Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (357)

Search Parameters:
Keywords = heterojunction solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1865 KB  
Article
Enhancing Hybrid Solar Cell Performance with Conducting Polymer Thin Films Deposited by Oxidative Chemical Vapor Deposition
by Guancheng Li, Varun S. Prasath, David Angel Trujillo, Kenneth K. S. Lau and Robert L. Opila
Energies 2025, 18(21), 5757; https://doi.org/10.3390/en18215757 - 31 Oct 2025
Viewed by 241
Abstract
Hybrid solar cells, which combine inorganic and organic materials, offer a promising pathway to achieve low cost, flexible, high-performance photovoltaic devices. This work explores the application of oxidative chemical vapor deposition (oCVD) to deposit poly(3,4-ethylenedioxythiophene) (PEDOT) as a transparent hole transfer layer in [...] Read more.
Hybrid solar cells, which combine inorganic and organic materials, offer a promising pathway to achieve low cost, flexible, high-performance photovoltaic devices. This work explores the application of oxidative chemical vapor deposition (oCVD) to deposit poly(3,4-ethylenedioxythiophene) (PEDOT) as a transparent hole transfer layer in hybrid solar cells. Unlike solution-processed PEDOT with polystyrene sulfonate solubilizer (PEDOT:PSS), oCVD allows for growing high-purity PEDOT that provides conformal coverage on textured substrates, enabling enhanced antireflective effects and improved charge extraction. We discuss the advantages of oCVD PEDOT in hybrid architecture, its compatibility with textured substrates, and its potential to achieve higher efficiency. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

17 pages, 3831 KB  
Article
Simulation Analysis of Cu2O Solar Cells
by Sinuo Chen, Lichun Wang, Chunlan Zhou, Jinli Yang and Xiaojie Jia
Energies 2025, 18(21), 5623; https://doi.org/10.3390/en18215623 - 26 Oct 2025
Viewed by 268
Abstract
Cu2O solar cells are regarded as a promising emerging inorganic photovoltaic technology due to their power conversion efficiency (PCE) potential and material sustainability. While previous studies primarily focused on the band offset between n-type buffer layers and Cu2O optical [...] Read more.
Cu2O solar cells are regarded as a promising emerging inorganic photovoltaic technology due to their power conversion efficiency (PCE) potential and material sustainability. While previous studies primarily focused on the band offset between n-type buffer layers and Cu2O optical absorption, this work systematically investigated an ETL/buffer/p-Cu2O/HTL heterojunction structure using SCAPS-1D simulations. Key design parameters, including bandgap (Eg) and electron affinity (χ) matching across layers, were optimized to minimize carrier transport barriers. Furthermore, the doping concentration and thickness of each functional layer (ETL: transparent conductive oxide; HTL: hole transport layer) were tailored to balance electron conductivity, parasitic absorption, and Auger recombination. Through this approach, a maximum PCE of 14.12% was achieved (Voc = 1.51V, Jsc = 10.52 mA/cm2, FF = 88.9%). The study also identified candidate materials for ETL (e.g., GaN, ZnO:Mg) and HTL (e.g., ZnTe, NiOx), along with optimal thicknesses and doping ranges for the Cu2O absorber. These findings provide critical guidance for advancing high-performance Cu2O solar cells. Full article
(This article belongs to the Special Issue Functional Materials for Advanced Energy Applications)
Show Figures

Figure 1

11 pages, 1660 KB  
Article
Efficient Perovskite Solar Cell with Improved Electron Extraction Based on SnO2/Phosphorene Heterojunction as Electron Transport Layer
by Min Li, Xin Yao, Jie Huang and Dawei Zhang
Materials 2025, 18(20), 4771; https://doi.org/10.3390/ma18204771 - 18 Oct 2025
Viewed by 320
Abstract
Due to its unique electrical and optical properties, as well as the tunable band structure based on thickness, 2D phosphorene recently emerged as a research hotspot and holds significant potential for applications across various fields. In this study, due to the special band [...] Read more.
Due to its unique electrical and optical properties, as well as the tunable band structure based on thickness, 2D phosphorene recently emerged as a research hotspot and holds significant potential for applications across various fields. In this study, due to the special band structure and excellent electron transport performance of phosphorene, it formed a series structure with SnO2 as the electron transport layer of perovskite solar cells. Consequently, the photocurrent density was enhanced by approximately 20%, and the energy conversion efficiency was effectively elevated from 16.38% for pure SnO2 to 18.03% for the SnO2/phosphorene composite. Electrochemical measurements and spectral analyses revealed that the incorporation of phosphorene augmented electron mobility within the absorption layer, reduced the electron–hole recombination rate, and decreased the cell’s series resistance, thereby leading to improved efficiency of the perovskite solar cell. This research not only introduces a novel approach to enhancing solar cell efficiency but also paves a new pathway for the application of phosphorene. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

