Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = high-chromium white cast iron

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 36512 KiB  
Article
Abrasive Wear Characteristics of High-Cr Multicomponent White Cast Irons at Elevated Temperatures
by Mohammad Jobayer Huq, Kazumichi Shimizu and Kenta Kusumoto
Crystals 2025, 15(2), 113; https://doi.org/10.3390/cryst15020113 - 22 Jan 2025
Cited by 1 | Viewed by 1149
Abstract
The abrasive wear phenomenon at elevated temperatures is very common in industries where operations are performed under extreme conditions. The occurrence of abrasive wear at high temperatures is typically far more severe than that under room-temperature conditions. Industrial machine parts are much more [...] Read more.
The abrasive wear phenomenon at elevated temperatures is very common in industries where operations are performed under extreme conditions. The occurrence of abrasive wear at high temperatures is typically far more severe than that under room-temperature conditions. Industrial machine parts are much more prone to wear at extreme temperatures. Wear due to high-temperature abrasion leads to higher costs. Due to the risk of damaging machine parts and increased costs, it is significant to investigate materials that reverse this loss. It has been proven in previous studies that high-chromium white cast irons with multiple components, including vanadium, molybdenum, tungsten, and cobalt, called MWCIs, are among the most useful materials that can be selected as wear-resistant materials at high temperatures because of their dominant behavior against wear. In this study, three series of high-chromium multicomponent white cast irons (18Cr, 27Cr, and 35Cr MWCI) were used to test their abrasive wear resistance capability. A higher percentage of Cr leads to the precipitation of hard M7C3 carbides, which results in a higher carbide volume percentage (CVF) and hence higher hardness. However, the addition of excessive Cr and less C results in carbide refinement and a drop in hardness. The microstructure is primarily austenite. This study shows that, at an operating temperature of 1073 K, the 27CrMWCI performs the best as an abrasive wear-resistant material compared to 18CrMWCI and 35CrMWCI due to its (27CrMWCI’s) higher CVF and hardness. Full article
(This article belongs to the Special Issue Microstructure and Deformation of Advanced Alloys)
Show Figures

Figure 1

10 pages, 2335 KiB  
Article
Microstructure Formation and Dry Reciprocating Sliding Wear Response of High-Entropy Hypereutectic White Cast Irons
by Willian Martins Pasini, Wojciech Polkowski, Tomasz Dudziak, Carlos Alexandre dos Santos and Vinicius Karlinski de Barcellos
Metals 2025, 15(1), 4; https://doi.org/10.3390/met15010004 - 26 Dec 2024
Viewed by 771
Abstract
White cast irons (WCI) are widely used in industries requiring high wear resistance due to their microstructure consisting of hard carbides dispersed within a metallic matrix. This study focuses on developing wear-resistant multi-component hypereutectic high chromium cast irons, merging concepts of high entropy [...] Read more.
White cast irons (WCI) are widely used in industries requiring high wear resistance due to their microstructure consisting of hard carbides dispersed within a metallic matrix. This study focuses on developing wear-resistant multi-component hypereutectic high chromium cast irons, merging concepts of high entropy alloys with the conventional metallurgy of white cast irons, specifically exploring the influence of carbide-forming elements such as V, Mo, and Ni on solidification behavior, microstructure, and wear performance. The research investigates the solidification process of the alloys using Computer-Aided Cooling Curve Analysis (CA-CCA) and characterizes the microstructures through X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wear behavior of the developed alloys is evaluated through reciprocating sliding wear tests, revealing the impact of varying chemical compositions on wear resistance. The results demonstrate that high-entropy white cast iron (HEWCI), particularly those enriched with carbide-forming elements, exhibit superior abrasion resistance compared to conventional high-chromium cast irons. The alloy with 2 Mo and 4 V content showed the best performance, presenting the lowest wear rate (61.5% lower than HCCI alloy) and CoF (values ranging from 0.20 to 0.22) due to the highest concentration of V carbides. Full article
(This article belongs to the Special Issue Casting Alloy Design and Characterization—2nd Edition)
Show Figures

