Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,275)

Search Parameters:
Keywords = high frequency current measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1446 KB  
Article
Research on High-Frequency Impedance Characteristics of Damaged Circuit Breaker Closing Resistance
by Ce Zhang, Bo Niu, Feiyue Ma, Lingjun Yin, Shangpeng Sun and Xutao Han
Energies 2025, 18(21), 5768; https://doi.org/10.3390/en18215768 (registering DOI) - 31 Oct 2025
Abstract
The closing resistor in a circuit breaker are prone to damage during operation due to extreme factors such as over-voltage, over-current, and mechanical shock, which alter their high-frequency impedance characteristics. Comparing impedance before and after damage can indicate the severity of degradation. However, [...] Read more.
The closing resistor in a circuit breaker are prone to damage during operation due to extreme factors such as over-voltage, over-current, and mechanical shock, which alter their high-frequency impedance characteristics. Comparing impedance before and after damage can indicate the severity of degradation. However, the high-frequency impedance properties of damaged closing resistors remain insufficiently understood. This study investigates three classic damage types through simulation and external testing on a physical circuit breaker, validating the accuracy of the simulation results. Further high-frequency impedance measurements inside the tank examine the characteristics under varying damage degrees. Results show that external testing reflects the intrinsic impedance changes in the resistor string, exhibiting primarily resistive and inductive traits, with negligible capacitive influence. In contrast, internal measurements are affected by the tank’s capacitance, leading to a resonance point in the high-frequency range. Different damage degrees cause noticeable shifts in the resonance frequency and a gradual increase in impedance magnitude. These findings offer practical guidance for field inspection of circuit breaker closing resistor conditions using high-frequency impedance techniques. Full article
22 pages, 4820 KB  
Article
A Quick Thickness Measurement Method for Ti-Alloy Sheets Based on a Novel Low-Frequency Phase Feature Model in Eddy Current Testing
by Jun Bao, Xuyang Zheng, Hongwei Liu, Tianhua Xie and Yan Li
Metals 2025, 15(11), 1210; https://doi.org/10.3390/met15111210 - 30 Oct 2025
Viewed by 88
Abstract
Titanium (Ti) alloy sheets are important mechanical and structural components. However, thickness deviations may occur during the production of Ti-alloy sheets, significantly compromising product quality and structural safety. Eddy current testing (ECT) is a common method for measuring the thickness deviation of metal [...] Read more.
Titanium (Ti) alloy sheets are important mechanical and structural components. However, thickness deviations may occur during the production of Ti-alloy sheets, significantly compromising product quality and structural safety. Eddy current testing (ECT) is a common method for measuring the thickness deviation of metal sheets. Nevertheless, conventional ECT methods often rely on complex calibration procedures or iterative inversion algorithms, thereby limiting their applicability. It was found that when low-frequency ECT excitation is used, such that the eddy current penetration depth exceeds three times the maximum target thickness of the Ti-alloy sheet, the tangent of the ECT coil impedance phase exhibits a linear relationship with the thickness. Based on this observation, by analyzing the low-frequency ECT response of Ti-alloys and separating the real and imaginary parts of the impedance under approximate conditions, a phase feature model was developed. The model effectively describes the linear dependence of the phase tangent on the thickness of the Ti-alloy sheet, offering a succinct characterization. The measurement method based on this model thereby allows for direct thickness calculation from the measured coil impedance without requiring master-curve calibration or iterative computation. Experiments were conducted using a custom-designed ECT coil and impedance analyzer to measure different Ti-alloy specimens. The results indicate that the measurement error was less than 3.5%. This research provides a theoretical foundation as well as a straightforward engineering solution for online, high-speed thickness measurement of Ti-alloy sheets. Full article
Show Figures