12 pages, 8239 KB  
Article
Impact of Molecular π-Bridge Modifications on Triphenylamine-Based Donor Materials for Organic Photovoltaic Solar Cells
by Duvalier Madrid-Úsuga, Omar J. Suárez and Alfonso Portacio
Condens. Matter 2025, 10(4), 52; https://doi.org/10.3390/condmat10040052 - 25 Sep 2025
Viewed by 515
Abstract
This study presents a computational investigation into the design of triphenylamine-based donor chromophores incorporating 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit. Three molecular architectures (System-1 to System-3) were developed by introducing distinct thiophene-derived π-bridges to modulate their electronic and optical characteristics for potential application [...] Read more.
This study presents a computational investigation into the design of triphenylamine-based donor chromophores incorporating 2-(1,1-dicyanomethylene)rhodanine as the acceptor unit. Three molecular architectures (System-1 to System-3) were developed by introducing distinct thiophene-derived π-bridges to modulate their electronic and optical characteristics for potential application in bulk heterojunction organic solar cells (OSCs). Geometrical optimizations were performed at the B3LYP/6-31+G(d,p) level, while excited-state and absorption properties were evaluated using TD-DFT with the CAM-B3LYP functional. Frontier orbital analysis revealed efficient charge transfer from donor to acceptor moieties, with System-3 showing the narrowest HOMO–LUMO gap (1.96 eV) and the lowest excitation energy (2.968 eV). Charge transport properties, estimated from reorganization energies, indicated that System-2 exhibited the most favorable balance for ambipolar transport, featuring the lowest electron reorganization energy (0.317 eV) and competitive hole mobility. Photovoltaic parameters calculated with PC61BM as acceptor predicted superior Voc, Jsc, and fill factor values for System-2, resulting in the highest theoretical power conversion efficiency (10.95%). These findings suggest that π-bridge engineering in triphenylamine-based systems can significantly enhance optoelectronic performance, offering promising donor materials for next-generation OSC devices. Full article
(This article belongs to the Section Condensed Matter Theory)
Show Figures

Figure 1

11 pages, 1788 KB  
Article
Multi-Step Spin-Coating with In Situ Crystallization for Growing 2D/3D Perovskite Films
by Meihong Liu, Yafeng Hao, Fupeng Ma, Pu Zhu, Huijia Wu, Ziwei Li, Wenyu Niu, Yujie Huang, Guitian Huangfu, Junye Li, Fengchao Li, Jiangang Yu, Longlong Zhang, Tengteng Li, Cheng Lei and Ting Liang
Crystals 2025, 15(9), 774; https://doi.org/10.3390/cryst15090774 - 29 Aug 2025
Viewed by 710
Abstract
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration [...] Read more.
Developing perovskite solar cells (PSCs) with both high performance and long-term stability remains a critical challenge and research focus in the field of photovoltaic devices. Herein, we report a multi-step spin-coating strategy for high-efficiency 2D/3D perovskite heterojunction solar cells by sequentially depositing low-concentration 3-pyridine methylamine iodine solutions onto 3D perovskite films. This approach enables controlled Ostwald ripening and forms graded 2D/3D heterointerfaces rather than insulating capping layers, yielding a champion device with a PCE of 22.7%, significantly outperforming conventional 2D/3D planar counterparts. The optimized structure exhibits enhanced carrier extraction, suppressed recombination, and exceptional humidity stability; the hydrophobic structure further enabled >85% initial efficiency retention after 800 h at 45% relative humidity (RH) for target devices. This study establishes a novel research paradigm for developing high-performance and stable 2D/3D perovskite solar cells through gradient dimensionality engineering. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