Figure 1

26 pages, 2809 KiB  
Review
Development and Performance of High Chromium White Cast Irons (HCWCIs) for Wear–Corrosive Environments: A Critical Review
by Simbarashe Fashu and Vera Trabadelo
Metals 2023, 13(11), 1831; https://doi.org/10.3390/met13111831 - 31 Oct 2023
Cited by 8 | Viewed by 5241
Abstract
There is a huge demand for high-performance materials in extreme environments involving wear and corrosion. High chromium white cast irons (HCWCIs) display better performance than many materials since they are of sufficient hardness for wear protection and can be tailored in chemical compositions [...] Read more.
There is a huge demand for high-performance materials in extreme environments involving wear and corrosion. High chromium white cast irons (HCWCIs) display better performance than many materials since they are of sufficient hardness for wear protection and can be tailored in chemical compositions to improve corrosion resistance; however, their performance is often still inadequate. This article reviews the chemical composition and microstructure design aspects employed to tailor and develop HCWCIs with combined corrosion and wear resistance. The performance of these alloys under wear and corrosion is reviewed to highlight the influence of these parameters in the industry. Existing challenges and future opportunities, mainly focusing on metallurgical alloy development aspects like chemical composition, casting, and heat treatment design, are highlighted. This is followed by suggestions for potential developments in HCWCIs to improve the performance of materials in these aggressive environments. Many variables are involved in the design to obtain suitable microstructures and matrix composition for wear–corrosion resistance. Computational modeling is a promising approach for optimizing multi-design variables; however, reliable field performance data of HCWCIs in wear–corrosion environments are still inadequate. Quantitative evaluation of the wear–corrosion performance of HCWCIs requires the development of laboratory and field tests using standard conditions like abrasive type and sizes, severity of loading, slurry velocity, pH, and temperature to develop wear–corrosion maps to guide alloy development. Full article
Show Figures

Figure 1

17 pages, 52292 KiB  
Article
Influence of Tempering Temperature on Abrasive-Wear Performance of High-Chromium-Based Multicomponent White Cast Iron
by Riki Hendra Purba, Kenta Kusumoto, Kazumichi Shimizu, Yila Gaqi and Mohammad Jobayer Huq
Lubricants 2023, 11(7), 285; https://doi.org/10.3390/lubricants11070285 - 5 Jul 2023
Cited by 2 | Viewed by 2156
Abstract
Recently, high-Cr multicomponent white cast iron after quenching is known to have superior abrasive-wear resistance. However, this material is prone to cracking due to the precipitation of very hard carbides resulting in very limited application. However, the cracking tendency might be reduced by [...] Read more.
Recently, high-Cr multicomponent white cast iron after quenching is known to have superior abrasive-wear resistance. However, this material is prone to cracking due to the precipitation of very hard carbides resulting in very limited application. However, the cracking tendency might be reduced by appropriate tempering temperature. Therefore, the three-body abrasive-wear resistance of 18 wt.% and 27 wt.% Cr based on 3 wt.% Mo, W, V, and Co with different temperatures of tempering was studied. These are abbreviated as 18Cr MCCI and 27Cr MCCI. The tempering temperature range was 653–813 K with an interval of 20 K after the quenching process. The quenched specimens were used as comparison materials, and three tempered specimens were selected. Thus, there are quenched (Q), quenched-tempered at low temperature (TLT), quenched-tempered at medium temperature (TMT), and quenched-tempered at high temperature (THT) specimens. From the results, it can be known that the wear resistance of the material decreases as Cr percentage and tempering temperature increase. Therefore, the 18Cr MCCI Q has better wear performance than specimens of other conditions. Yet, different results occur in the group of 27Cr MCCI. The material is more wear-resistant after tempering despite the lower hardness of the material. This might be owing to the higher fracture toughness of the M7C3 carbide, which is higher after the tempering process compared with quenching only. Therefore, it can be said that it is important to maintain the hardness of the material to achieve better wear resistance. However, in materials containing large M7C3 carbides, the fracture toughness of carbides should also be considered. Full article
(This article belongs to the Special Issue Frictional Behavior and Wear Performance of Cast Irons)
Show Figures

