Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = high-boron multi-component alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6272 KB  
Article
Experimental Investigation of the Interplay Between Al-, B-, and Ti-Nitrides in Microalloyed Steel and Thermodynamic Analysis
by Markus Führer, Sabine Zamberger, Christoph Seubert and Erwin Povoden-Karadeniz
Metals 2025, 15(7), 705; https://doi.org/10.3390/met15070705 - 25 Jun 2025
Viewed by 945
Abstract
Aluminum, boron, and titanium microalloyed into high-strength low-alloy boron steel exhibit a complex interplay, competing for nitrogen, with titanium demonstrating the highest affinity, followed by boron and aluminum. This competition affects the formation and distribution of nitrides, impacting the microstructure and mechanical properties [...] Read more.
Aluminum, boron, and titanium microalloyed into high-strength low-alloy boron steel exhibit a complex interplay, competing for nitrogen, with titanium demonstrating the highest affinity, followed by boron and aluminum. This competition affects the formation and distribution of nitrides, impacting the microstructure and mechanical properties of the steel. Titanium protects boron from forming BN and facilitates the nucleation of acicular ferrite, enhancing toughness. The segregation of boron to grain boundaries, rather than its precipitation as boron nitride, promotes the formation of martensite and thus the through-hardenability. Aluminum nitride is critical in controlling grain size through a pronounced pinning effect. In this study, we employ energy- and wavelength-dispersive X-ray spectroscopy and computer-aided particle analysis to analyze the phase content of 12 high-purity vacuum induction-melted samples. The primary objective of this study is to correctly describe the microstructural evolution in the Fe-Al-B-Ti-C-N system using the Calphad approach, with special emphasis on correctly predicting the dissolution temperatures of nitrides. A multicomponent database is constructed through the incorporation of available binary and ternary descriptions, employing the Calphad approach. The experimental findings regarding the solvus temperature of the involved nitrides are employed to validate the accuracy of the thermodynamic database. The findings offer a comprehensive understanding of the relative phase stabilities and the associated interplay among the involved elements Al, B, and Ti in the Fe-rich corner of the system. The type and size distribution of the stable nitrides in microalloyed steel have been demonstrated to exert a substantial influence on the properties of the material, thereby rendering accurate predictions of phase stabilities of considerable relevance. Full article
(This article belongs to the Special Issue Multi-scale Simulation of Metallic Materials (2nd Edition))
Show Figures

Figure 1

11 pages, 6600 KB  
Article
The Influence of Boron and Carbon Addition on the Glass Formation and Mechanical Properties of High Entropy (Fe, Co, Ni, Cr, Mo)-(B, C) Glassy Alloys
by Fanli Kong, Akihisa Inoue, Fang Wang and Chuntao Chang
Coatings 2024, 14(1), 118; https://doi.org/10.3390/coatings14010118 - 16 Jan 2024
Cited by 4 | Viewed by 1851
Abstract
Coatings made from metallic glasses are a promising solution for protecting surfaces of materials in various challenging environments. From an engineering perspective, glassy alloy coatings containing carbon are of greater importance compared to those without carbon but containing boron. Despite anticipating improved coating [...] Read more.
Coatings made from metallic glasses are a promising solution for protecting surfaces of materials in various challenging environments. From an engineering perspective, glassy alloy coatings containing carbon are of greater importance compared to those without carbon but containing boron. Despite anticipating improved coating characteristics, there is no data on using high entropy glassy alloy as a coating material. In this paper, we investigated the influence of the simultaneous addition of boron and carbon elements on the glass-forming ability, thermal stability, crystallization behavior, yield strength, hardness, and corrosion resistance of high entropy (Fe, Co, Ni, Cr, Mo)-(B, C) glassy alloys. It was found that the content of boron and carbon had a significant effect on the improvements of glass-forming ability, mechanical properties, and corrosion resistance. The (Fe0.25Co0.25Ni0.25Cr0.125Mo0.125)75(B0.7C0.3)25 bulk glassy alloy exhibits high glass-forming ability, high yield strength of 3500 MPa, Vickers hardness of 1240, and the highest corrosion resistance among the alloys. We also discussed the reason for their good engineering properties, and the possibility of using high entropy glassy alloys as coating materials, in addition to the guidelines for designing high-performance multicomponent glassy alloys. Full article
(This article belongs to the Special Issue Mechanical Properties and Tribological Behavior of Alloy/Coatings)
Show Figures