Figure 1

21 pages, 4970 KB  
Article
Measuring Phase–Amplitude Coupling Effect with OPM-MEG
by Yong Li, Hao Lu, Chunhui Wang, Fuzhi Cao, Jianzhi Yang, Binyi Su, Ying Liu and Xiaolin Ning
Photonics 2025, 12(11), 1070; https://doi.org/10.3390/photonics12111070 - 29 Oct 2025
Viewed by 127
Abstract
Optically pumped magnetometers (OPMs) present a promising opportunity to advance magnetoencephalography (MEG), enhancing the accuracy of neuronal activity recordings due to their high spatiotemporal resolution. However, to fully realize the potential of OPM-MEG as an emerging brain functional imaging technology, it is essential [...] Read more.
Optically pumped magnetometers (OPMs) present a promising opportunity to advance magnetoencephalography (MEG), enhancing the accuracy of neuronal activity recordings due to their high spatiotemporal resolution. However, to fully realize the potential of OPM-MEG as an emerging brain functional imaging technology, it is essential to measure key indicators of neural dynamics, particularly phase–amplitude coupling (PAC). PAC is a fundamental mechanism for integrating information across different frequency bands and plays an important role in various cognitive functions and neurological disorders. Therefore, measuring PAC with OPM-MEG is a crucial step toward expanding its applications. In this study, brain signals under pitch sequence stimulation were recorded using OPM-MEG to analyze the PAC effect in the primary auditory cortex (Aud) and the inferior frontal gyrus (IFG), as well as the functional connectivity between brain regions. The findings were validated through EEG control experiments. The results indicated that the PAC effect measured by OPM-MEG was largely consistent with that measured by EEG, with OPM-MEG appearing to detect PAC more prominently under the current experimental conditions. The PAC of Aud exhibited a trend of initially increasing and then decreasing centered on the target pitch, showing hemispheric symmetry. The PAC of IFG showed variations under different pitch conditions and displayed right hemisphere lateralization. Functional connectivity analysis provided convergent evidence for the mechanisms underlying the PAC effect and suggested the reliability of the OPM-MEG system in capturing cross-frequency neural dynamics. To our knowledge, this study provides the first task-based evidence that OPM-MEG can measure PAC effects in cortical regions, offering an initial foundation for future investigations of brain dynamics using this technology. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
Show Figures

Figure 1

11 pages, 1821 KB  
Article
Enhancing the High-Frequency Performance of FeSiAl/2.25 wt.% WS2 Composites Through the Application of a Transverse Magnetic Field
by Shoujin Zhu, Shuangjiu Feng, Xiansong Liu and Xucai Kan
Magnetochemistry 2025, 11(11), 95; https://doi.org/10.3390/magnetochemistry11110095 - 29 Oct 2025
Viewed by 149
Abstract
Herein, we address the challenge of high core losses in soft magnetic composites (SMCs) at high frequencies by developing a FeSiAl/WS2 composite system processed under a transverse magnetic field (TMF). In this study, 200- and 600-mesh FeSiAl powders were used as base [...] Read more.
Herein, we address the challenge of high core losses in soft magnetic composites (SMCs) at high frequencies by developing a FeSiAl/WS2 composite system processed under a transverse magnetic field (TMF). In this study, 200- and 600-mesh FeSiAl powders were used as base materials and combined with 2.25 wt.% two-dimensional tungsten disulfide (WS2; an insulating agent) to prepare FeSiAl/2.25 wt.%WS2 soft magnetic composites via ultrasonic mixing. The evolution of soft magnetic properties under a transverse magnetic field (TMF) was systematically investigated. The novelty of this work lies in the synergistic combination of fine FeSiAl particles and WS2 nanosheets as an interparticle insulator and the application of a TMF to simultaneously suppress eddy current and hysteresis losses—a challenge that is difficult to address using conventional approaches. Morphological analysis confirmed a uniform and continuous organic coating of WS2 nanosheets on FeSiAl particle surfaces. Permeability measurements revealed a slight decrease in effective permeability after the TMF treatment; however, the high-frequency performance was markedly enhanced. Magnetic loss analysis revealed a substantial reduction in the hysteresis loss and an increase in the quality factor under the TMF. Notably, the FeSiAl (600 mesh)/2.25 wt.% WS2 composite achieved a total magnetic loss of 234 kW/m3 under a TMF of 140 kA/m, magnetic induction of 20 mT, and frequency of 1 MHz, representing a 69% reduction compared with conventional SMCs. These results not only validate the effectiveness of the proposed synergistic approach but also highlight the potential of FeSiAl (600 mesh)/2.25 wt.% WS2 for use in high-power, high-frequency magnetic devices, with improved energy efficiency and thermal performance. Full article
Show Figures