Figure 1

14 pages, 10917 KiB  
Article
Three-Body Abrasive Wear Performance of High Chromium White Cast Iron with Different Ti and C Content
by Mohammad Jobayer Huq, Kazumichi Shimizu, Kenta Kusumoto and Riki Hendra Purba
Lubricants 2022, 10(12), 348; https://doi.org/10.3390/lubricants10120348 - 4 Dec 2022
Cited by 9 | Viewed by 2760
Abstract
The need for better wear-resistant materials to reduce cost and save the environment is noteworthy. The striking wear resistance of high chromium white cast iron (HCCI) has made it industry’s predominant choice. The three-body abrasive wear resistance performance of HCCI was investigated based [...] Read more.
The need for better wear-resistant materials to reduce cost and save the environment is noteworthy. The striking wear resistance of high chromium white cast iron (HCCI) has made it industry’s predominant choice. The three-body abrasive wear resistance performance of HCCI was investigated based on combined Ti and C. The Ti and C content varied in different percentages. The addition of Ti resulted in refined M7C3 carbides and TiC crystallization. The hardness was significantly affected by the addition of Ti. The increment in Ti content resulted in a decrease in the hardness, leading to a higher wear rate. However, the individual contribution of C led to higher hardness and, hence, better wear resistance, which is contrary to Ti. Out of the three specimens with 3, 3.5, and 4 wt.% C content, the 4 wt.% C series showed the highest hardness but the lowest wear rate and depth. This study found that the combination of a lower percentage of Ti with a higher percentage of C in HCCI can have a worthwhile result in abrasive wear. Full article
(This article belongs to the Special Issue Assessment of Abrasive Wear)
Show Figures

Figure 1

16 pages, 10964 KiB  
Article
Tribological Characteristics of High-Chromium Based Multi-Component White Cast Irons
by Riki Hendra Purba, Kazumichi Shimizu, Kenta Kusumoto, Yila Gaqi and Mohammad Jobayer Huq
Crystals 2022, 12(10), 1488; https://doi.org/10.3390/cryst12101488 - 20 Oct 2022
Cited by 4 | Viewed by 2681
Abstract
It has been evaluated the relationship between the microstructure and three-body abrasive wear behavior of high-chromium (18 and 27 mass % Cr) based (3 mass % each of V, Mo, W, and Co) multicomponent white cast iron materials (high-Cr MWCIs). It was also [...] Read more.
It has been evaluated the relationship between the microstructure and three-body abrasive wear behavior of high-chromium (18 and 27 mass % Cr) based (3 mass % each of V, Mo, W, and Co) multicomponent white cast iron materials (high-Cr MWCIs). It was also compared to MWCI to determine the service life of the materials. The results indicate that the microstructure of the material is composed of mainly martensite matrix and different types of precipitated carbides. The wear resistances of both the high-Cr MWCIs are higher than MWCI owing to the higher hardness (4–18% increment in hardness), although they contain fewer carbide types. The carbide volume fraction of high-Cr MWCI increases with increase in the Cr content, but the hardness decreases, leading to a reduction in wear resistance. This is because the transition metal significantly consumes C atoms to form more eutectic carbides during solidification, which is exacerbated by the depletion of C in the matrix during heat treatment to form coarser secondary carbides. This means that increasing the addition of Cr does not always lead to an increase in the hardness or wear resistance of the material. In addition, the wear resistance of 27Cr MWCI after tempering (wear rate: 8.80 × 10−5 g/m) is higher than that after quenching (wear rate: 9.25 × 10−5 g/m) owing to the increase in the fracture toughness of M7C3 carbide. This is contrary to the case of 18Cr-MWCI; the wear resistance after tempering (wear rate: 5.29 × 10−5 g/m) is worse than that after quenching (wear rate: 5.11 × 10−5 g/m) owing to the reduction in hardness as a stress-relieving effect. Full article
(This article belongs to the Special Issue Recent Advances in Low-Density Steels)
Show Figures