Figure 1

15 pages, 15348 KB  
Article
Erosive Wear Behavior of Novel Hybrid Multicomponent Cast Alloys with Different C and B Contents
by Riki Hendra Purba, Kenta Kusumoto, Kazumichi Shimizu and Vasily Efremenko
Lubricants 2023, 11(6), 243; https://doi.org/10.3390/lubricants11060243 - 31 May 2023
Viewed by 1758
Abstract
Multicomponent and high-boron cast alloys have been recognized as materials with excellent wear resistance due to the formation of hard phases called carbides and borides. However, the wear performance of the combination of these two materials called hybrid multicomponent cast alloys (HMCAs) has [...] Read more.
Multicomponent and high-boron cast alloys have been recognized as materials with excellent wear resistance due to the formation of hard phases called carbides and borides. However, the wear performance of the combination of these two materials called hybrid multicomponent cast alloys (HMCAs) has not been comprehensively studied. Therefore, this study will evaluate the effect of C (0–0.9 wt.%) and B (1.5–3.5 wt.%) addition on the erosion wear behavior of an HMCA containing 2.5 wt.% Ti, 10 wt.% Cr, and 5 wt.% each of V, Mo, and W. Shot-blast erosion testing was used to evaluate the wear resistance of each alloy. The test was conducted for 3600 s using 2 kg of irregularly shaped steel sand as a scraper at impact angles of 30°, 60°, and 90°. The results showed that the highest wear rate in 0C and 0.45C with 1.5–3.5% B occurred at an impact angle of 60° due to gouging and indentation mechanisms occurring simultaneously. However, different results occurred in the case of 0.9C with the same amount of B where the wear rate increased with increasing impact angle due to brittleness. Based on the chemical composition, the wear resistance of the alloy increased with increasing C content due to higher hardness values. However, the reverse performance occurred when the addition of B exceeded the threshold (more than 1.5 wt.%) despite the higher hardness. This fact was due to the susceptibility to carbide cracking as the amount of B increased. Therefore, the alloy with the best erosion wear resistance was 0.9C–1.5B HMCA. Full article
(This article belongs to the Special Issue Frictional Behavior and Wear Performance of Cast Irons)
Show Figures

Figure 1

19 pages, 64672 KB  
Article
Investigations of Abrasive Wear Behaviour of Hybrid High-Boron Multi-Component Alloys: Effect of Boron and Carbon Contents by the Factorial Design Method
by Yuliia Chabak, Ivan Petryshynets, Vasily Efremenko, Michail Golinskyi, Kazumichi Shimizu, Vadym Zurnadzhy, Ivan Sili, Hossam Halfa, Bohdan Efremenko and Viktor Puchy
Materials 2023, 16(6), 2530; https://doi.org/10.3390/ma16062530 - 22 Mar 2023
Cited by 5 | Viewed by 2178
Abstract
This paper is devoted to the evaluation of the “three-body-abrasion” wear behaviour of (wt.%) 5W–5Mo–5V–10Cr-2.5Ti-Fe (balance) multi-component (C + B)-added alloys in the as-cast condition. The carbon (0.3 wt.%, 0.7 wt.%, 1.1 wt.%) and boron (1.5 wt.%, 2.5 wt.%, 3.5 wt.%) contents were [...] Read more.
This paper is devoted to the evaluation of the “three-body-abrasion” wear behaviour of (wt.%) 5W–5Mo–5V–10Cr-2.5Ti-Fe (balance) multi-component (C + B)-added alloys in the as-cast condition. The carbon (0.3 wt.%, 0.7 wt.%, 1.1 wt.%) and boron (1.5 wt.%, 2.5 wt.%, 3.5 wt.%) contents were selected using a full factorial (32) design method. The alloys had a near-eutectic (at 1.5 wt.% B) or hyper-eutectic (at 2.5–3.5 wt.% B) structure. The structural micro-constituents were (in different combinations): (a) (W, Mo, and V)-rich borocarbide M2(B,C)5 as the coarse primary prismatoids or as the fibres of a “Chinese-script” eutectic, (b) Ti-rich carboboride M(C,B) with a dispersed equiaxed shape, (c) Cr-rich carboboride M7(C,B)3 as the plates of a “rosette”-like eutectic, and (d) Fe-rich boroncementite (M3(C,B)) as the plates of “coarse-net” and ledeburite eutectics. The metallic matrix was ferrite (at 0.3–1.1 wt.% C and 1.5 wt.% B) and “ferrite + pearlite” or martensite (at 0.7–1.1 wt.% C and 2.5–3.5 wt.% B). The bulk hardness varied from 29 HRC (0.3 wt.% C–1.5 wt.% B) to 53.5 HRC (1.1 wt.% C–3.5 wt.% B). The wear test results were mathematically processed and the regression equation of the wear rate as a function of the carbon and boron contents was derived and analysed. At any carbon content, the lowest wear rate was attributed to the alloy with 1.5 wt.% B. Adding 2.5 wt.% B led to an increase in the wear rate because of the appearance of coarse primary borocarbides (M2(B,C)5), which were prone to chipping and spalling-off under abrasion. At a higher boron content (3.5 wt.%), the wear rate decreased due to the increase in the volume fraction of the eutectic carboborides. The optimal chemical composition was found to be 1.1 wt.% C–1.5 wt.% B with a near-eutectic structure with about 35 vol.% of hard inclusions (M2(B,C)5, M(C,B), M3(C,B), and M7(C,B)3) in total. The effect of carbon and boron on the abrasive behaviour of the multi-component cast alloys with respect to the alloys’ structure is discussed, and the mechanism of wear for these alloys is proposed. Full article
Show Figures