12 pages, 3494 KB  
Proceeding Paper
A Numerical Study on Ag/CZTS/n-Si/Al Heterojunction Solar Cells Fabricated via Laser Ablation
by Serap Yigit Gezgin, Yasemin Gundogdu Kabakci and Hamdi Sukur Kilic
Eng. Proc. 2025, 104(1), 36; https://doi.org/10.3390/engproc2025104036 - 25 Aug 2025
Viewed by 402
Abstract
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to [...] Read more.
CZTS (C-I/C-II) ultrathin films in 61 nm and 313 nm thicknesses were grown on microscopic glass and n-Si wafer substrates via laser ablation, respectively. C-II ultrathin film with higher thickness has a more developed crystal structure and consists of larger particles compared to C-I ultrathin film with reduced thickness. C-II ultrathin film absorbs more photons and has a lower band gap. The photovoltaic performance of the produced Ag/CZTS (C-II)/n-Si/Al solar cell is higher compared to the other solar cell-based C-I ultrathin film. The more improved crystal structure of C-II ultrathin film has increased the efficiency of the solar cell. The calculated photovoltaic parameters of the solar cells modeled with the SCAPS-1D simulation program were found to be compatible with the experimental parameters. This situation has proven that the operating performance of solar cells is reliable. Full article
Show Figures

Figure 1

16 pages, 9200 KB  
Article
Construction of Donor–Acceptor Heterojunctions via Microphase Separation of Discotic Liquid Crystals with Ambipolar Transport
by Heng Liu, Mingsi Xie, Yaohong Liu, Gaojun Jia, Ruijuan Liao, Ao Zhang, Yi Fang, Xiaoli Song, Chunxiu Zhang and Haifeng Yu
Molecules 2025, 30(16), 3441; https://doi.org/10.3390/molecules30163441 - 21 Aug 2025
Viewed by 828
Abstract
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results [...] Read more.
A series of novel discotic liquid crystalline donor–acceptor hybrid heterojunctions were prepared by blending the triphenylene derivative (T5E36) as donor and perylene tetracarboxylic esters as acceptor. Mesophases of blends were characterized by using polarized optical microscopy, differential scanning calorimetry, and X-ray diffraction. Results suggest that all the blends formed liquid crystalline phases, where both compounds in the blends self-assembled separately into columns yet cooperatively contributed to the overall hexagonal or tetragonal columnar mesophase structure. The charge carrier mobilities were characterized using a time-of-flight technique. The phase-separated columnar nanostructures of the donor and acceptor components play an important role in the formation of molecular heterojunctions exhibiting highly efficient ambipolar charge transport, with mobilities on the order of 10−3 cm2 V−1 s−1. These blends with ambipolar transport properties have great potential for application in non-fullerene organic solar cells, particularly in bulk heterojunction architectures. Full article
Show Figures

Figure 1

26 pages, 3149 KB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 2 | Viewed by 986
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

19 pages, 5775 KB  
Article
Optimizing Zinc Selenide and Silicon-Based Heterojunction Solar Cells for Enhanced Photovoltaic Performance
by Amina Laouid, Amine Alaoui Belghiti, Ali Abouais, Krzysztof Wisniewski, Mouhaydine Tlemçani, Przemysław Płóciennik, Abdelowahed Hajjaji and Anna Zawadzka
Solar 2025, 5(3), 29; https://doi.org/10.3390/solar5030029 - 25 Jun 2025
Cited by 1 | Viewed by 722
Abstract
In the purpose of enhancing solar cell efficiency and sustainability, zinc selenide (ZnSe) and silicon (Si) play indispensable roles, offering a compelling combination of stability and transparency while also highlighting their abundant availability. This study utilizes the SCAPS_1D tool to explore diverse heterojunction [...] Read more.
In the purpose of enhancing solar cell efficiency and sustainability, zinc selenide (ZnSe) and silicon (Si) play indispensable roles, offering a compelling combination of stability and transparency while also highlighting their abundant availability. This study utilizes the SCAPS_1D tool to explore diverse heterojunction setups, aiming to solve the nuanced correlation between key parameters and photovoltaic performance, therefore contributing significantly to the advancement of sustainable energy solutions. Exploring the performance analysis of heterojunction solar cell configurations employing ZnSe and Si elements, various configurations including SnO2/ZnSe/p_Si/p+_Si, SnO2/CdS/p_Si/p+_Si, TiO2/ZnSe/p_Si/p+_Si, and TiO2/CdS/p_Si/p+_Si are investigated, delving into parameters such as back surface field thickness (BSF), doping concentration, operating temperature, absorber layer properties, electron transport layer properties, interface defects, series and shunt resistance. Among these configurations, the SnO2/ZnSe/p_Si/p+_Si configuration with a doping concentration of 1019 cm−3 and a BSF thickness of 2 μm, illustrates a remarkable conversion efficiency of 22.82%, a short circuit current density (Jsc) of 40.33 mA/cm2, an open circuit voltage (Voc) of 0.73 V, and a fill factor (FF) of 77.05%. Its environmentally friendly attributes position it as a promising contender for advanced photovoltaic applications. This work emphasizes the critical role of parameter optimization in propelling solar cell technologies toward heightened efficiency and sustainability. Full article
Show Figures