Figure 1

8 pages, 2438 KiB  
Article
Effects of Quenching Medium on Microstructure and Mechanical Properties of High Chromium Cast Iron
by Yi Li, Peng-Xiao Zhu, Cai Tang and Zhi Sun
Crystals 2022, 12(10), 1332; https://doi.org/10.3390/cryst12101332 - 21 Sep 2022
Cited by 7 | Viewed by 2557
Abstract
The cooling properties of different cooling mediums were studied and heat treatment of high chromium cast iron was carried out by different cooling mediums. The results showed that the maximum cooling rate, cooling rate at 300 °C and the quenching liquid cooling capacity [...] Read more.
The cooling properties of different cooling mediums were studied and heat treatment of high chromium cast iron was carried out by different cooling mediums. The results showed that the maximum cooling rate, cooling rate at 300 °C and the quenching liquid cooling capacity of water at 20 °C was 193.6 °C/s, 88.6 °C/s and 2431.1, respectively. With the increase in PAG concentration, the maximum cooling rate and the cooling rate at 300 °C of the coolant decreased. The microstructure of high chromium cast iron treated by water cooling, 10% PAG coolant and 20% coolant was white carbide + tempered martensite + retained austenite, and its impact toughness and fracture toughness were gradually improved. The water-cooled high chromium cast iron had the highest Rockwell hardness of 66.2 HRC, good wear resistance of 0.6103 g and the greatest friction coefficient of 0.4233, the high chromium cast iron treated with 10% PAG had the best wear resistance of 0.5715 and the lowest friction coefficient 0.4182, the high chromium cast iron treated with 20% PAG had the lowest Rockwell hardness 58.1 HRC and the worst wear resistance 0.8213 g. Full article
(This article belongs to the Special Issue Microstructure Characterization and Design of Alloys)
Show Figures

Figure 1

19 pages, 8353 KiB  
Article
Erosive Wear Behavior of High-Chromium Cast Iron: Combined Effect of Erodent Powders and Destabilization Heat Treatments
by Annalisa Fortini, Alessio Suman, Nicola Zanini and Giuseppe Cruciani
Coatings 2022, 12(8), 1218; https://doi.org/10.3390/coatings12081218 - 20 Aug 2022
Cited by 7 | Viewed by 2840
Abstract
High-chromium cast irons are frequently used in high-demanding applications, where low production costs and wear performance are key factors. The excellent abrasive resistance of these alloys results from the overall microstructural features, i.e., type, morphology, and distribution of hard primary and secondary carbides, [...] Read more.
High-chromium cast irons are frequently used in high-demanding applications, where low production costs and wear performance are key factors. The excellent abrasive resistance of these alloys results from the overall microstructural features, i.e., type, morphology, and distribution of hard primary and secondary carbides, along with the matrix constituents. Such a microstructure is the result of the chemical composition and solidification process, even though it could be further tuned by heat treatments. These latter are usually performed to destabilize the austenite and to induce the precipitation of secondary carbides. The present study investigates the combined effect of destabilization heat treatment route and erodent powder type on the erosive wear behavior of two commercial hypereutectic white cast irons. The as-received and the heat-treated materials were analyzed through optical and scanning electron microscopy, hardness tests, and X-ray diffraction to determine the relationship between microstructural variations and applied heat treatment. The erosive resistance was evaluated per the ASTM G76 standard in a purpose-built air blast test rig. Experiments were performed considering a raw meal powder, commonly used in cement factories, and Al2O3 as erodent powders. The adopted heat treatments were effective in increasing the overall hardness of the material, but this was not directly related to the erosion resistance. By contrast, the relative hardness ratio, i.e., erodent/target hardness, affects the erosion rate and different behaviors in relation to the softer/harder erodent particles were found. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