Figure 1

14 pages, 22331 KB  
Data Descriptor
Electrical Measurement Dataset from a University Laboratory for Smart Energy Applications
by Sergio D. Saldarriaga-Zuluaga, José Ricardo Velasco-Méndez, Carlos Mario Moreno-Paniagua, Bayron Alvarez-Arboleda and Sergio Andres Estrada-Mesa
Data 2025, 10(11), 170; https://doi.org/10.3390/data10110170 - 26 Oct 2025
Viewed by 295
Abstract
Continuous monitoring of electrical parameters is essential for understanding energy consumption, assessing power quality, and analyzing load behavior. This paper presents a dataset comprising measurements of three-phase voltages and currents, active and reactive power (per phase and total), power factor, and system frequency. [...] Read more.
Continuous monitoring of electrical parameters is essential for understanding energy consumption, assessing power quality, and analyzing load behavior. This paper presents a dataset comprising measurements of three-phase voltages and currents, active and reactive power (per phase and total), power factor, and system frequency. The data was collected between April and December 2024 in the low-voltage system of a university laboratory, using high-accuracy power analyzers installed at the point of common coupling. Measurements were recorded every 10 min, generating 79 files with 432 records each, for a total of approximately 34,128 entries. To ensure data quality, the values were validated, erroneous entries removed, and consistency verified using power triangle relationships. The curated dataset is provided in tabular (CSV) format, with each record including a timestamp, three-phase voltages, three-phase currents, active and reactive power (per phase and total), power factor (per phase and global), and system frequency. This dataset offers a comprehensive characterization of electrical behavior in a university laboratory over a nine-month period. It is openly available for reuse and can support research in power system analysis, renewable energy integration, demand forecasting, energy efficiency, and the development of machine learning models for smart energy applications. Full article
(This article belongs to the Topic Smart Energy Systems, 2nd Edition)
Show Figures

Figure 1

16 pages, 2575 KB  
Article
Extending the ICESAT-2 ATLAS Lidar Capabilities to Other Planets Within Our Solar System
by John J. Degnan
Photonics 2025, 12(11), 1048; https://doi.org/10.3390/photonics12111048 - 23 Oct 2025
Viewed by 275
Abstract
The ATLAS lidar on NASA’s Earth-orbiting ICESat-2 satellite has operated continuously since its launch in September 2018, with no sign of degradation. Compared to previous international single-beam spaceborne lidars, which operated at a few tens of Hz, the single-photon-sensitive, six-beam ATLAS pushbroom lidar [...] Read more.
The ATLAS lidar on NASA’s Earth-orbiting ICESat-2 satellite has operated continuously since its launch in September 2018, with no sign of degradation. Compared to previous international single-beam spaceborne lidars, which operated at a few tens of Hz, the single-photon-sensitive, six-beam ATLAS pushbroom lidar provides 60,000 surface measurements per second and has accumulated almost 3 trillion surface measurements during its six years of operation. It also features a 0.5 m2 telescope aperture and a single, 5 Watt, frequency-doubled Nd:YAG laser generating a 10 KHz train of 1.5-nanosecond pulses at a green wavelength of 532 nm. The current paper investigates how, with minor modifications to the ATLAS lidar, this capability might be extended to other planets within our solar system. Crucial to this capability is the need to minimize the solar background seen by the lidar while simultaneously providing, for long time intervals (multiple months), an uninterrupted, modestly powered, multimegabit per second interplanetary laser communications link to a terminal in Earth orbit. The proposed solution is a pair of Earth and planetary satellites in high, parallel, quasi-synchronized orbits perpendicular to their host planet’s orbital planes about the Sun. High orbits significantly reduce the time intervals over which the interplanetary communications link is blocked by their host planets. Initial establishment of the interplanetary communications link is simplified during two specific time intervals per orbit when the sunlit image of the two planets are not displaced from their actual positions (“zero point ahead angle”). In this instance, sunlit planetary images and the orbiting satellite laser beacon can be displayed on the same pixelated detector array, thereby accelerating the coalignment of the two communication terminals. Various tables in the text provide insight for each of the eight planets regarding the impact of solar distance on the worst-case Signal-to-Noise Ratio (SNR), the effect of satellite orbital height on the duration of the unblocked interplanetary communications link, and the resulting planetary surface continuity and resolution in both the along-track and cross-track directions. For planets beyond Saturn, the laser power and/or transmit/receive telescope apertures required to transmit multimegabit-per-second lidar data back to Earth are major challenges given current technology. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

