Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = high-mannose type glycans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 11740 KiB  
Article
Novel Endo-β-N-Acetylglucosaminidases Derived from Human Fecal Samples Selectively Release N-Glycans from Model Glycoproteins
by Matthew Bolino, Nadini Haththotuwe Gamage, Hatice Duman, Odunayo Abiodun, Amilton S. De Mello, Sercan Karav and Steven A. Frese
Foods 2025, 14(8), 1288; https://doi.org/10.3390/foods14081288 - 8 Apr 2025
Cited by 1 | Viewed by 928
Abstract
Three novel endo-β-N-acetylglucosaminidases (AVUL01, BCAC01, and BFIN01) classified as members of the glucoside hydrolase (GH) family 18 were identified from human fecal samples and then cloned and characterized for their ability to hydrolyze two distinct classes of N-glycans. Endo-β-N [...] Read more.
Three novel endo-β-N-acetylglucosaminidases (AVUL01, BCAC01, and BFIN01) classified as members of the glucoside hydrolase (GH) family 18 were identified from human fecal samples and then cloned and characterized for their ability to hydrolyze two distinct classes of N-glycans. Endo-β-N-acetylglucosaminidases (ENGases) are known for the hydrolysis of chitin and the N,N′-diacetylchitobiose core of N-linked glycans, depending on the glycan architecture. N-glycans have shown bioactivity as substrates in the human gut microbiome for microbes that encode ENGases, thus demonstrating their ecological relevance in the gut. However, distinct types of N-glycan structures, for example, oligomannosidic or complex, have been shown to enrich different microbes within the human gut. Novel advances in food technology have commercialized animal-derived dietary proteins with oligomannosidic instead of traditionally complex N-glycans using precision fermentation. This indicates that there is an unmet need to identify the classes of N-glycans that gut-derived ENGases act upon to determine whether these novel proteins alter gut ecology. AVUL01, BCAC01, and BFIN01 all demonstrated activity on exclusively oligomannosidic N-glycans from RNase B and bovine lactoferrin; however, they failed to show activity on complex or α-1,3-core fucosylated high-mannose N-glycans derived from fetuin and horseradish peroxidase, respectively. These results suggest that α-1,3 core fucosylation and complex N-glycan architecture inhibit the activity of AVUL01, BCAC01, and BFIN01. Furthermore, BFIN01 performed significantly better than BCAC01, resulting in a greater amount of N-glycans, suggesting that certain ENGases may possess enhanced specificity and kinetics as an evolutionary strategy to compete for resources. Full article
(This article belongs to the Special Issue Quality Ingredients for the Animal Products Alternatives Industry)
Show Figures

Figure 1

14 pages, 3072 KiB  
Article
Impact of Mobile Phase Composition on Separation Selectivity of Labeled Dextran Ladder in Hydrophilic Interaction Liquid Chromatography
by Matjaž Grčman, Niko R. Pompe, Drago Kočar and Matevž Pompe
Molecules 2025, 30(6), 1327; https://doi.org/10.3390/molecules30061327 - 15 Mar 2025
Viewed by 840
Abstract
The glycosylation process plays a crucial role in the structural integrity and biological activity of glycoproteins, where glycans are attached to a protein backbone. There are many kinds of glycans, the most common being N-glycans, which can be arranged into three classes, that [...] Read more.
The glycosylation process plays a crucial role in the structural integrity and biological activity of glycoproteins, where glycans are attached to a protein backbone. There are many kinds of glycans, the most common being N-glycans, which can be arranged into three classes, that is, complex, hybrid, and high mannoses, forming a structurally very diverse set of polar compounds that are difficult to detect and separate. Most commonly, N-glycans are labeled before separation by charged or fluorescence tags for better MS or fluorescence detection, respectively. This study examines the influence of ionic strength and organic modifier selection on the separation of fluorescently labeled dextran ladders in Hydrophilic Interaction Liquid Chromatography (HILIC). Using a Glycan BEH Amide column and varying the ammonium formate buffer concentration along with acetonitrile and methanol ratios, we investigated analyte retention, separation efficiency, and post-column conductivity changes. Our findings reveal that changes in the ionic strength of the mobile phase do not contribute to changes in selectivity, neither when acetonitrile nor methanol were used as organic modifiers to the mobile phase. However, the addition of methanol significantly changes the separation mechanism where two different prevailing separations mechanisms can be identified. It was assumed that the addition of methanol influences the folding pattern of dextrans around the permanent positive charge on the added tag, which influences the changes of separation selectivity. This work presents a systematic approach to altering mobile phase composition (buffer concentration, organic modifier type) to control retention and selectivity in complex glycan analysis. The discovery that methanol significantly alters separation behavior provides a potential new method for refining HILIC separations of polar compounds. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