Figure 1

12 pages, 5454 KB  
Article
Processing and Characterization of β Titanium Alloy Composite Using Power Metallurgy Approach
by Krystian Zyguła and Marek Wojtaszek
Materials 2022, 15(17), 5800; https://doi.org/10.3390/ma15175800 - 23 Aug 2022
Cited by 6 | Viewed by 2614
Abstract
The β titanium alloy matrix composite was made from a mixture of elemental metal powders, including boron carbide. During the high-temperature sintering process, in situ synthesis took place as a result of the TiB and TiC reinforcing phases formed. The identification of these [...] Read more.
The β titanium alloy matrix composite was made from a mixture of elemental metal powders, including boron carbide. During the high-temperature sintering process, in situ synthesis took place as a result of the TiB and TiC reinforcing phases formed. The identification of these phases was confirmed by X-ray diffraction and microstructural analyses. The presence of unreacted B4C particles and the surrounding reaction layers allowed for the evaluation of diffusion kinetics of alloying elements using SEM and EDS analyses. The direction of diffusion of the alloying elements in the multicomponent titanium alloy and their influence on the in situ synthesis reaction taking place were determined. In addition, the relationship between the microstructural components, strengthening phases, and hardness was also determined. It was shown that in situ reinforcement of titanium alloy produced from a mixture of elemental powders with complex chemical composition is possible under the proposed conditions. Thus, it has been demonstrated that sufficiently high temperature and adequate holding time allows one to understand the kinetics of the synthesis of the strengthening phases, which have been shown to be controlled by the concentrations of alloying elements. Full article
Show Figures

Figure 1

18 pages, 47218 KB  
Review
Grain Boundary Wetting Phenomena in High Entropy Alloys Containing Nitrides, Carbides, Borides, Silicides, and Hydrogen: A Review
by Boris Straumal, Eugen Rabkin, Gabriel A. Lopez, Anna Korneva, Alexei Kuzmin, Alena Gornakova, Alexander Straumal and Brigitte Baretzky
Crystals 2021, 11(12), 1540; https://doi.org/10.3390/cryst11121540 - 9 Dec 2021
Cited by 22 | Viewed by 4411
Abstract
In this review, we analyze the structure of multicomponent alloys without principal components (they are also called high entropy alloys—HEAs), containing not only metals but also hydrogen, nitrogen, carbon, boron, or silicon. In particular, we discuss the phenomenon of grain boundary (GB) wetting [...] Read more.
In this review, we analyze the structure of multicomponent alloys without principal components (they are also called high entropy alloys—HEAs), containing not only metals but also hydrogen, nitrogen, carbon, boron, or silicon. In particular, we discuss the phenomenon of grain boundary (GB) wetting by the melt or solid phase. The GB wetting can be complete or incomplete (partial). In the former case, the grains of the matrix are completely separated by the continuous layer of the second phase (solid or liquid). In the latter case of partial GB wetting, the second solid phase forms, between the matrix grains, a chain of (usually lenticular) precipitates or droplets with a non-zero value of the contact angle. To deal with the morphology of GBs, the new GB tie-lines are used, which can be constructed in the two- or multiphase areas of the multidimensional HEAs phase diagrams. The GBs in HEAs in the case of complete or partial wetting can also contain hydrides, nitrides, carbides, borides, or silicides. Thus, GB wetting by the hydrides, nitrides, carbides, borides, or silicides can be used in the so-called grain boundary chemical engineering in order to improve the properties of respective HEAs. Full article
(This article belongs to the Special Issue High-Entropy Materials)
Show Figures