Figure 1

14 pages, 2098 KB  
Article
Surface In Situ Growth of Two-Dimensional/Three-Dimensional Heterojunction Perovskite Film for Achieving High-Performance Flexible Perovskite Solar Cells
by Zhiyu Zhang, Huijing Liu, Jing Liu, Jia Xu, Zhan’ao Tan and Jianxi Yao
Nanomaterials 2025, 15(11), 798; https://doi.org/10.3390/nano15110798 - 26 May 2025
Viewed by 810
Abstract
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to [...] Read more.
Organic–inorganic hybrid flexible perovskite solar cells (F-PSCs) have garnered considerable interest owing to their exceptional power conversion efficiency (PCE) and stable operational characteristics. However, F-PSCs continue to exhibit significantly lower PCE than their rigid counterparts. Herein, we employed 3-chloro-4-methoxybenzylamine hydrochloride (CMBACl) treatment to grow in situ two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films. Through comprehensive physicochemical characterization, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) mapping, we demonstrated that CMBACl treatment enabled the in situ growth of two-dimensional (2D) perovskite layers on three-dimensional (3D) perovskite films via chemical interactions between CMBA+ cations and undercoordinated Pb2+ sites. The organic cation (CMBA+) bound to uncoordinated Pb2+ ions and residual PbI2, while the chlorine anion (Cl) filled iodine vacancies in the perovskite lattice, thereby forming a high-quality 2D/3D heterojunction structure. The CMBACl treatment effectively passivated surface defects in the perovskite films, prolonged charge carrier lifetimes, and enhanced the operational stability of the photovoltaic devices. Additionally, the hybrid 2D/3D architecture also improved energy band matching, thereby boosting charge transfer performance. The optimized flexible devices demonstrated a PCE of 23.15%, while retaining over 82% of their initial efficiency after enduring 5000 bending cycles under a 5 mm curvature radius (R = 5 mm). The unpackaged devices retained 94% of their initial efficiency after 1000 h under ambient conditions with a relative humidity (RH) of 45 ± 5%. This strategy offers practical guidelines for selecting interface passivation materials to enhance the efficiency and stability of F-PSCs. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

14 pages, 4067 KB  
Article
Thin Films of PNDI(2HD)2T and PCPDTBT Polymers Deposited Using the Spin Coater Technique for Use in Solar Cells
by Michał Sładek, Patryk Radek, Magdalena Monika Szindler and Marek Szindler
Coatings 2025, 15(5), 603; https://doi.org/10.3390/coatings15050603 - 18 May 2025
Viewed by 754
Abstract
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to [...] Read more.
Conductive polymers play a crucial role in the advancement of modern technologies, particularly in the field of organic photovoltaics (OPVs). Due to advantages such as flexibility, low specific weight, ease of processing, and low production costs, polymeric materials present an attractive alternative to traditional photovoltaic materials. This study investigates the properties of a polymer blend composed of PCPDTBT (donor) and PNDI(2HD)2T (acceptor), used as the active layer in bulk heterojunction (BHJ) solar cells. The motivation behind this research was the search for a novel n-type polymer material with potentially better properties than the commonly used P(NDI2OD-T2). Comprehensive characterization of thin films made from the individual polymers and their blend was conducted using Fourier Transform Infrared Spectroscopy (FTIR), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Ultraviolet-Visible Spectroscopy (UV-Vis), four-point probe conductivity measurements, and photovoltaic testing. The prepared films were continuous, uniform, and exhibited low surface roughness (Ra < 2.5 nm). Spectroscopic analysis showed that the blend absorbs light in a broad range of the spectrum, with slight bathochromic shifts compared to individual polymers. Electrical measurements indicated that the blend’s conductivity (9.1 µS/cm) was lower than that of pure PCPDTBT but higher than that of PNDI(2HD)2T, with an optical band gap of 1.34 eV. Photovoltaic devices fabricated using the blend demonstrated an average power conversion efficiency (PCE) of 6.45%, with a short-circuit current of 14.37 mA/cm2 and an open-circuit voltage of 0.89 V. These results confirm the feasibility of using PCPDTBT:PNDI(2HD)2T blends as active layers in BHJ solar cells and provide a promising direction for further optimization in terms of polymer ratio and processing conditions. Full article
(This article belongs to the Special Issue Recent Developments in Thin Films for Technological Applications)
Show Figures