15 pages, 4154 KiB  
Article
Bioinformatic Selection of Mannose-Specific Lectins from Allium genus as SARS-CoV-2 Inhibitors Analysing Protein–Protein Interaction
by Stefan Isaković, Milan Senćanski, Vladimir Perović, Kristina Stevanović and Ivana Prodić
Life 2025, 15(2), 162; https://doi.org/10.3390/life15020162 - 23 Jan 2025
Cited by 1 | Viewed by 1176
Abstract
Mannose-specific lectins are carbohydrate-binding proteins known for their antiviral potential. This study uses a bioinformatic approach to investigate the possibility of lectins from Allium sativum (garlic) and Allium ursinum (wild garlic) as inhibitors of SARS-CoV-2 entry. The information spectrum method (ISM) identified key [...] Read more.
Mannose-specific lectins are carbohydrate-binding proteins known for their antiviral potential. This study uses a bioinformatic approach to investigate the possibility of lectins from Allium sativum (garlic) and Allium ursinum (wild garlic) as inhibitors of SARS-CoV-2 entry. The information spectrum method (ISM) identified key interaction frequencies between the SARS-CoV-2 spike protein and these lectins, explicitly targeting the receptor-binding domain (RBD) and glycosylated asparagine residues, including N234. Lectins from Allium species showed a high affinity for oligomannose-type glycans on the spike protein, potentially blocking virus entry by preventing the spike-ACE2 receptor interaction. We propose that Allium lectins are promising candidates for further experimental validation as SARS-CoV-2 inhibitors, offering potential therapeutic applications in managing viral infections. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

19 pages, 3618 KiB  
Article
Characterization of Site-Specific N- and O-Glycopeptides from Recombinant Spike and ACE2 Glycoproteins Using LC-MS/MS Analysis
by Ju Hwan Song, Sangeun Jang, Jin-Woong Choi, Seoyoung Hwang, Kyoung Heon Kim, Hye-Yeon Kim, Sun Cheol Park, Wonbin Lee and Ju Yeon Lee
Int. J. Mol. Sci. 2024, 25(24), 13649; https://doi.org/10.3390/ijms252413649 - 20 Dec 2024
Cited by 1 | Viewed by 1612
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein [...] Read more.
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein of SARS-CoV-2 plays a critical role in viral entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, making both proteins essential targets for therapeutic and vaccine development. The glycosylation of these proteins influences their structure and function. This underscores the need for detailed site-specific glycoproteomic analysis. In this study, we characterized the N- or O-glycosylation profiles of the recombinant receptor-binding domain (RBD) of spike protein and ACE2 proteins expressed from Expi293F cells, as well as the S2 subunit of spike protein expressed in plant (N. benthamiana) cells. Using a high-resolution Orbitrap Eclipse Tribrid mass spectrometer equipped with the Ultimate 3000 RSLCnano and I-GPA (Integrated GlycoProteome Analyzer) developed in a previous study, 148 N- and 28 O-glycopeptides from RBD, 71 N-glycopeptides from the S2 subunit, and 139 N-glycopeptides from ACE2 were characterized. In addition, we report post-translational modifications (PTMs) of glycan, including mannose-6-phosphate (M6P) and GlcNAc-1-phosphate-6-O-mannose in N-glycan of RBD and ACE2, and O-acetylation in O-glycan of RBD, identified for the first time in these recombinant proteins. The relative abundance distribution according to glycosites and glycan types were analyzed by quantified site-specific N- and O (only from RBD)-glycopeptides from RBD, S2, and ACE2 using I-GPA. Asn331 for RBD, Asn1098 for S2, and Asn103 for ACE2 were majorly N-glycosylated, and dominant glycan-type was complex from RBD and ACE2 and high-mannose from S2. These findings will provide valuable insights into the glycosylation patterns that influence protein function and immunogenicity and offer new perspectives for the development of vaccines and antibody-based therapies against COVID-19. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