21 pages, 11093 KiB  
Article
Electrochemical Corrosion Behaviour of Different Grades of WC-Co, High-Cr White Cast Irons and Hadfield Steel in 1 M Sulphuric Acid
by Johannes H. Potgieter, David Whitefield and Vivian Motsumi
Materials 2021, 14(20), 6130; https://doi.org/10.3390/ma14206130 - 15 Oct 2021
Cited by 4 | Viewed by 2472
Abstract
Electrochemical polarisation tests were carried out on three grades of WC-Co cemented carbides to investigate the corrosive behaviour of the hardmetals and rank them as viable protective liners for chutes and skips in the mining industry. The cobalt binder content and WC particle [...] Read more.
Electrochemical polarisation tests were carried out on three grades of WC-Co cemented carbides to investigate the corrosive behaviour of the hardmetals and rank them as viable protective liners for chutes and skips in the mining industry. The cobalt binder content and WC particle size varied. The binder content ranged from 6–12 wt%, and the grain size of the WC particles ranged from 0.4–2.3 µm. The performance of the WC-Co hardmetal was compared to three different grades of high chromium white cast irons and Hadfield steel. The cast irons varied in both their chromium content and the morphology of the Cr-rich primary carbides. Potentiodynamic polarisation and linear polarization resistance scans were used to determine the corrosion current density and other electrochemical parameters. The microstructural characteristics of the samples were analysed using Scanning Electron Microscope(SEM) with Energy Dispersive Spectroscopy (EDS), and optical microscopy. The potentiodynamic scans revealed that, although the WC-Co alloys were found to have generally improved corrosion resistance, it was the high-Cr white cast iron (22 wt% Cr) that recorded the lowest corrosion current density and therefore displayed the best resistance against corrosive attack in 1 M H2SO4. The Hadfield steel exhibited the poorest resistance to corrosion and therefore, suffered the most degradation to its exposed surface. Full article
Show Figures

Figure 1

21 pages, 6604 KiB  
Article
Evaluation of the Microstructure, Tribological Characteristics, and Crack Behavior of a Chromium Carbide Coating Fabricated on Gray Cast Iron by Pulsed-Plasma Deposition
by Yuliia Chabak, Vasily Efremenko, Miroslav Džupon, Kazumichi Shimizu, Victor Fedun, Kaiming Wu, Bohdan Efremenko, Ivan Petryshynets and Tatiana Pastukhova
Materials 2021, 14(12), 3400; https://doi.org/10.3390/ma14123400 - 19 Jun 2021
Cited by 11 | Viewed by 2919
Abstract
The structural and tribological properties of a protective high-chromium coating synthesized on gray cast iron by air pulse-plasma treatments were investigated. The coating was fabricated in an electrothermal axial plasma accelerator equipped with an expandable cathode made of white cast iron (2.3 wt.% [...] Read more.
The structural and tribological properties of a protective high-chromium coating synthesized on gray cast iron by air pulse-plasma treatments were investigated. The coating was fabricated in an electrothermal axial plasma accelerator equipped with an expandable cathode made of white cast iron (2.3 wt.% C–27.4 wt.% Cr–3.1 wt.% Mn). Optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction analysis, microhardness measurements, and tribological tests were conducted for coating characterizations. It was found that after ten plasma pulses (under a discharge voltage of 4 kV) and post-plasma heat treatment (two hours of holding at 950 °C and oil-quenching), a coating (thickness = 210–250 µm) consisting of 48 vol.% Cr-rich carbides (M7C3, M3C), 48 vol.% martensite, and 4 vol.% retained austenite was formed. The microhardness of the coating ranged between 980 and 1180 HV. The above processes caused a gradient in alloying elements in the coating and the substrate due to the counter diffusion of C, Cr, and Mn atoms during post-plasma heat treatments and led to the formation of a transitional layer and different structural zones in near-surface layers of cast iron. As compared to gray cast iron (non-heat-treated and heat-treated), the coating had 3.0–3.2 times higher abrasive wear resistance and 1.2–1208.8 times higher dry-sliding wear resistance (depending on the counter-body material). The coating manifested a tendency of solidification cracking caused by tensile stress due to the formation of a mostly austenitic structure with a lower specific volume. Cracks facilitated abrasive wear and promoted surface spalling under dry-sliding against the diamond cone. Full article
Show Figures