Figure 1

11 pages, 3209 KB  
Article
Induced Effects of Nano-Patterned Substrates on the Electrical and Photo-Electrical Properties of PTB7-Th:ICBA (1:1, wt.%) Bulk-Heterojunction Solar Cells
by Tudor Suteu, Vlad-Andrei Antohe, Stefan Antohe, Ionel Stavarache, Maria Cristina Balasin, Gabriel Socol, Marcela Socol, Oana Rasoga and Sorina Iftimie
Surfaces 2025, 8(2), 30; https://doi.org/10.3390/surfaces8020030 - 1 May 2025
Viewed by 1030
Abstract
In this study, we detailed the fabrication and characterization of photovoltaic structures based on PTB7:ICBA (1:1, wt.%) bulk-heterojunction on optical glass substrates by spin-coating. Some samples were deposited on a flat substrate, and others were placed on a patterned substrate obtained by nano-imprinting [...] Read more.
In this study, we detailed the fabrication and characterization of photovoltaic structures based on PTB7:ICBA (1:1, wt.%) bulk-heterojunction on optical glass substrates by spin-coating. Some samples were deposited on a flat substrate, and others were placed on a patterned substrate obtained by nano-imprinting lithography; the induced effects were analyzed. We demonstrated that using a patterned substrate enhanced the maximum output power, primarily because the short-circuit current density increased. This can be considered a direct consequence of reduced optical reflection and improved optical absorption. The topological parameters evaluated by atomic force microscopy, namely, the root mean square, Skewness, and Kurtosis, had small values of around 2 nm and 1 nm, respectively. This proves that the mixture of a conductive polymer and a fullerene derivative creates a thin film network with a high flatness degree. The samples discussed in this paper were fabricated and characterized in air; we can admit that the results are encouraging, but further optimization is needed. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Graphical abstract

21 pages, 4255 KB  
Article
Controlling Charge Generation in Organic Photovoltaic Ternary Blends: How Trace Ternary Additives Determine Mechanism
by Nathan A. Cooling, Krishna Feron, Timothy W. Jones, Warwick J. Belcher and Paul C. Dastoor
Electronics 2025, 14(8), 1655; https://doi.org/10.3390/electronics14081655 - 19 Apr 2025
Viewed by 525
Abstract
A series of modified tetraphenylporphyrins varying only in the electron-donating or electron-withdrawing character of the substituents in the para-phenyl position have been blended into the active layer of MEH-PPV:PCBM bulk heterojunction solar cells. Increasing the electron-withdrawing ability of the substituents, as quantified [...] Read more.
A series of modified tetraphenylporphyrins varying only in the electron-donating or electron-withdrawing character of the substituents in the para-phenyl position have been blended into the active layer of MEH-PPV:PCBM bulk heterojunction solar cells. Increasing the electron-withdrawing ability of the substituents, as quantified by the Hammett constant, systematically alters the device efficiency of ternary poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene]:porphyrin:[6,6]-phenylC61-butyric acid methyl ester (MEH-PPV:porphyrin:PCBM) bulk heterojunction organic solar cells through alteration of the HOMO/LUMO levels and, thereby, the open-circuit voltage of the cell. We show that the porphyrin concentrates at the MEH-PPV:PCBM interface in these blends and that the devices operate via a cascade mechanism when the highest occupied molecular orbital (HOMO) of the porphyrin is higher in energy that that of MEH-PPV, but via a parallel/alloy device mechanism, when the HOMO of the porphyrin is lower in energy than that of MEH-PPV. As such, this work highlights how the energetics of the ternary component can determine device performance by switching between charge generation models simply by altering the electron-withdrawing character of the porphyrin ternary additive. Full article
(This article belongs to the Special Issue Materials and Properties for Solar Cell Application)
Show Figures