16 pages, 6730 KiB  
Article
Hypoxia-Induced Adaptations of N-Glycomes and Proteomes in Breast Cancer Cells and Their Secreted Extracellular Vesicles
by Bojia Peng, Kai Bartkowiak, Feizhi Song, Paula Nissen, Hartmut Schlüter and Bente Siebels
Int. J. Mol. Sci. 2024, 25(18), 10216; https://doi.org/10.3390/ijms251810216 - 23 Sep 2024
Cited by 1 | Viewed by 1947
Abstract
The hypoxic tumor microenvironment significantly impacts cellular behavior and intercellular communication, with extracellular vesicles (EVs) playing a crucial role in promoting angiogenesis, metastasis, and host immunosuppression, and presumed cancer progression and metastasis are closely associated with the aberrant surface N-glycan expression in EVs. [...] Read more.
The hypoxic tumor microenvironment significantly impacts cellular behavior and intercellular communication, with extracellular vesicles (EVs) playing a crucial role in promoting angiogenesis, metastasis, and host immunosuppression, and presumed cancer progression and metastasis are closely associated with the aberrant surface N-glycan expression in EVs. We hypothesize that hypoxic tumors synthesize specific hypoxia-induced N-glycans in response to or as a consequence of hypoxia. This study utilized nano-LC–MS/MS to integrate quantitative proteomic and N-glycomic analyses of both cells and EVs derived from the MDA-MB-231 breast cancer cell line cultured under normoxic and hypoxic conditions. Whole N-glycome and proteome profiling revealed that hypoxia has an impact on the asparagine N-linked glycosylation patterns and on the glycolysis/gluconeogenesis proteins in cells in terms of altered N-glycosylation for their adaptation to low-oxygen conditions. Distinct N-glycan types, high-mannose glycans like Man3 and Man9, were highly abundant in the hypoxic cells. On the other hand, alterations in the sialylation and fucosylation patterns were observed in the hypoxic cells. Furthermore, hypoxia-induced EVs exhibit a signature consisting of mono-antennary structures and specific N-glycans (H4N3F1S2, H3N3F1S0, and H7N4F3S2; H8N4F1S0 and H8N6F1S2), which are significantly associated with poor prognoses for breast tumors, presumably altering the interactions within the tumor microenvironment to promote tumorigenesis and metastasis. Our findings provide an overview of the N-glycan profiles, particularly under hypoxic conditions, and offer insights into the potential biomarkers for tracking tumor microenvironment dynamics and for developing precision medicine approaches in oncology. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

17 pages, 6497 KiB  
Article
Structure–Activity Relationship of Oleanane-Type Pentacyclic Triterpenoids on Nuclear Factor κB Activation and Intracellular Trafficking and N-Linked Glycosylation of Intercellular Adhesion Molecule-1
by Kaori Nakano, Yuka Yokota, Quy Van Vu, Francesca Lagravinese and Takao Kataoka
Int. J. Mol. Sci. 2024, 25(11), 6026; https://doi.org/10.3390/ijms25116026 - 30 May 2024
Cited by 5 | Viewed by 1097
Abstract
In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure–activity relationship of 13 oleanane-type natural triterpenoids [...] Read more.
In our previous study, two oleanane-type pentacyclic triterpenoids (oleanolic acid and maslinic acid) were reported to affect the N-glycosylation and intracellular trafficking of intercellular adhesion molecule-1 (ICAM-1). The present study was aimed at investigating the structure–activity relationship of 13 oleanane-type natural triterpenoids with respect to the nuclear factor κB (NF-κB) signaling pathway and the expression, intracellular trafficking, and N-glycosylation of the ICAM-1 protein in human lung adenocarcinoma A549 cells. Hederagenin, echinocystic acid, erythrodiol, and maslinic acid, which all possess two hydroxyl groups, decreased the viability of A549 cells. Celastrol and pristimerin, both of which possess an α,β-unsaturated carbonyl group, decreased cell viability but more strongly inhibited the interleukin-1α-induced NF-κB signaling pathway. Oleanolic acid, moronic acid, and glycyrrhetinic acid interfered with N-glycosylation without affecting the cell surface expression of the ICAM-1 protein. In contrast, α-boswellic acid and maslinic acid interfered with the N-glycosylation of the ICAM-1 protein, which resulted in the accumulation of high-mannose-type N-glycans. Among the oleanane-type triterpenoids tested, α-boswellic acid and maslinic acid uniquely interfered with the intracellular trafficking and N-glycosylation of glycoproteins. Full article
(This article belongs to the Special Issue Novel Functions for Small Molecules)
Show Figures

