Li, Min Xie, Shu Li, Bingliang Zhuang and Ume Kalsoom
Remote Sens. 2025, 17(13), 2318; https://doi.org/10.3390/rs17132318 - 7 Jul 2025
Viewed by 662
Abstract
Surface ozone (O3) is a multifaceted threat that not only deteriorates the environment but also poses risks to human health. Here, we estimated the seamless hourly surface O3 in China using Extreme Gradient Boosting (XGBoost) with multisource data fusion to [...] Read more.
Surface ozone (O3) is a multifaceted threat that not only deteriorates the environment but also poses risks to human health. Here, we estimated the seamless hourly surface O3 in China using Extreme Gradient Boosting (XGBoost) with multisource data fusion to investigate spatiotemporal differences in O3 during multistage COVID-19, and the response of O3 variation to meteorology and emissions were explored using Shapley Additive Explanations (SHAP) and WRF-Chem. The results indicate that the optimized model demonstrated higher accuracy, with CV-R2 of 0.96–0.97 and RMSE of 4.58–5.00 μg/m3. Benefitting from the full coverage of the dataset, the underestimated O3 was corrected and hotspots of short-term O3 pollution events were successfully captured. O3 increased by 16.8% during the lockdown, with high values clustered in the north and west, attributed to the weakened urban NOx titration resulting from reduced emissions. During the control and regulation period, O3 levels declined year by year. O3 exhibited significant fluctuations in the Pearl River Delta but remained stable in western China, with both regions demonstrating high sensitivity to meteorological variability. Among these, solar radiation and temperature were the key meteorological factors. The seamless high-resolution O3 datasets will enable more insightful analyses regarding the spatiotemporal characterization and cause analysis. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

19 pages, 5829 KB  
Article
Retrieval and Evaluation of NOX Emissions Based on a Machine Learning Model in Shandong
by Tongqiang Liu, Jinghao Zhao, Rumei Li and Yajun Tian
Sustainability 2025, 17(13), 6100; https://doi.org/10.3390/su17136100 - 3 Jul 2025
Viewed by 542
Abstract
Nitrogen oxides (NOX) are important precursors of ozone and secondary aerosols. Accurate and timely NOX emission estimates are essential for formulating measures to mitigate haze and ozone pollution. Bottom–up and satellite–constrained top–down methods are commonly used for emission inventory compilation; [...] Read more.
Nitrogen oxides (NOX) are important precursors of ozone and secondary aerosols. Accurate and timely NOX emission estimates are essential for formulating measures to mitigate haze and ozone pollution. Bottom–up and satellite–constrained top–down methods are commonly used for emission inventory compilation; however, they have limitations of time lag and high computational demands. Here, we propose a machine learning model, WOA-XGBoost (Whale Optimization Algorithm–Extreme Gradient Boosting), to retrieve NOX emissions. We constructed a dataset incorporating satellite observations and conducted model training and validation in the Shandong region with severe NOX pollution to retrieve high spatiotemporal resolution of NOX emission rates. The 10–fold cross–validation coefficient of determination (R2) for the NOX emission retrieval model was 0.99, indicating that WOA-XGBoost has high accuracy. Validation of the model for the other year (2019) showed high agreement with MEIC (Multi–resolution Emission Inventory for China), confirming its strong robustness and good temporal transferability. The retrieved NOX emissions for 2021–2022 revealed that emission rate hotspots were located in areas with heavy traffic flow. Among 16 prefecture–level cities in Shandong, Zibo exhibited the highest NOX rate (>1 μg/m2/s), explaining its high NO2 pollution levels. In the future, priority areas for emission reduction should focus on heavy industry clusters such as Zibo and high traffic urban centers. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