Graphical abstract

19 pages, 13353 KB  
Review
Enhancement of Activity and Development of Low Pt Content Electrocatalysts for Oxygen Reduction Reaction in Acid Media
by Aldona Kostuch, Iwona A. Rutkowska, Beata Dembinska, Anna Wadas, Enrico Negro, Keti Vezzù, Vito Di Noto and Pawel J. Kulesza
Molecules 2021, 26(17), 5147; https://doi.org/10.3390/molecules26175147 - 25 Aug 2021
Cited by 23 | Viewed by 5164
Abstract
Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O [...] Read more.
Platinum is a main catalyst for the electroreduction of oxygen, a reaction of primary importance to the technology of low-temperature fuel cells. Due to the high cost of platinum, there is a need to significantly lower its loadings at interfaces. However, then O2-reduction often proceeds at a less positive potential, and produces higher amounts of undesirable H2O2-intermediate. Hybrid supports, which utilize metal oxides (e.g., CeO2, WO3, Ta2O5, Nb2O5, and ZrO2), stabilize Pt and carbon nanostructures and diminish their corrosion while exhibiting high activity toward the four-electron (most efficient) reduction in oxygen. Porosity of carbon supports facilitates dispersion and stability of Pt nanoparticles. Alternatively, the Pt-based bi- and multi-metallic catalysts, including PtM alloys or M-core/Pt-shell nanostructures, where M stands for certain transition metals (e.g., Au, Co, Cu, Ni, and Fe), can be considered. The catalytic efficiency depends on geometric (decrease in Pt–Pt bond distances) and electronic (increase in d-electron vacancy in Pt) factors, in addition to possible metal–support interactions and interfacial structural changes affecting adsorption and activation of O2-molecules. Despite the stabilization of carbons, doping with heteroatoms, such as sulfur, nitrogen, phosphorus, and boron results in the formation of catalytically active centers. Thus, the useful catalysts are likely to be multi-component and multi-functional. Full article
(This article belongs to the Special Issue In Honor of the 80th Birthday of Professor Janusz Jurczak)
Show Figures

Graphical abstract

14 pages, 4201 KB  
Article
Research on Properties of Borocarbide in High Boron Multi-Component Alloy with Different Mo Concentrations
by Xiangyi Ren, Lihong Han, Hanguang Fu and Jianjun Wang
Materials 2021, 14(13), 3709; https://doi.org/10.3390/ma14133709 - 2 Jul 2021
Cited by 5 | Viewed by 2164
Abstract
In this work, the microstructure, alloying element distribution, and borocarbide mechanical properties of high-boron multi-component alloy with Fe-2.0 wt.%B-0.4 wt.%C-6.0 wt.%Cr-x wt.%Mo-1.0%Al-1.0 wt.%Si-1.0 wt.%V-0.5 wt.%Mn (x = 0.0, 2.0, 4.0, 6.0, 8.0) are investigated. The theoretical calculation results and experiments indicate [...] Read more.
In this work, the microstructure, alloying element distribution, and borocarbide mechanical properties of high-boron multi-component alloy with Fe-2.0 wt.%B-0.4 wt.%C-6.0 wt.%Cr-x wt.%Mo-1.0%Al-1.0 wt.%Si-1.0 wt.%V-0.5 wt.%Mn (x = 0.0, 2.0, 4.0, 6.0, 8.0) are investigated. The theoretical calculation results and experiments indicate that the microstructure of high-boron multi-component alloy consists of ferrite, pearlite as a matrix and borocarbide as a hard phase. As a creative consideration, through the use of first-principles calculations, the comprehensive properties of borocarbide with different molybdenum concentrations have been predicted. The calculations of energy, state density, electron density and elastic constant of Fe2B crystal cell reveal that substitution of the molybdenum atom in the Fe2B crystal cell can remarkably improve its thermodynamic stability, bond strength, and covalent trend. For verifying the accuracy of this theoretical calculation, nano-indentation testing is carried out, the results of which indicate that the actual properties of borocarbide present favorable consistency with the theoretical calculations. Full article
Show Figures

Figure 1

15 pages, 5622 KB  
Article
Effect of Titanium Modification on Microstructure and Impact Toughness of High-Boron Multi-Component Alloy
by Xiangyi Ren, Shuli Tang, Hanguang Fu and Jiandong Xing
Metals 2021, 11(2), 193; https://doi.org/10.3390/met11020193 - 21 Jan 2021
Cited by 7 | Viewed by 2622
Abstract
This work investigated the microstructure and mechanical property of high-boron multi-component alloy with Fe, B, C, Cr, Mo, Al, Si, V, Mn and different contents of Ti. The results indicate that the as-cast metallurgical microstructure of high-boron multi-component alloys consist of ferrite, pearlite [...] Read more.
This work investigated the microstructure and mechanical property of high-boron multi-component alloy with Fe, B, C, Cr, Mo, Al, Si, V, Mn and different contents of Ti. The results indicate that the as-cast metallurgical microstructure of high-boron multi-component alloys consist of ferrite, pearlite and borocarbide. In an un-modified alloy, continuous reticular structure of borocarbide is observed. After titanium addition, the structure of borocarbide changes into a fine and isolated morphology. TiC is the existence form of titanium in the alloy, which acts as the heterogeneous nuclei for eutectic borocarbide. Moreover, impact toughness of the alloy is remarkably improved by titanium modification. Full article
(This article belongs to the Special Issue Casting and Solidification Processing)
Show Figures

Figure 1

Back to TopTop