Figure 1

19 pages, 1538 KiB  
Article
The Cerebrospinal Fluid Free-Glycans Hex1 and HexNAc1Hex1Neu5Ac1 as Potential Biomarkers of Alzheimer’s Disease
by Lynn Krüger, Karina Biskup, Carola G. Schipke, Bianca Kochnowsky, Luisa-Sophie Schneider, Oliver Peters and Véronique Blanchard
Biomolecules 2024, 14(5), 512; https://doi.org/10.3390/biom14050512 - 24 Apr 2024
Cited by 1 | Viewed by 2071
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, affecting a growing number of elderly people. In order to improve the early and differential diagnosis of AD, better biomarkers are needed. Glycosylation is a protein post-translational modification that is modulated in the course [...] Read more.
Alzheimer’s disease (AD) is the most common neurodegenerative disorder, affecting a growing number of elderly people. In order to improve the early and differential diagnosis of AD, better biomarkers are needed. Glycosylation is a protein post-translational modification that is modulated in the course of many diseases, including neurodegeneration. Aiming to improve AD diagnosis and differential diagnosis through glycan analytics methods, we report the glycoprotein glycome of cerebrospinal fluid (CSF) isolated from a total study cohort of 262 subjects. The study cohort consisted of patients with AD, healthy controls and patients suffering from other types of dementia. CSF free-glycans were also isolated and analyzed in this study, and the results reported for the first time the presence of 19 free glycans in this body fluid. The free-glycans consisted of complete or truncated N-/O-glycans as well as free monosaccharides. The free-glycans Hex1 and HexNAc1Hex1Neu5Ac1 were able to discriminate AD from controls and from patients suffering from other types of dementia. Regarding CSF N-glycosylation, high proportions of high-mannose, biantennary bisecting core-fucosylated N-glycans were found, whereby only about 20% of the N-glycans were sialylated. O-Glycans and free-glycan fragments were less sialylated in AD patients than in controls. To conclude, this comprehensive study revealed for the first time the biomarker potential of free glycans for the differential diagnosis of AD. Full article
(This article belongs to the Special Issue Advances in Biomarkers for Neurodegenerative Diseases)
Show Figures

Figure 1

14 pages, 2386 KiB  
Article
A Complex-Type N-Glycan-Specific Lectin Isolated from Green Alga Halimeda borneensis Exhibits Potent Anti-Influenza Virus Activity
by Jinmin Mu, Makoto Hirayama, Kinjiro Morimoto and Kanji Hori
Int. J. Mol. Sci. 2024, 25(8), 4345; https://doi.org/10.3390/ijms25084345 - 15 Apr 2024
Cited by 2 | Viewed by 1640
Abstract
Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza [...] Read more.
Marine algal lectins specific for high-mannose N-glycans have attracted attention because they strongly inhibit the entry of enveloped viruses, including influenza viruses and SARS-CoV-2, into host cells by binding to high-mannose-type N-glycans on viral surfaces. Here, we report a novel anti-influenza virus lectin (named HBL40), specific for complex-type N-glycans, which was isolated from a marine green alga, Halimeda borneensis. The hemagglutination activity of HBL40 was inhibited with both complex-type N-glycan and O-glycan-linked glycoproteins but not with high-mannose-type N-glycan-linked glycoproteins or any of the monosaccharides examined. In the oligosaccharide-binding experiment using 26 pyridylaminated oligosaccharides, HBL40 only bound to complex-type N-glycans with bi- and triantennary-branched sugar chains. The sialylation, core fucosylation, and the increased number of branched antennae of the N-glycans lowered the binding activity with HBL40. Interestingly, the lectin potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells at IC50 of 8.02 nM by binding to glycosylated viral hemagglutinin (KD of 1.21 × 10−6 M). HBL40 consisted of two isolectins with slightly different molecular masses to each other that could be separated by reverse-phase HPLC. Both isolectins shared the same 16 N-terminal amino acid sequences. Thus, HBL40 could be useful as an antivirus lectin specific for complex-type N-glycans. Full article
(This article belongs to the Special Issue Antiviral Activity of Lectins)
Show Figures