17 pages, 12379 KB  
Article
Black-Box Modeling for Investigating Internal Resonances in High-Voltage Windings of Dry-Type Transformers
by Felipe L. Probst and Stefan Tenbohlen
Energies 2025, 18(21), 5565; https://doi.org/10.3390/en18215565 - 22 Oct 2025
Viewed by 222
Abstract
Understanding internal resonance phenomena in transformer windings is essential for evaluating insulation performance and preventing equipment failure under transient conditions. This study presents a measurement-based modeling approach to assess internal voltage distributions in a high-voltage transformer winding of a dry-type distribution transformer. Frequency-domain [...] Read more.
Understanding internal resonance phenomena in transformer windings is essential for evaluating insulation performance and preventing equipment failure under transient conditions. This study presents a measurement-based modeling approach to assess internal voltage distributions in a high-voltage transformer winding of a dry-type distribution transformer. Frequency-domain admittance and voltage transfer functions were experimentally obtained and approximated using vector fitting. The resulting models were employed to simulate time-domain responses through a two-step procedure that integrates electromagnetic transient simulations of the terminal circuit with frequency-derived internal voltage models. The validation was performed using a sinusoidal excitation at 51 kHz, corresponding to the first-mode resonance frequency. Simulated internal voltages and input currents showed close agreement with experimental measurements, confirming the model’s accuracy. The study identified two critical resonance frequencies at 51 kHz and 59 kHz, at which voltage amplification can become severe. At 51 kHz, the maximum overvoltage reached nearly seven times the applied voltage at the winding midpoint, indicating a substantial risk of dielectric failure. These findings highlight the importance of accurately characterizing internal resonances in transformer windings, especially during insulation coordination studies. The proposed methodology offers an effective tool for analyzing internal overvoltages and contributes to the development of more robust transformer design and protection strategies. Full article
Show Figures

Figure 1

15 pages, 3319 KB  
Article
Next-Generation Airborne Pathogen Detection: Flashing Ratchet Potential in Action
by Yazan Al-Zain, Mohammad Bqoor, Maha Albqoor and Lujain Ismail
Chemosensors 2025, 13(10), 371; https://doi.org/10.3390/chemosensors13100371 - 16 Oct 2025
Viewed by 507
Abstract
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic [...] Read more.
A novel airborne pathogen detection method, based on Flashing Ratchet Potential (FRP) and Electric Current Spectroscopy (ECS), is presented. The system employs a precisely engineered asymmetric electrode array to generate controlled directional transport of oxygen ions (O2•), produced via thermionic emission and three-body electron attachment. As these ions interact with airborne particles in the detection zone, measurable perturbations in the ECS profile emerge, yielding distinct spectral signatures that indicate particle presence. Proof-of-concept experiments, using standardized talcum powder aerosols as surrogates for viral-scale particles, established optimal operating parameters of 6 V potential and 600 kHz modulation frequency, with reproducible detection signals showing a relative shift of 4.5–13.4% compared to filtered-air controls. The system’s design concept incorporates humidity-resilient features, intended to maintain stability under varying environmental conditions. Together with the proposed size selectivity (50–150 nm), this highlights its potential robustness for real-world applications. To the best of our knowledge, this is the first demonstration of an open-air electro-ratchet transport system coupled with electric current spectroscopy for bioaerosol monitoring, distinct from prior optical or electrochemical airborne biosensors, highlighting its promise as a tool for continuous environmental surveillance in high-risk settings such as hospitals, airports, and public transit systems. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Graphical abstract