23 pages, 5164 KB  
Article
Estimation of High-Spatial-Resolution Near-Surface Ozone over Hubei Province
by Pengfei Xu, Zhaoquan Xie, Yingyi Zhao, Yijia Wu and Yanbin Yuan
Atmosphere 2025, 16(7), 786; https://doi.org/10.3390/atmos16070786 - 27 Jun 2025
Viewed by 631
Abstract
High-precision estimation of ground-level ozone pollution is very important for the ecological environment and public health management. Taking Hubei Province as an example, a framework of ozone concentration estimation with a spatial resolution of 0.01° × 0.01° was constructed by integrating ground observation, [...] Read more.
High-precision estimation of ground-level ozone pollution is very important for the ecological environment and public health management. Taking Hubei Province as an example, a framework of ozone concentration estimation with a spatial resolution of 0.01° × 0.01° was constructed by integrating ground observation, satellite remote sensing, and meteorological and socio-economic data. By comparing six machine learning models, it was found that the LightGBM single model performed best (R2 = 0.87), while the stacked integration model based on XGBoost, LightGBM, and CatBoost significantly improved accuracy (R2 = 0.91; RMSE = 9.40). The results show that the ozone concentration in Hubei Province presents a spatial pattern of “high in the east and low in the west” and a seasonal feature of “thick in summer and thin in winter”, with the peak appearing in the second quarter and September. This study had some limitations, such as insufficient timeliness of human activity data, the high cost of model calculation, and regional applicability to be verified. However, through the innovative application of multi-source data fusion and an integrated learning strategy, the accurate inversion of the provincial-level high-resolution ozone concentration was achieved for the first time. The results provide methodological support for the refined prevention and control of regional ozone pollution, and the multi-model collaborative framework has a universal reference value for the estimation of air pollutants. Full article
(This article belongs to the Special Issue Ozone Evolution in the Past and Future (2nd Edition))
Show Figures

Figure 1

14 pages, 3472 KB  
Article
A Proxy Model for Traffic Related Air Pollution Indicators Based on Traffic Count
by Nikolina Račić, Valentino Petrić, Francesco Mureddu, Harri Portin, Jarkko V. Niemi, Tareq Hussein and Mario Lovrić
Atmosphere 2025, 16(5), 538; https://doi.org/10.3390/atmos16050538 - 1 May 2025
Viewed by 1238
Abstract
Understanding how traffic contributes to air pollution, especially in urban areas, is essential for designing effective strategies to reduce air pollution emissions. This study examines the hourly association between traffic volume and concentrations of two air pollution indicators (NO2 and PM10 [...] Read more.
Understanding how traffic contributes to air pollution, especially in urban areas, is essential for designing effective strategies to reduce air pollution emissions. This study examines the hourly association between traffic volume and concentrations of two air pollution indicators (NO2 and PM10) using high-resolution data from two monitoring stations in Helsinki. A Prophet time series model was applied to forecast hourly traffic trends for 2024, which were then compared to yearly average NO2 and PM10 concentrations. Polynomial regression and cross-correlation analyses were used to capture temporal patterns and assess the strength and timing of the relationship. The results show a strong alignment between traffic and NO2 and PM10 concentrations, particularly at the traffic-heavy measuring site (Mäkelänkatu supersite), with minimal time lag observed. Root mean square error (RMSE) and polynomial fit comparisons confirmed the predictive value of traffic trends in estimating the behavior of NO2 and PM10 concentrations. These findings support the use of traffic-based proxy models as practical tools for real-time air pollution assessment and for informing targeted urban air quality interventions. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