Figure 1

17 pages, 1019 KiB  
Article
N-Glycomic Profiling of Microsatellite Unstable Colorectal Cancer
by Iiris Ukkola, Pirjo Nummela, Annamari Heiskanen, Matilda Holm, Sadia Zafar, Mia Kero, Caj Haglund, Tero Satomaa, Soili Kytölä and Ari Ristimäki
Cancers 2023, 15(14), 3571; https://doi.org/10.3390/cancers15143571 - 11 Jul 2023
Cited by 1 | Viewed by 1850
Abstract
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II [...] Read more.
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II and IV MSI CRC tumors, further subdivided into BRAFV600E wild-type and mutated subgroups (n = 10 in each subgroup), with each other and with those of paired non-neoplastic mucosal samples using mass spectrometry. Further, the N-glycans of BRAFV600E wild-type stage II MSI tumors were compared to corresponding MSS tumors (n = 9). Multiple differences in N-glycan profiles were identified between the MSI CRCs and control tissues, as well as between the stage II MSI and MSS samples. The MSI CRC tumors showed a lower relative abundance of high-mannose N-glycans than did the control tissues or the MSS CRCs. Among MSI CRC subgroups, acidic N-glycans showed tumor stage and BRAF mutation status-dependent variation. Specifically, the large, sulfated/phosphorylated, and putative terminal N-acetylhexosamine-containing acidic N-glycans differed between the MSI CRC subgroups, showing opposite changes in stages II and IV, when comparing BRAF mutated and wild-type tumors. Our results show that molecular subgroups of CRC exhibit characteristic glycan profiles that may explain certain carcinogenic properties of MSI tumors. Full article
(This article belongs to the Special Issue Glycosylation in Cancer—Biomarkers and Targeted Therapies)
Show Figures

Figure 1

18 pages, 2585 KiB  
Article
Glycoprotein In Vitro N-Glycan Processing Using Enzymes Expressed in E. coli
by Libo Zhang, Yanhong Li, Riyao Li, Xiaohong Yang, Zimin Zheng, Jingxin Fu, Hai Yu and Xi Chen
Molecules 2023, 28(6), 2753; https://doi.org/10.3390/molecules28062753 - 18 Mar 2023
Cited by 16 | Viewed by 4224
Abstract
Protein N-glycosylation is a common post-translational modification that plays significant roles on the structure, property, and function of glycoproteins. Due to N-glycan heterogeneity of naturally occurring glycoproteins, the functions of specific N-glycans on a particular glycoprotein are not always clear. Glycoprotein in vitro [...] Read more.
Protein N-glycosylation is a common post-translational modification that plays significant roles on the structure, property, and function of glycoproteins. Due to N-glycan heterogeneity of naturally occurring glycoproteins, the functions of specific N-glycans on a particular glycoprotein are not always clear. Glycoprotein in vitro N-glycan engineering using purified recombinant enzymes is an attractive strategy to produce glycoproteins with homogeneous N-glycoforms to elucidate the specific functions of N-glycans and develop better glycoprotein therapeutics. Toward this goal, we have successfully expressed in E. coli glycoside hydrolases and glycosyltransferases from bacterial and human origins and developed a robust enzymatic platform for in vitro processing glycoprotein N-glycans from high-mannose-type to α2–6- or α2–3-disialylated biantennary complex type. The recombinant enzymes are highly efficient in step-wise or one-pot reactions. The platform can find broad applications in N-glycan engineering of therapeutic glycoproteins. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