18 pages, 5044 KB  
Article
Measurement System and Testing Procedure for Characterization of the Conversion Accuracy of Voltage-to-Voltage and Voltage-to-Current Integrating Circuits for Rogowski Coils
by Michal Kaczmarek
Sensors 2025, 25(20), 6357; https://doi.org/10.3390/s25206357 - 14 Oct 2025
Viewed by 394
Abstract
Rogowski coils are increasingly being used in electricity metering systems. However, owing to their operating principle, they require an additional active integrating circuit to produce an output voltage or current that is directly proportional to the input current. A signal conditioner has the [...] Read more.
Rogowski coils are increasingly being used in electricity metering systems. However, owing to their operating principle, they require an additional active integrating circuit to produce an output voltage or current that is directly proportional to the input current. A signal conditioner has the most significant impact on the overall conversion accuracy of the combined transducer. In this paper, a new measurement system and testing procedure utilizing a digital power meter and arbitrary waveform generator are proposed. This approach enables the characterization of the conversion accuracy of both types of active integrators: voltage-to-voltage and voltage-to-current converters. The conversion error for distorted input voltage harmonics and additional phase shift across a range of frequencies are determined. Instead of using the actual signal from the Rogowski coil during testing —which would be challenging owing to the required high RMS value of the distorted current for its input and difficulties in accurately measuring the RMS values of harmonics and their phase angles in relation to the output voltage or current of the tested converter—an arbitrary waveform generator is used. The input voltage to the active integrating circuit replicates the output voltage of the Rogowski coil: as the harmonic order increases, its RMS voltage rises proportionally. Full article
(This article belongs to the Special Issue Sensors, Systems and Methods for Power Quality Measurements)
Show Figures

Figure 1

28 pages, 6949 KB  
Article
Experimentally Validated Modelling of a Base-Excited Piezoelectric Vibration Energy Harvester Connected to a Full Wave Rectified Load
by Philip Bonello and Maher Alalwan
Sensors 2025, 25(20), 6305; https://doi.org/10.3390/s25206305 - 11 Oct 2025
Viewed by 583
Abstract
Practical applications of piezoelectric vibration energy harvesting systems are required to produce a stable DC output through the nonlinear process of AC-DC rectification. In most simulation studies of such systems, the diodes have been idealised as switches, an assumption that is valid only [...] Read more.
Practical applications of piezoelectric vibration energy harvesting systems are required to produce a stable DC output through the nonlinear process of AC-DC rectification. In most simulation studies of such systems, the diodes have been idealised as switches, an assumption that is valid only if the vibration-induced voltage is high enough, which is frequently not the case in practice. This paper presents an experimentally validated simulation of a base excited vibration energy harvester connected to a full wave rectified load, combining the analytical modal transformation of the Euler–Bernoulli model of a piezoelectric beam with the nonlinear current-voltage characteristic of a real (non-ideal) diode. Three types of diodes with significantly different model parameters sourced from industry-standard datasets are considered. Discrepancies between simulated and measured resonant voltage levels are found to be less than 10% on average, and the discrepancy in resonant frequency is less than 1%, demonstrating the reliability of the Shockley diode model despite its omission of the dynamic behaviour of the diode. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

22 pages, 5438 KB  
Article
Investigation of Constant SVPWM and Variable RPWM Strategies on Noise Generated by an Induction Motor Powered by VSI Two- or Three-Level
by Bouyahi Henda and Adel Khedher
Appl. Sci. 2025, 15(19), 10819; https://doi.org/10.3390/app151910819 - 9 Oct 2025
Viewed by 229
Abstract
A three-phase inverter generates non-sinusoidal voltages, contains high order harmonics, and concentrates on switching frequency multiples. Supplying an induction machine (IM) with a voltage source inverter (VSI) increases the acoustic noise content which becomes unbearable, particularly for systems needing a moderate level of [...] Read more.
A three-phase inverter generates non-sinusoidal voltages, contains high order harmonics, and concentrates on switching frequency multiples. Supplying an induction machine (IM) with a voltage source inverter (VSI) increases the acoustic noise content which becomes unbearable, particularly for systems needing a moderate level of electric traction. The discrete tonal bands produced by the IM stator current spectrum controlled by the fixed pulse width modulation (PWM) technique have damaging effects on the electronic noise source. Moreover, it has been factually proven that the noise content is strongly associated with the harmonics of the source feeding electric machine. Thus, the harmonic content is influenced by the control strategy VSI to produce pulse width modulation (PWM). Currently, the investigation of new advanced control techniques for variable speed drives has developed into a potential investigation file. Two fundamental topologies for a three-phase inverter have been suggested in the literature, namely two- and three-level topologies. Therefore, this paper investigated the effect of variable and fixed PWM strategies, such as random PWM (RPWM) and space vector PWM (SVPWM), on the noise generated by an IM, powered with a two- or three-level inverter. Simulation results showed the validity and efficiency of the proposed variable RPWM strategy in reducing sideband harmonics for both the two and three levels at different switching frequencies and modulation indexes. The proposed PWM strategies were further evaluated by the results of equivalent experiments on an IM fed by a two-level VSI. The experimental measurements of harmonic current and noise spectra demonstrate that the acoustic noise is reduced and dispersed totally for the RPWM strategy. Full article
Show Figures