23 pages, 640 KB  
Article
Ambient Air Pollution and Semen Quality in China: A Nationwide Case-Control Study of 27,014 Males with Biomarker-Confirmed Semen Pathology
by Jianfeng Liu, Zhixiang Fang, Dongyue Chai, Zhipeng Zhu, Qunshan Shen and Xiaojin He
Toxics 2025, 13(4), 322; https://doi.org/10.3390/toxics13040322 - 20 Apr 2025
Cited by 1 | Viewed by 1228
Abstract
Amidst China’s rapid industrialization and deteriorating air quality, emerging evidence suggests a parallel decline in male reproductive health. However, large-scale assessments of pollution-semen quality associations remain scarce. This nationwide multicenter study investigated these relationships among 27,014 Chinese men using high-resolution satellite-derived exposure estimates [...] Read more.
Amidst China’s rapid industrialization and deteriorating air quality, emerging evidence suggests a parallel decline in male reproductive health. However, large-scale assessments of pollution-semen quality associations remain scarce. This nationwide multicenter study investigated these relationships among 27,014 Chinese men using high-resolution satellite-derived exposure estimates (PM2.5, PM10, NO2, O3, CO, and SO2) and generalized linear mixed models (GLMM), adjusting for key demographic confounders. A case-control study involving 5256 cases and 21758 controls used the exposure values of air pollutants 90 days prior to sperm collection for epidemiological exposure analysis reactions to obtain the association between sperm quality and air pollution. This study demonstrates significant associations between increased exposure to regional air pollutants and the risk of substandard semen quality in China. Key findings reveal NO2’s potential reproductive toxicity, showing a 79.7% increased risk of semen volume abnormalities per 11.34 µg/m3 exposure (OR = 1.797, 95% CI: 1.402–2.302). Susceptibility disparities emerged, with 16.4-fold greater PM2.5 sensitivity in obese individuals (OR = 1.121 vs. 1.007) and 133% higher PM10 risk in urban residents (OR = 1.342 vs. 1.006). Strikingly, SO2 exposure at 15% of the WHO 24 h average guideline (6.16 µg/m3) was associated with a 3.8% increase in abnormalities, indicating the challenge of the current safety thresholds. These findings highlight the need for policy reforms, including (1) incorporating reproductive health endpoints into air quality standards, (2) implementing antioxidant interventions for high-risk groups, and (3) strengthening traffic emission controls in urban planning. This study underscores the need for comprehensive strategies to mitigate the impact of air pollution on male reproductive health. Full article
Show Figures

Figure 1

20 pages, 8189 KB  
Article
Short-Term Effects of Extreme Heat, Cold, and Air Pollution Episodes on Excess Mortality in Luxembourg
by Jérôme Weiss
Int. J. Environ. Res. Public Health 2025, 22(3), 376; https://doi.org/10.3390/ijerph22030376 - 4 Mar 2025
Cited by 1 | Viewed by 1979
Abstract
This study aims to assess the short-term effects of extreme heat, cold, and air pollution episodes on excess mortality from natural causes in Luxembourg over 1998–2023. Using a high-resolution dataset from downscaled and bias-corrected temperature (ERA5) and air pollutant concentrations (EMEP MSC-W), weekly [...] Read more.
This study aims to assess the short-term effects of extreme heat, cold, and air pollution episodes on excess mortality from natural causes in Luxembourg over 1998–2023. Using a high-resolution dataset from downscaled and bias-corrected temperature (ERA5) and air pollutant concentrations (EMEP MSC-W), weekly mortality p-scores were linked to environmental episodes. A distributional regression approach using a logistic distribution was applied to model the influence of environmental risks, capturing both central trends and extreme values of excess mortality. Results indicate that extreme heat, cold, and fine particulate matter (PM2.5) episodes significantly drive excess mortality. The estimated attributable age-standardized mortality rates are 2.8 deaths per 100,000/year for extreme heat (95% CI: [1.8, 3.8]), 1.1 for extreme cold (95% CI: [0.4, 1.8]), and 6.3 for PM2.5 episodes (95% CI: [2.3, 10.3]). PM2.5-related deaths have declined over time due to the reduced frequency of pollution episodes. The odds of extreme excess mortality increase by 1.93 times (95% CI: [1.52, 2.66]) per extreme heat day, 3.49 times (95% CI: [1.77, 7.56]) per extreme cold day, and 1.11 times (95% CI: [1.04, 1.19]) per PM2.5 episode day. Indicators such as return levels and periods contextualize extreme mortality events, such as the p-scores observed during the 2003 heatwave and COVID-19 pandemic. These findings can guide public health emergency preparedness and underscore the potential of distributional modeling in assessing mortality risks associated with environmental exposures. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

Back to TopTop