19 pages, 3270 KiB  
Article
Niosomes Functionalized with a Synthetic Carbohydrate Binding Agent for Mannose-Targeted Doxorubicin Delivery
by Nastassja Burrini, Mario D’Ambrosio, Matteo Gentili, Roberta Giaquinto, Veronica Settimelli, Cristina Luceri, Marzia Cirri and Oscar Francesconi
Pharmaceutics 2023, 15(1), 235; https://doi.org/10.3390/pharmaceutics15010235 - 10 Jan 2023
Cited by 8 | Viewed by 2948
Abstract
Niosomes are a potential tool for the development of active targeted drug delivery systems (DDS) for cancer therapy because of their excellent behaviour in encapsulating antitumorals and the possibility to easily functionalise their surface with targeting agents. Recently, some of us developed a [...] Read more.
Niosomes are a potential tool for the development of active targeted drug delivery systems (DDS) for cancer therapy because of their excellent behaviour in encapsulating antitumorals and the possibility to easily functionalise their surface with targeting agents. Recently, some of us developed a synthetic carbohydrate binding agent (CBA) able to target the mannosidic residues of high-mannose-type glycans overexpressed on the surface of several cancer cell lines, promoting their apoptosis. In this article, we modified the structure of this mannose receptor to obtain an amphiphilic analogue suitable for the functionalization of doxorubicin-based niosomes. Several niosomal formulations and preparation methods were investigated deeply to finally obtain functionalized niosomes suitable for parental administration, which were stable for over six months and able to encapsulate up to 85% of doxorubicin (DOXO). In vitro studies, carried out towards triple-negative cancer cells (MDA-MB231), overexpressing high-mannose-type glycans, showed a cytotoxic activity comparable to that of DOXO but with an appreciable increment in apoptosis given by the CBA. Moreover, niosomal formulation was observed to reduce doxorubicin-induced cytotoxicity towards normal cell lines of rat cardiomyocytes (H9C2). This study is propaedeutic to further in vivo investigations that can aim to shed light on the antitumoral activity and pharmacokinetics of the developed active targeted DDS. Full article
(This article belongs to the Collection Feature Papers in Nanomedicine and Nanotechnology)
Show Figures

Figure 1

12 pages, 1235 KiB  
Article
Liquid Chromatography Fingerprint Analysis of Released Compounds in Plasma Samples of Stroke Patients after Thrombolytic Treatment
by Mar Castellanos, Dolores Fernández-Couto, Andrés Da Silva-Candal, Maria J. Feal-Painceiras, Manuel Rodríguez-Yáñez, Carme Gubern-Mérida and Juan M. Sanchez
Separations 2023, 10(1), 34; https://doi.org/10.3390/separations10010034 - 5 Jan 2023
Cited by 1 | Viewed by 2215
Abstract
Plasma samples obtained from stroke patients treated with recombinant tissue-type plasminogen activator (rt-PA) and not treated with rt-PA were evaluated with different HPLC methodologies to obtain information about the possible release of small molecules as a result of the thrombolytic treatment. Plasma samples, [...] Read more.
Plasma samples obtained from stroke patients treated with recombinant tissue-type plasminogen activator (rt-PA) and not treated with rt-PA were evaluated with different HPLC methodologies to obtain information about the possible release of small molecules as a result of the thrombolytic treatment. Plasma samples, without derivatization and derivatized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC), were evaluated with a HPLC gradient method, which consisted of a mobile phase of 10 mM ammonium acetate buffered solution (pH = 5.3) and acetonitrile. Three different detection methods were applied: UV, fluorescence, and ESI-MS. The results obtained showed that a group of new highly hydrophilic compounds appeared in most samples analyzed from treated patients, just after the administration of rt-PA. These compounds appeared shortly after the administration of the drug and were detected during the first 24 h after treatment, disappearing from plasma after this time. These new compounds were not detected either in controls or in non-treated stroke patients, which suggests that they were released into the plasma as a consequence of the thrombolytic effect of the drug. Our results suggest that these new compounds might be free glycans. The use of AQC as a derivatizing reagent has demonstrated that the new compounds detected cannot contain primary or secondary amine groups in their structure. The molecular mass determined by ESI-MS (821 Da) suggests that if these compounds are free glycans they might be a high-mannose type. Full article
(This article belongs to the Special Issue Chromatographic Analysis of Biological Samples)
Show Figures