Figure 1

12 pages, 3340 KiB  
Article
Characterization of Iron-Matrix Composites Reinforced by In Situ TiC and Ex Situ WC Fabricated by Casting
by Aida B. Moreira, Laura M. M. Ribeiro, Pedro Lacerda and Manuel F. Vieira
Metals 2021, 11(6), 862; https://doi.org/10.3390/met11060862 - 25 May 2021
Cited by 12 | Viewed by 3391
Abstract
In this study, the effect of microstructural characteristics on the mechanical properties of high-chromium white cast iron-matrix composites reinforced by in situ TiC and ex situ WC was investigated. To this end, two different powder mixtures (Ti + Al + graphite and WC [...] Read more.
In this study, the effect of microstructural characteristics on the mechanical properties of high-chromium white cast iron-matrix composites reinforced by in situ TiC and ex situ WC was investigated. To this end, two different powder mixtures (Ti + Al + graphite and WC + Fe) were compressed to produce green compacts that were inserted into the mold, before casting. The microstructure of the resulting composites and the base metal was characterized using optical microscopy (OM) and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). The microstructural analysis revealed a sound bonding between the composite zone and the base metal. The reinforcement with WC particles showed a homogeneous distribution of the carbide particles, unlike the reinforcement with TiC particles. The mechanical properties of the reinforcements were evaluated using hardness and ball-cratering micro-abrasion tests. The results showed that both reinforcements increase the hardness and wear performance of the base material, which was the best performance achieved by the reinforcement with WC particles. Full article
Show Figures

Figure 1

17 pages, 7574 KiB  
Article
Improvement of Impact Toughness and Abrasion Resistance of a 3C-25Cr-0.5Mo Alloy Using a Design of Experiment Statistical Technique: Microstructural Correlations after Heat Treatments
by Alejandro González-Pociño, Juan Asensio-Lozano, Florentino Álvarez-Antolín and Ana García-Diez
Metals 2021, 11(4), 595; https://doi.org/10.3390/met11040595 - 6 Apr 2021
Cited by 9 | Viewed by 2210
Abstract
Hypoeutectic high chromium white cast irons are commonly used in the mining and cement industries, where high resistance to abrasive wear is demanded. Through the application of a Design of Experiment technique (DoE), different factors related to thermal industrial treatments are analysed with [...] Read more.
Hypoeutectic high chromium white cast irons are commonly used in the mining and cement industries, where high resistance to abrasive wear is demanded. Through the application of a Design of Experiment technique (DoE), different factors related to thermal industrial treatments are analysed with regard to resistance to abrasive wear and impact response. Abrasion tests were carried out in accordance with the ASTM G065-16 standard. The provisional results show that to increase wear resistance, high destabilisation temperatures (1050 °C) followed by slow cooling to room temperature (RT) and subsequent tempering at 400 °C are most favourable. This is because these conditions are favourable to maintaining a certain tetragonality of the martensite after tempering and also, because of the presence of a high density of mixed carbides M7C3, through a secondary precipitation during cooling. Oil quenching and a high tempering temperature (550 °C) with long dwell times of 6 h were found to increase impact toughness. These conditions favour a lack of retained austenite. The presence of retained austenite was found unfavourable for both wear resistance and toughness, whereas tempering at 400 °C has been shown to be insufficient to transform martensite on tempering, which in turn seemed to increase the hardness of the matrix constituent. Full article
Show Figures

Figure 1

19 pages, 10816 KiB  
Article
Bifilm Defects in Ti-Inoculated Chromium White Cast Iron
by Malwina Dojka and Marcin Stawarz
Materials 2020, 13(14), 3124; https://doi.org/10.3390/ma13143124 - 13 Jul 2020
Cited by 13 | Viewed by 3425
Abstract
In recent years, white chromium cast iron has gained a well-settled position among wear-resistant materials. In recent times, chromium cast iron samples containing titanium have attracted attention. In cast iron samples, titanium combines with carbon and forms TiC particles, which may be form [...] Read more.
In recent years, white chromium cast iron has gained a well-settled position among wear-resistant materials. In recent times, chromium cast iron samples containing titanium have attracted attention. In cast iron samples, titanium combines with carbon and forms TiC particles, which may be form a crystallization underlay for eutectic M7C3 carbides and austenite. Accordingly, the inoculation process occurring in the crystallizing alloy should result in the proper, regular distribution of fine eutectic chromium carbides in the austenitic matrix. The presented research was conducted on 20% Cr hypoeutectic white cast iron with the addition of 0.5, 1, and 2% of Ti. Ti inoculation and the presence of TiC allowed for superior wear properties to be obtained. However, the conducted study revealed a significant decrease in the impact strength of examined alloys, especially for the cast iron samples with a high amount of Ti, in which the TiC compounds agglomerated. Titanium compounds accumulate in clusters and their distribution is irregular. Most of the TiC compounds were transported by the crystallization front into the center of the castings, where micropores were formed, meaning they were no longer effective crystallization underlays. In the authors’ opinion, the agglomerate formation is strictly connected with the appearance of bifilm defects in the casting microstructure. The conducted research shows how an incorrect volume of an additive may have negative influences on the properties of the casting. This is a vital issue not only from a technological point of view, but also for economic reasons. Full article
(This article belongs to the Special Issue Novel Casting and Modelling Processes)
Show Figures

Figure 1

19 pages, 15415 KiB  
Article
Laser Surface Hardening of Ni-hard White Cast Iron
by Samar Reda Al-Sayed, Ahmed Magdi Elshazli and Abdel Hamid Ahmed Hussein
Metals 2020, 10(6), 795; https://doi.org/10.3390/met10060795 - 16 Jun 2020
Cited by 17 | Viewed by 5246
Abstract
Laser surface treatment on two different types of nickel–chromium white cast iron (Ni-hard) alloys (Ni-hard 1 and Ni-hard 4) was investigated. Nd:YAG laser of 2.2-kw with continuous wave was used. Ni-hard alloys are promising engineering materials, which are extensively used in applications where [...] Read more.
Laser surface treatment on two different types of nickel–chromium white cast iron (Ni-hard) alloys (Ni-hard 1 and Ni-hard 4) was investigated. Nd:YAG laser of 2.2-kw with continuous wave was used. Ni-hard alloys are promising engineering materials, which are extensively used in applications where good resistance to abrasion wear is essential. The conventional hardening of such alloys leads to high wear resistance nevertheless, the core of the alloy suffers from low toughness. Therefore, it would be beneficial to harden the surface via laser surface technology which keeps the core tough enough to resist high impact shocks. A laser power of different levels (600, 800 and 1000 Watts) corresponding to three different laser scanning speeds (3, 4 and 5 m·min−1) was adopted hoping to reach optimum conditions for wear resistance and impact toughness. The optimum condition for both properties was recorded at heat input of 16.78 J·mm−2. The present findings reflect that the microhardness values and wear resistance clearly increased after laser hardening by almost three times due to laser surface hardening, whereas, the impact toughness was increased from five joules obtained from conventionally heat-treated samples to 6.4 J as gained from laser-treated samples. Full article
(This article belongs to the Special Issue Laser Processing of Metals and Alloys)
Show Figures

Figure 1

15 pages, 19206 KiB  
Article
Preparation and Microstructural Characterization of a High-Cr White Cast Iron Reinforced with WC Particles
by Aida B. Moreira, Laura M. M. Ribeiro, Pedro Lacerda, Ricardo O. Sousa, Ana M. P. Pinto and Manuel F. Vieira
Materials 2020, 13(11), 2596; https://doi.org/10.3390/ma13112596 - 6 Jun 2020
Cited by 9 | Viewed by 3261
Abstract
High-chromium white cast iron (WCI) specimens locally reinforced with WC–metal matrix composites were produced via an ex situ technique: powder mixtures of WC and Fe cold-pressed in a pre-form were inserted in the mold cavity before pouring the base metal. The microstructure of [...] Read more.
High-chromium white cast iron (WCI) specimens locally reinforced with WC–metal matrix composites were produced via an ex situ technique: powder mixtures of WC and Fe cold-pressed in a pre-form were inserted in the mold cavity before pouring the base metal. The microstructure of the resulting reinforcement is a matrix of martensite (α’) and austenite (γ) with WC particles evenly distributed and (Fe,W,Cr)6C carbides that are formed from the reaction between the molten metal and the inserted pre-form. The (Fe,W,Cr)6C precipitation leads to the hypoeutectic solidification of the matrix and the final microstructure consists of martensite, formed from primary austenite during cooling and eutectic constituent with (Fe,Cr)7C3 and (Fe,W,Cr)6C carbides. The presence of a reaction zone with 200 µm of thickness, between the base metal and the composite should guarantee a strong bonding between these two zones. Full article
Show Figures

Figure 1

Back to TopTop