Figure 1

14 pages, 2439 KB  
Article
A Traceable Low-Frequency Attenuation Standard from 1 kHz to 10 MHz for Next-Generation Wireless and EMC Calibration
by Anton Widarta
Sensors 2025, 25(19), 6227; https://doi.org/10.3390/s25196227 - 8 Oct 2025
Viewed by 447
Abstract
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an [...] Read more.
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an inductive voltage divider (IVD) as a reference, ensuring the highest accuracy and traceability while eliminating sensitivity to detector nonlinearity. Attenuation at 1 kHz, 9 kHz, and 10 kHz is measured directly against the IVD ratio, while higher-frequency measurements (100 kHz–10 MHz) are performed via heterodyne detection, down-converting signals to 1 kHz for comparison. To ensure comparable accuracy at higher attenuation levels, a double-step method is applied at 9 kHz and 10 kHz to mitigate the increased IVD uncertainty above 1 kHz. Linearity is ensured by suppressing common-mode currents with toroidal ferrite chokes and minimizing inter-channel coupling. Type B (non-statistical) measurement uncertainties are evaluated, with major contributions from the IVD reference, system errors, and mismatch. The expanded uncertainties are 2.2 × 10−3 dB at 20 dB, 3.0 × 10−3 dB at 40 dB, and 4.0 × 10−3 dB at 60 dB attenuation. To facilitate wider dissemination and extend the calibration range, a resistive step attenuator with 10 dB pads is evaluated as a practical transfer standard, providing a simple and robust solution for traceable attenuation calibration in this frequency range. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

27 pages, 32995 KB  
Article
Recognition of Wood-Boring Insect Creeping Signals Based on Residual Denoising Vision Network
by Henglong Lin, Huajie Xue, Jingru Gong, Cong Huang, Xi Qiao, Liping Yin and Yiqi Huang
Sensors 2025, 25(19), 6176; https://doi.org/10.3390/s25196176 - 5 Oct 2025
Viewed by 497
Abstract
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high [...] Read more.
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high labor cost, and accuracy relying on human experience, making it difficult to meet the practical needs of efficient and intelligent customs quarantine. To address this issue, this paper develops a rapid identification system based on the peristaltic signals of wood-boring pests through the PyQt framework. The system employs a deep learning model with multi-attention mechanisms, namely the Residual Denoising Vision Network (RDVNet). Firstly, a LabVIEW-based hardware–software system is used to collect pest peristaltic signals in an environment free of vibration interference. Subsequently, the original signals are clipped, converted to audio format, and mixed with external noise. Then signal features are extracted through three cepstral feature extraction methods Mel-Frequency Cepstral Coefficients (MFCC), Power-Normalized Cepstral Coefficients (PNCC), and RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) and input into the model. In the experimental stage, this paper compares the denoising module of RDVNet (de-RDVNet) with four classic denoising models under five noise intensity conditions. Finally, it evaluates the performance of RDVNet and four other noise reduction classification models in classification tasks. The results show that PNCC has the most comprehensive feature extraction capability. When PNCC is used as the model input, de-RDVNet achieves an average peak signal-to-noise ratio (PSNR) of 29.8 and a Structural Similarity Index Measure (SSIM) of 0.820 in denoising experiments, both being the best among the comparative models. In classification experiments, RDVNet has an average F1 score of 0.878 and an accuracy of 92.8%, demonstrating the most excellent performance. Overall, the application of this system in customs timber quarantine can effectively improve detection efficiency and reduce labor costs and has significant practical value and promotion prospects. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