Graphical abstract

18 pages, 3570 KiB  
Article
Trypanosoma cruzi-Derived Molecules Induce Anti-Tumour Protection by Favouring Both Innate and Adaptive Immune Responses
by Teresa Freire, Mercedes Landeira, Cecilia Giacomini, María Florencia Festari, Álvaro Pittini, Viviana Cardozo, Alina Brosque, Leticia Monin, Valeria da Costa, Paula Faral-Tello, Carlos Robello and Eduardo Osinaga
Int. J. Mol. Sci. 2022, 23(23), 15032; https://doi.org/10.3390/ijms232315032 - 30 Nov 2022
Cited by 10 | Viewed by 2311
Abstract
Lung cancer remains the leading cause of cancer mortality worldwide. Thus, the development of strategies against this type of cancer is of high value. Parasite infections can correlate with lower cancer incidence in humans and their use as vaccines has been recently explored [...] Read more.
Lung cancer remains the leading cause of cancer mortality worldwide. Thus, the development of strategies against this type of cancer is of high value. Parasite infections can correlate with lower cancer incidence in humans and their use as vaccines has been recently explored in preclinical models. In this study, we investigated whether immunisations with a Trypanosoma cruzi lysate from epimastigotes protect from lung tumour growth in mice. We also explore the role of parasite glycans in the induction of the protective immune response. A pre-clinical murine cancer model using the lung tumour cell line LL/2 was used to evaluate the anti-tumour potential, both in preventive and therapeutic settings, of a T. cruzi epimastigote-derived protein lysate. Immunisation with the parasite lysate prevents tumour growth and induces both humoral and cellular anti-tumour immune responses to LL-2 cancer cells. The induced immunity and tumour protection were associated with the activation of natural killer (NK) cells, the production of interferon-γ (IFN-γ) and tumour cell cytotoxicity. We also show that mannose residues in the T. cruzi lysate induce Toll-like receptor (TLR) signalling. The evaluated T. cruzi lysate possesses anti-tumour properties likely by activating innate and adaptive immunity in a process where carbohydrates seem to be essential. Full article
(This article belongs to the Special Issue New Insights in Tumor Immunity)
Show Figures

Figure 1

18 pages, 5652 KiB  
Article
Different N-Glycosylation Sites Reduce the Activity of Recombinant DSPAα2
by Huakang Peng, Mengqi Wang, Nan Wang, Caifeng Yang, Wenfang Guo, Gangqiang Li, Sumei Huang, Di Wei and Dehu Liu
Curr. Issues Mol. Biol. 2022, 44(9), 3930-3947; https://doi.org/10.3390/cimb44090270 - 31 Aug 2022
Cited by 3 | Viewed by 2218
Abstract
Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation [...] Read more.
Bat plasminogen activators α2 (DSPAα2) has extremely high medicinal value as a powerful natural thrombolytic protein. However, wild-type DSPAα2 has two N-glycosylation sites (N185 and N398) and its non-human classes of high-mannose-type N-glycans may cause immune responses in vivo. By mutating the N-glycosylation sites, we aimed to study the effect of its N-glycan chain on plasminogen activation, fibrin sensitivity, and to observe the physicochemical properties of DSPAα2. A logical structure design was performed in this study. Four single mutants and one double mutant were constructed and expressed in Pichia pastoris. When the N398 site was eliminated, the plasminogen activator in the mutants had their activities reduced to ~40%. When the N185 site was inactivated, there was a weak decrease in the plasminogen activation of its mutant, while the fibrin sensitivity significantly decreased by ~10-fold. Neither N-glycosylation nor deglycosylation mutations changed the pH resistance or heat resistance of DSPAα2. This study confirms that N-glycosylation affects the biochemical function of DSPAα2, which provides a reference for subsequent applications of DSPAα2. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

19 pages, 3198 KiB  
Review
Seminal Plasma Glycoproteins as Potential Ligands of Lectins Engaged in Immunity Regulation
by Beata Olejnik and Mirosława Ferens-Sieczkowska
Int. J. Environ. Res. Public Health 2022, 19(17), 10489; https://doi.org/10.3390/ijerph191710489 - 23 Aug 2022
Cited by 3 | Viewed by 2658
Abstract
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15–20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important [...] Read more.
Environmental pollution, chronic stress, and unhealthy lifestyle are factors that negatively affect reproductive potential. Currently, 15–20% of couples in industrialized countries face the problem of infertility. This growing health and social problem prompts researchers to explore the regulatory mechanisms that may be important for successful fertilization. In recent years, more attention has been paid to male infertility factors, including the impact of seminal plasma components on regulation of the female immune response to allogenic sperm, embryo and fetal antigens. Directing this response to the tolerogenic pathway is crucial to achieve a healthy pregnancy. According to the fetoembryonic defense hypothesis, the regulatory mechanism may be associated with the interaction of lectins and immunomodulatory glycoepitopes. Such interactions may involve lectins of dendritic cells and macrophages, recruited to the cervical region immediately after intercourse. Carbohydrate binding receptors include C type lectins, such as DC-SIGN and MGL, as well as galectins and siglecs among others. In this article we discuss the expression of the possible lectin ligands, highly fucosylated and high mannose structures, which may be recognized by DC-SIGN, glycans of varying degrees of sialylation, which may differ in their interaction with siglecs, as well as T and Tn antigens in O-glycans. Full article
Show Figures

Figure 1

Back to TopTop