Figure 1

19 pages, 3821 KB  
Article
Sulfur-Doped ZnO as Cathode Interlayer for Efficient Inverted Organic Solar Cells
by Ermioni Polydorou, Georgios Manginas, Georgios Chatzigiannakis, Zoi Georgiopoulou, Apostolis Verykios, Elias Sakellis, Maria Eleni Rizou, Vassilis Psycharis, Leonidas Palilis, Dimitris Davazoglou, Anastasia Soultati and Maria Vasilopoulou
Materials 2025, 18(8), 1767; https://doi.org/10.3390/ma18081767 - 12 Apr 2025
Cited by 1 | Viewed by 1033
Abstract
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used [...] Read more.
Bulk heterojunction (BHJ) organic solar cells (OSCs) represent a promising technology due to their cost-effectiveness, lightweight design and potential for flexible manufacturing. However, achieving a high power conversion efficiency (PCE) and long-term stability necessitates optimizing the interfacial layers. Zinc oxide (ZnO), commonly used as an electron extraction layer (EEL) in inverted OSCs, suffers from surface defects that hinder device performance. Furthermore, the active control of its optoelectronic properties is highly desirable as the interfacial electron transport and extraction, exciton dissociation and non-radiative recombination are crucial for optimum solar cell operation. In this regard, this study investigates the sulfur doping of ZnO as a facile method to effectively increase ZnO conductivity, improve the interfacial electron transfer and, overall, enhance solar cell performance. ZnO films were sulfur-treated under various annealing temperatures, with the optimal condition found at 250 °C. Devices incorporating sulfur-doped ZnO (S-ZnO) exhibited a significant PCE improvement from 2.11% for the device with the pristine ZnO to 3.14% for the OSC based on the S-ZnO annealed at 250 °C, attributed to an enhanced short-circuit current density (Jsc) and fill factor (FF). Optical and structural analyses revealed that the sulfur treatment led to a small enhancement of the ZnO film crystallite size and an increased n-type transport capability. Additionally, the sulfurization of ZnO enhanced its electron extraction efficiency, exciton dissociation at the ZnO/photoactive layer interface and exciton/charge generation rate without altering the film morphology. These findings highlight the potential of sulfur doping as an easily implemented, straightforward approach to improving the performance of inverted OSCs. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

16 pages, 2805 KB  
Article
Numerical Investigation of Perovskite/Silicon Heterojunction Tandem Solar Cell with a Dual-Functional Layer of MoOX
by Tian-Yu Lu, Jin Wang and Xiao-Dong Feng
Materials 2025, 18(7), 1438; https://doi.org/10.3390/ma18071438 - 24 Mar 2025
Viewed by 938
Abstract
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and [...] Read more.
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and MoOX, where MoOX serves dual functions, acting as the emitter for the SHJ bottom cell and as part of the recombination layer in the tandem cell. First, the effects of different recombination layers are analyzed, and the SnO2/MoOX layer demonstrates the best performance. Then, we systematically investigated the impact of the carrier concentration, interface defect density, thicknesses of the SnO2/MoOX layer, different hole transport layers (HTLs) for the top cell, absorption layer thicknesses, and perovskite defect density on device performance. The optimal carrier concentration in the recombination layer should exceed 5 × 1019 cm−3, the interface defect density should be below 1 × 1016 cm−2, and the thicknesses of SnO2/MoOX should be kept at 20 nm/20 nm. CuSCN has been found to be the optimal HTL for the top cell. When the silicon absorption layer is 200 μm, the perovskite layer thickness is 470 nm, and the defect density of the perovskite layer is 1011 cm−3, the planar structure can achieve the best performance of 32.56%. Finally, we studied the effect of surface texturing on the SHJ bottom cell, achieving a power conversion efficiency of 35.31% for the tandem cell. Our simulation results suggest that the simplified perovskite/SHJ tandem solar cell with a dual-functional MoOX layer has the potential to provide a viable pathway for developing high-efficiency tandem devices. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

Back to TopTop