18 pages, 1425 KB  
Article
Exploring DC Power Quality Measurement and Characterization Techniques
by Yara Daaboul, Daniela Istrate, Yann Le Bihan, Ludovic Bertin and Xavier Yang
Sensors 2025, 25(19), 6043; https://doi.org/10.3390/s25196043 - 1 Oct 2025
Viewed by 421
Abstract
Within the modernizing energy infrastructure of today, the integration of renewable energy sources and direct current (DC)-powered technologies calls for the re-examination of traditional alternative current (AC) networks. Low-voltage DC (LVDC) grids offer an attractive way forward in reducing conversion losses and simplifying [...] Read more.
Within the modernizing energy infrastructure of today, the integration of renewable energy sources and direct current (DC)-powered technologies calls for the re-examination of traditional alternative current (AC) networks. Low-voltage DC (LVDC) grids offer an attractive way forward in reducing conversion losses and simplifying local power management. However, ensuring reliable operation depends on a thorough understanding of DC distortions—phenomena generated by power converters, source instability, and varying loads. Two complementary traceable measurement chains are presented in this article with the purpose of measuring the steady-state DC component and the amplitude and frequency of the distortions around the DC bus with low uncertainties. One chain is optimized for laboratory environments, with high effectiveness in a controlled setup, and the other one is designed as a flexible and easily transportable solution, ensuring efficient and accurate assessments of DC distortions for field applications. In addition to our hardware solutions fully characterized by the uncertainty budget, we present the measurement method used for assessing DC distortions after evaluating the limitations of conventional AC techniques. Both arrangements are set to measure voltages of up to 1000 V, currents of up to 30 A, and frequency components of up to 150–500 kHz, with an uncertainty varying from 0.01% to less than 1%. This level of accuracy in the measurements will allow us to draw reliable conclusions regarding the dynamic behavior of future LVDC grids. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

86 pages, 1465 KB  
Article
Nonlinear Quasi-Classical Model of Isothermal Relaxation Polarization Currents in Functional Elements of Microelectronics, Optoelectronics, and Fiber Optics Based on Crystals with Ionic-Molecular Chemical Bonds with Complex Crystalline Structure
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aleksey Yurchenko, Aliya Alkina, Felix Bulatbayev, Valeriy Issayev, Kanat Makhanov, Dmitriy Lukin, Damir Kayumov and Alexandr Zaplakhov
Crystals 2025, 15(10), 863; https://doi.org/10.3390/cryst15100863 - 30 Sep 2025
Viewed by 301
Abstract
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of [...] Read more.
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of the nonlinear system of Fokker–Planck and Poisson equations (for the blocking electrode model) and perturbation theory (by expanding into an infinite series in powers of a dimensionless small parameter) were used. Generalized nonlinear mathematical expressions for calculating the complex amplitudes of relaxation modes of the volume-charge distribution of the main charge carriers (ions, protons, water molecules, etc.) were obtained. On this basis, formulas for the current density of relaxation polarization (for transient processes in a dielectric) in the k-th approximation of perturbation theory were constructed. The isothermal polarization currents are investigated in detail in the first four approximations (k = 1, 2, 3, 4) of perturbation theory. These expressions will be applied in the future to compare the results of theory and experiment, in analytical studies of the kinetics of isothermal ion-relaxation (in crystals with hydrogen bonds (HBC), proton-relaxation) polarization and in calculating the parameters of relaxers (molecular characteristics of charge carriers and crystal lattice parameters) in a wide range of field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). Asymptotic (far from transient processes) recurrent formulas are constructed for complex amplitudes of relaxation modes and for the polarization current density in an arbitrary approximation k of perturbation theory with a multiplicity r by the polarizing field (a multiple of the fundamental frequency of the field). The high degree of reliability of the theoretical results obtained is justified by the complete agreement of the equations of the mathematical model for transient and stationary processes in the system with a harmonic external disturbance. This work is of a theoretical nature and is focused on the construction and analysis of nonlinear properties of a physical and mathematical model of isothermal ion-relaxation polarization in CIMB crystals under various parameters of electrical and temperature effects. The theoretical foundations for research (construction of equations and working formulas, algorithms, and computer programs for numerical calculations) of nonlinear kinetic phenomena during thermally stimulated relaxation polarization have been laid. This allows, with a higher degree of resolution of measuring instruments, to reveal the physical mechanisms of dielectric relaxation and conductivity and to calculate the parameters of a wide class of relaxators in dielectrics in a wide experimental temperature range (25–550 K). Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop