Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,306)

Search Parameters:
Keywords = heterogeneous cost

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6778 KiB  
Article
Computational Approaches to Assess Flow Rate Efficiency During In Situ Recovery of Uranium: From Reactive Transport to Streamline- and Trajectory-Based Methods
by Maksat Kurmanseiit, Nurlan Shayakhmetov, Daniar Aizhulov, Banu Abdullayeva and Madina Tungatarova
Minerals 2025, 15(8), 835; https://doi.org/10.3390/min15080835 - 6 Aug 2025
Abstract
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance [...] Read more.
This study presents a comprehensive computational analysis of flow rate efficiency during uranium extraction via the In Situ Recovery method. Using field data from a deposit located in Southern Kazakhstan, a series of mathematical models were developed to evaluate the distribution and balance of leaching solution. A reactive transport model incorporating uranium dissolution kinetics and acid–rock interactions were utilized to assess the accuracy of both traditional and proposed methods. The results reveal a significant spatial imbalance in sulfuric acid distribution, with up to 239.1 tons of acid migrating beyond the block boundaries. To reduce computational demands while maintaining predictive accuracy, two alternative methods, a streamline-based and a trajectory-based approach were proposed and verified. The streamline method showed close agreement with reactive transport modeling and was able to effectively identify the presence of intra-block reagent imbalance. The trajectory-based method provided detailed insight into flow dynamics but tended to overestimate acid overflow outside the block. Both alternative methods outperformed the conventional approach in terms of accuracy by accounting for geological heterogeneity and well spacing. The proposed methods have significantly lower computational costs, as they do not require solving complex systems of partial differential equations involved in reactive transport simulations. The proposed approaches can be used to analyze the efficiency of mineral In Situ Recovery at both the design and operational stages, as well as to determine optimal production regimes for reducing economic expenditures in a timely manner. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
18 pages, 7706 KiB  
Review
The Role of Imaging in Ventricular Tachycardia Ablation
by Pasquale Notarstefano, Michele Ciabatti, Carmine Marallo, Mirco Lazzeri, Aureliano Fraticelli, Valentina Tavanti, Giulio Zucchelli, Angelica La Camera and Leonardo Bolognese
Diagnostics 2025, 15(15), 1973; https://doi.org/10.3390/diagnostics15151973 - 6 Aug 2025
Abstract
Ventricular tachycardia (VT) remains a major cause of morbidity and mortality in patients with structural heart disease. While catheter ablation has become a cornerstone in VT management, recurrence rates remain substantial due to limitations in electroanatomic mapping (EAM), particularly in cases of deep [...] Read more.
Ventricular tachycardia (VT) remains a major cause of morbidity and mortality in patients with structural heart disease. While catheter ablation has become a cornerstone in VT management, recurrence rates remain substantial due to limitations in electroanatomic mapping (EAM), particularly in cases of deep or heterogeneous arrhythmogenic substrates. Cardiac imaging, especially when multimodal and integrated with mapping systems, has emerged as a critical adjunct to enhance procedural efficacy, safety, and individualized strategy. This comprehensive review explores the evolving role of various imaging modalities, including echocardiography, cardiac magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), and intracardiac echocardiography (ICE), in the preprocedural and intraprocedural phases of VT ablation. We highlight their respective strengths in substrate identification, anatomical delineation, and real-time guidance. While limitations persist, including costs, availability, artifacts in device carriers, and lack of standardization, future advances are likely to redefine procedural workflows. Full article
(This article belongs to the Special Issue Advances in Diagnosis and Treatment of Cardiac Arrhythmias 2025)
Show Figures

Figure 1

15 pages, 1726 KiB  
Systematic Review
Application of Augmented Reality in Reverse Total Shoulder Arthroplasty: A Systematic Review
by Jan Orlewski, Bettina Hochreiter, Karl Wieser and Philipp Kriechling
J. Clin. Med. 2025, 14(15), 5533; https://doi.org/10.3390/jcm14155533 - 6 Aug 2025
Abstract
Background: Reverse total shoulder arthroplasty (RTSA) is increasingly used for managing cuff tear arthropathy, osteoarthritis, complex fractures, and revision procedures. As the demand for surgical precision and reproducibility grows, immersive technologies such as virtual reality (VR), augmented reality (AR), and metaverse-based platforms are [...] Read more.
Background: Reverse total shoulder arthroplasty (RTSA) is increasingly used for managing cuff tear arthropathy, osteoarthritis, complex fractures, and revision procedures. As the demand for surgical precision and reproducibility grows, immersive technologies such as virtual reality (VR), augmented reality (AR), and metaverse-based platforms are being explored for surgical training, intraoperative guidance, and rehabilitation. While early data suggest potential benefits, a focused synthesis specific to RTSA is lacking. Methods: This systematic review was conducted in accordance with PRISMA 2020 guidelines. A comprehensive search of PubMed, Scopus, and Cochrane Library databases was performed through 30 May 2025. Eligible studies included those evaluating immersive technologies in the context of RTSA for skill acquisition or intraoperative guidance. Only peer-reviewed articles published in English were included. Data were synthesized narratively due to heterogeneity in study design and outcome metrics. Results: Out of 628 records screened, 21 studies met the inclusion criteria. Five studies evaluated immersive VR for surgical training: four randomized controlled trials and one retrospective case series. VR training improved procedural efficiency and showed non-inferiority to cadaveric training. Sixteen studies investigated intraoperative navigation or AR guidance. Clinical and cadaveric studies consistently reported improved accuracy in glenoid baseplate positioning with reduced angular and linear deviations in postoperative controls as compared to preoperative planning. Conclusions: Immersive technologies show promise in enhancing training, intraoperative accuracy, and procedural consistency in RTSA. VR and AR platforms may support standardized surgical education and precision-based practice, but their broad clinical impact remains limited by small sample sizes, heterogeneous methodologies, and limited long-term outcomes. Further multicenter trials with standardized endpoints and cost-effectiveness analyses are warranted. Postoperative rehabilitation using immersive technologies in RTSA remains underexplored and presents an opportunity for future research. Full article
Show Figures

Figure 1

20 pages, 640 KiB  
Article
Digital Innovation and Cost Stickiness in Manufacturing Enterprises: A Perspective Based on Manufacturing Servitization and Human Capital Structure
by Wei Sun and Xinlei Zhang
Sustainability 2025, 17(15), 7115; https://doi.org/10.3390/su17157115 - 6 Aug 2025
Abstract
This paper examines the effect of digital innovation on cost stickiness in manufacturing firms, focusing on the underlying mechanisms and contextual factors. Using data from Chinese A-share listed manufacturing firms from 2012 to 2023, we find that, first, for each one-unit increase in [...] Read more.
This paper examines the effect of digital innovation on cost stickiness in manufacturing firms, focusing on the underlying mechanisms and contextual factors. Using data from Chinese A-share listed manufacturing firms from 2012 to 2023, we find that, first, for each one-unit increase in the level of digital technology, the cost stickiness index of enterprises decreases by an average of 0.4315 units, primarily through digital process innovation and digital business model innovation, whereas digital product innovation does not exhibit a statistically significant impact. Second, manufacturing servitization and the optimization of human capital structure are identified as key mediating mechanisms. Digital innovation promotes servitization by transitioning firms from product-centric to service-oriented business models, thereby reducing fixed costs and improving resource flexibility. It also optimizes human capital by increasing the proportion of high-skilled employees and reducing labor adjustment costs. Third, the effect of digital innovation on cost stickiness is found to be heterogeneous. Firms with high financing constraints benefit more from the cost-reducing effects of digital innovation due to improved resource allocation efficiency. Additionally, mid-tenure executives are more effective in leveraging digital innovation to mitigate cost stickiness, as they balance short-term performance pressures with long-term strategic investments. These findings contribute to the understanding of how digital transformation reshapes cost behavior in manufacturing and provide insights for policymakers and firms seeking to achieve sustainable development through digital innovation. Full article
Show Figures

Figure 1

27 pages, 5228 KiB  
Article
Detection of Surface Defects in Steel Based on Dual-Backbone Network: MBDNet-Attention-YOLO
by Xinyu Wang, Shuhui Ma, Shiting Wu, Zhaoye Li, Jinrong Cao and Peiquan Xu
Sensors 2025, 25(15), 4817; https://doi.org/10.3390/s25154817 - 5 Aug 2025
Abstract
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical [...] Read more.
Automated surface defect detection in steel manufacturing is pivotal for ensuring product quality, yet it remains an open challenge owing to the extreme heterogeneity of defect morphologies—ranging from hairline cracks and microscopic pores to elongated scratches and shallow dents. Existing approaches, whether classical vision pipelines or recent deep-learning paradigms, struggle to simultaneously satisfy the stringent demands of industrial scenarios: high accuracy on sub-millimeter flaws, insensitivity to texture-rich backgrounds, and real-time throughput on resource-constrained hardware. Although contemporary detectors have narrowed the gap, they still exhibit pronounced sensitivity–robustness trade-offs, particularly in the presence of scale-varying defects and cluttered surfaces. To address these limitations, we introduce MBY (MBDNet-Attention-YOLO), a lightweight yet powerful framework that synergistically couples the MBDNet backbone with the YOLO detection head. Specifically, the backbone embeds three novel components: (1) HGStem, a hierarchical stem block that enriches low-level representations while suppressing redundant activations; (2) Dynamic Align Fusion (DAF), an adaptive cross-scale fusion mechanism that dynamically re-weights feature contributions according to defect saliency; and (3) C2f-DWR, a depth-wise residual variant that progressively expands receptive fields without incurring prohibitive computational costs. Building upon this enriched feature hierarchy, the neck employs our proposed MultiSEAM module—a cascaded squeeze-and-excitation attention mechanism operating at multiple granularities—to harmonize fine-grained and semantic cues, thereby amplifying weak defect signals against complex textures. Finally, we integrate the Inner-SIoU loss, which refines the geometric alignment between predicted and ground-truth boxes by jointly optimizing center distance, aspect ratio consistency, and IoU overlap, leading to faster convergence and tighter localization. Extensive experiments on two publicly available steel-defect benchmarks—NEU-DET and PVEL-AD—demonstrate the superiority of MBY. Without bells and whistles, our model achieves 85.8% mAP@0.5 on NEU-DET and 75.9% mAP@0.5 on PVEL-AD, surpassing the best-reported results by significant margins while maintaining real-time inference on an NVIDIA Jetson Xavier. Ablation studies corroborate the complementary roles of each component, underscoring MBY’s robustness across defect scales and surface conditions. These results suggest that MBY strikes an appealing balance between accuracy, efficiency, and deployability, offering a pragmatic solution for next-generation industrial quality-control systems. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

18 pages, 1351 KiB  
Review
Functional and Neuroplastic Effects of Cross-Education in Anterior Cruciate Ligament Rehabilitation: A Scoping Review with Bibliometric Analysis
by Jorge M. Vélez-Gutiérrez, Andrés Rojas-Jaramillo, Juan D. Ascuntar-Viteri, Juan D. Quintero, Francisco García-Muro San José, Bruno Bazuelo-Ruiz, Roberto Cannataro and Diego A. Bonilla
Appl. Sci. 2025, 15(15), 8641; https://doi.org/10.3390/app15158641 (registering DOI) - 4 Aug 2025
Abstract
Anterior cruciate ligament reconstruction (ACLR) results in prolonged muscle weakness, impaired neuromuscular control, and delayed return to sport. Cross-education (CE), unilateral training of the uninjured limb, has been proposed as an adjunct therapy to promote bilateral adaptations. This scoping review evaluated the functional [...] Read more.
Anterior cruciate ligament reconstruction (ACLR) results in prolonged muscle weakness, impaired neuromuscular control, and delayed return to sport. Cross-education (CE), unilateral training of the uninjured limb, has been proposed as an adjunct therapy to promote bilateral adaptations. This scoping review evaluated the functional and neuroplastic effects of CE rehabilitation post-ACLR. Following PRISMA-ScR and JBI guidelines, PubMed, Scopus, Web of Science, and PEDro were searched up to February 2025. A bibliometric analysis was also conducted to report keyword co-occurrence and identify trends in this line of research. Of 333 screened references, 14 studies (price index: 43% and low-to-moderate risk of bias) involving 721 participants (aged 17–45 years) met inclusion criteria. CE protocols (6–12 weeks; 2–5 sessions/week) incorporating isometric, concentric, and eccentric exercises demonstrated strength gains (10–31%) and strength preservation, alongside improved limb symmetry (5–14%) and dynamic balance (7–18%). There is growing interest in neuroplasticity and corticospinal excitability, although neuroplastic changes were assessed heterogeneously across studies. Findings support CE as a feasible and low-cost strategy to complement early-stage ACLR rehabilitation, especially when direct loading of the affected limb is limited. Standardized protocols for clinical intervention and neurophysiological assessment are needed. Full article
(This article belongs to the Special Issue Novel Approaches of Physical Therapy-Based Rehabilitation)
Show Figures

Figure 1

28 pages, 1877 KiB  
Review
Unconventional Immunotherapies in Cancer: Opportunities and Challenges
by Meshael Alturki, Abdullah A. Alshehri, Ahmad M. Aldossary, Mohannad M. Fallatah, Fahad A. Almughem, Nojoud Al Fayez, Majed A. Majrashi, Ibrahim A. Alradwan, Mohammad Alkhrayef, Mohammad N. Alomary and Essam A. Tawfik
Pharmaceuticals 2025, 18(8), 1154; https://doi.org/10.3390/ph18081154 - 4 Aug 2025
Viewed by 47
Abstract
Conventional immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cells, has revolutionized cancer therapy over the past decade. Yet, the efficacy of these therapies is limited by tumor resistance, antigen escape mechanisms, poor persistence, and T-cell exhaustion, particularly in the treatment [...] Read more.
Conventional immunotherapy, including immune checkpoint blockade and chimeric antigen receptor (CAR)-T cells, has revolutionized cancer therapy over the past decade. Yet, the efficacy of these therapies is limited by tumor resistance, antigen escape mechanisms, poor persistence, and T-cell exhaustion, particularly in the treatment of solid tumors. The emergence of unconventional immunotherapies offers novel opportunities by leveraging diverse immune cell subsets and synthetic biologics. This review explores various immunotherapy platforms, including gamma delta T cells, invariant natural killer T cells, mucosal-associated invariant T cells, engineered regulatory T cells, and universal CAR platforms. Additionally, it expands on biologics, including bispecific and multispecific antibodies, cytokine fusions, agonists, and oncolytic viruses, showcasing their potential for modular engineering and off-the-shelf applicability. Distinct features of unconventional platforms include independence from the major histocompatibility complex (MHC), tissue-homing capabilities, stress ligand sensing, and the ability to bridge adaptive and innate immunity. Their compatibility with engineering approaches highlights their potential as scalable, efficient, and cost-effective therapies. To overcome translational challenges such as functional heterogeneity, immune exhaustion, tumor microenvironment-mediated suppression, and limited persistence, novel strategies will be discussed, including metabolic and epigenetic reprogramming, immune cloaking, gene editing, and the utilization of artificial intelligence for patient stratification. Ultimately, unconventional immunotherapies extend the therapeutic horizon of cancer immunotherapy by breaking barriers in solid tumor treatment and increasing accessibility. Continued investments in research for mechanistic insights and scalable manufacturing are key to unlocking their full clinical potential. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

19 pages, 1159 KiB  
Article
A Biased–Randomized Iterated Local Search with Round-Robin for the Periodic Vehicle Routing Problem
by Juan F. Gomez, Antonio R. Uguina, Javier Panadero and Angel A. Juan
Mathematics 2025, 13(15), 2488; https://doi.org/10.3390/math13152488 - 2 Aug 2025
Viewed by 185
Abstract
The periodic vehicle routing problem (PVRP) is a well-known challenge in real-life logistics, requiring the planning of vehicle routes over multiple days while enforcing visitation frequency constraints. Although numerous metaheuristic and exact methods have tackled various PVRP extensions, real-world settings call for additional [...] Read more.
The periodic vehicle routing problem (PVRP) is a well-known challenge in real-life logistics, requiring the planning of vehicle routes over multiple days while enforcing visitation frequency constraints. Although numerous metaheuristic and exact methods have tackled various PVRP extensions, real-world settings call for additional features such as depot configurations, tight visitation frequency constraints, and heterogeneous fleets. In this paper, we present a two-phase biased–randomized algorithm that addresses these complexities. In the first phase, a round-robin assignment quickly generates feasible and promising solutions, ensuring each customer’s frequency requirement is met across the multi-day horizon. The second phase refines these assignments via an iterative search procedure, improving route efficiency and reducing total operational costs. Extensive experimentation on standard PVRP benchmarks shows that our approach is able to generate solutions of comparable quality to established state-of-the-art algorithms in relatively low computational times and stands out in many instances, making it a practical choice for real life multi-day vehicle routing applications. Full article
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 - 1 Aug 2025
Viewed by 206
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

20 pages, 2223 KiB  
Article
Category Attribute-Oriented Heterogeneous Resource Allocation and Task Offloading for SAGIN Edge Computing
by Yuan Qiu, Xiang Luo, Jianwei Niu, Xinzhong Zhu and Yiming Yao
J. Sens. Actuator Netw. 2025, 14(4), 81; https://doi.org/10.3390/jsan14040081 - 1 Aug 2025
Viewed by 164
Abstract
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task [...] Read more.
Space-Air-Ground Integrated Network (SAGIN), which is considered a network architecture with great development potential, exhibits significant cross-domain collaboration characteristics at present. However, most of the existing works ignore the matching and adaptability of differential tasks and heterogeneous resources, resulting in significantly inefficient task execution and undesirable network performance. As a consequence, we formulate a category attribute-oriented resource allocation and task offloading optimization problem with the aim of minimizing the overall scheduling cost. We first introduce a task–resource matching matrix to facilitate optimal task offloading policies with computation resources. In addition, virtual queues are constructed to take the impacts of randomized task arrival into account. To solve the optimization objective which jointly considers bandwidth allocation, transmission power control and task offloading decision effectively, we proposed a deep reinforcement learning (DRL) algorithm framework considering type matching. Simulation experiments demonstrate the effectiveness of our proposed algorithm as well as superior performance compared to others. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

24 pages, 3243 KiB  
Article
Design of Experiments Leads to Scalable Analgesic Near-Infrared Fluorescent Coconut Nanoemulsions
by Amit Chandra Das, Gayathri Aparnasai Reddy, Shekh Md. Newaj, Smith Patel, Riddhi Vichare, Lu Liu and Jelena M. Janjic
Pharmaceutics 2025, 17(8), 1010; https://doi.org/10.3390/pharmaceutics17081010 - 1 Aug 2025
Viewed by 196
Abstract
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription [...] Read more.
Background: Pain is a complex phenomenon characterized by unpleasant experiences with profound heterogeneity influenced by biological, psychological, and social factors. According to the National Health Interview Survey, 50.2 million U.S. adults (20.5%) experience pain on most days, with the annual cost of prescription medication for pain reaching approximately USD 17.8 billion. Theranostic pain nanomedicine therefore emerges as an attractive analgesic strategy with the potential for increased efficacy, reduced side-effects, and treatment personalization. Theranostic nanomedicine combines drug delivery and diagnostic features, allowing for real-time monitoring of analgesic efficacy in vivo using molecular imaging. However, clinical translation of these nanomedicines are challenging due to complex manufacturing methodologies, lack of standardized quality control, and potentially high costs. Quality by Design (QbD) can navigate these challenges and lead to the development of an optimal pain nanomedicine. Our lab previously reported a macrophage-targeted perfluorocarbon nanoemulsion (PFC NE) that demonstrated analgesic efficacy across multiple rodent pain models in both sexes. Here, we report PFC-free, biphasic nanoemulsions formulated with a biocompatible and non-immunogenic plant-based coconut oil loaded with a COX-2 inhibitor and a clinical-grade, indocyanine green (ICG) near-infrared fluorescent (NIRF) dye for parenteral theranostic analgesic nanomedicine. Methods: Critical process parameters and material attributes were identified through the FMECA (Failure, Modes, Effects, and Criticality Analysis) method and optimized using a 3 × 2 full-factorial design of experiments. We investigated the impact of the oil-to-surfactant ratio (w/w) with three different surfactant systems on the colloidal properties of NE. Small-scale (100 mL) batches were manufactured using sonication and microfluidization, and the final formulation was scaled up to 500 mL with microfluidization. The colloidal stability of NE was assessed using dynamic light scattering (DLS) and drug quantification was conducted through reverse-phase HPLC. An in vitro drug release study was conducted using the dialysis bag method, accompanied by HPLC quantification. The formulation was further evaluated for cell viability, cellular uptake, and COX-2 inhibition in the RAW 264.7 macrophage cell line. Results: Nanoemulsion droplet size increased with a higher oil-to-surfactant ratio (w/w) but was no significant impact by the type of surfactant system used. Thermal cycling and serum stability studies confirmed NE colloidal stability upon exposure to high and low temperatures and biological fluids. We also demonstrated the necessity of a solubilizer for long-term fluorescence stability of ICG. The nanoemulsion showed no cellular toxicity and effectively inhibited PGE2 in activated macrophages. Conclusions: To our knowledge, this is the first instance of a celecoxib-loaded theranostic platform developed using a plant-derived hydrocarbon oil, applying the QbD approach that demonstrated COX-2 inhibition. Full article
(This article belongs to the Special Issue Quality by Design in Pharmaceutical Manufacturing)
Show Figures

Graphical abstract

25 pages, 2859 KiB  
Article
Feature-Based Normality Models for Anomaly Detection
by Hui Yie Teh, Kevin I-Kai Wang and Andreas W. Kempa-Liehr
Sensors 2025, 25(15), 4757; https://doi.org/10.3390/s25154757 - 1 Aug 2025
Viewed by 238
Abstract
Detecting previously unseen anomalies in sensor data is a challenging problem for artificial intelligence when sensor-specific and deployment-specific characteristics of the time series need to be learned from a short calibration period. From the application point of view, this challenge becomes increasingly important [...] Read more.
Detecting previously unseen anomalies in sensor data is a challenging problem for artificial intelligence when sensor-specific and deployment-specific characteristics of the time series need to be learned from a short calibration period. From the application point of view, this challenge becomes increasingly important because many applications are gravitating towards utilising low-cost sensors for Internet of Things deployments. While these sensors offer cost-effectiveness and customisation, their data quality does not match that of their high-end counterparts. To improve sensor data quality while addressing the challenges of anomaly detection in Internet of Things applications, we present an anomaly detection framework that learns a normality model of sensor data. The framework models the typical behaviour of individual sensors, which is crucial for the reliable detection of sensor data anomalies, especially when dealing with sensors observing significantly different signal characteristics. Our framework learns sensor-specific normality models from a small set of anomaly-free training data while employing an unsupervised feature engineering approach to select statistically significant features. The selected features are subsequently used to train a Local Outlier Factor anomaly detection model, which adaptively determines the boundary separating normal data from anomalies. The proposed anomaly detection framework is evaluated on three real-world public environmental monitoring datasets with heterogeneous sensor readings. The sensor-specific normality models are learned from extremely short calibration periods (as short as the first 3 days or 10% of the total recorded data) and outperform four other state-of-the-art anomaly detection approaches with respect to F1-score (between 5.4% and 9.3% better) and Matthews correlation coefficient (between 4.0% and 7.6% better). Full article
(This article belongs to the Special Issue Innovative Approaches to Cybersecurity for IoT and Wireless Networks)
Show Figures

Figure 1

18 pages, 446 KiB  
Systematic Review
Environmental Enrichment in Dairy Small Ruminants: A PRISMA-Based Review on Welfare Implications and Future Research Directions
by Fabiana Ribeiro Caldara, Jéssica Lucilene Cantarini Buchini and Rodrigo Garófallo Garcia
Dairy 2025, 6(4), 42; https://doi.org/10.3390/dairy6040042 - 1 Aug 2025
Viewed by 124
Abstract
Background: Environmental enrichment is a promising strategy to improve the welfare of dairy goats and sheep. However, studies in this field remain scattered, and its effects on productivity are unclear. Objectives: To evaluate the effects of environmental enrichment on behavioral, physiological, and productive [...] Read more.
Background: Environmental enrichment is a promising strategy to improve the welfare of dairy goats and sheep. However, studies in this field remain scattered, and its effects on productivity are unclear. Objectives: To evaluate the effects of environmental enrichment on behavioral, physiological, and productive parameters in dairy goats and sheep. Data sources: Scopus and Web of Science were searched for studies published from 2010 to 2025. Study eligibility criteria: Experimental or observational peer-reviewed studies comparing enriched vs. non-enriched housing in dairy goats or sheep, reporting on welfare or productivity outcomes. Methods: This review followed PRISMA 2020 guidelines and the PICO framework. Two independent reviewers screened and extracted data. Risk of bias was assessed with the SYRCLE tool. Results: Thirteen studies were included, mostly with goats. Physical, sensory, and social enrichments showed benefits for behavior (e.g., activity, fewer stereotypies) and stress physiology. However, results varied by social rank, enrichment type, and physiological stage. Only three studies assessed productive parameters (weight gain in kids/lambs); none evaluated milk yield or quality. Limitations: Most studies had small samples and short durations. No meta-analysis was conducted due to heterogeneity. Conclusions: Environmental enrichment can benefit the welfare of dairy goats and sheep. However, evidence on productivity is scarce. Long-term studies are needed to evaluate its cost-effectiveness and potential impacts on milk yield and reproductive performance. Full article
(This article belongs to the Section Dairy Small Ruminants)
Show Figures

Figure 1

17 pages, 6856 KiB  
Article
Selection of Optimal Parameters for Chemical Well Treatment During In Situ Leaching of Uranium Ores
by Kuanysh Togizov, Zhiger Kenzhetaev, Akerke Muzapparova, Shyngyskhan Bainiyazov, Diar Raushanbek and Yuliya Yaremkiv
Minerals 2025, 15(8), 811; https://doi.org/10.3390/min15080811 - 31 Jul 2025
Viewed by 168
Abstract
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and [...] Read more.
The aim of this study was to improve the efficiency of in situ uranium leaching by developing a specialized methodology for selecting rational parameters for the chemical treatment of production wells. This approach was designed to enhance the filtration properties of ores and extend the uninterrupted operation period of wells, considering the clay content of the productive horizon, the geological characteristics of the ore-bearing layer, and the composition of precipitation-forming materials. The mineralogical characteristics of ore and precipitate samples formed during the in situ leaching of uranium under various mining and geological conditions at a uranium deposit in the Syrdarya depression were identified using an X-ray diffraction analysis. It was established that ores of the Santonian stage are relatively homogeneous and consist mainly of quartz. During well operation, the precipitates formed are predominantly gypsum, which has little impact on the filtration properties of the ore. Ores of the Maastrichtian stage are less homogeneous and mainly composed of quartz and smectite, with minor amounts of potassium feldspar and kaolinite. The leaching of these ores results in the formation of gypsum with quartz impurities, which gradually reduces the filtration properties of the ore. Ores of the Campanian stage are heterogeneous, consisting mainly of quartz with varying proportions of clay minerals and gypsum. The leaching of these ores generates a variety of precipitates that significantly reduce the filtration properties of the productive horizon. Effective compositions and concentrations of decolmatant (clog removal) solutions were selected under laboratory conditions using a specially developed methodology and a TESCAN MIRA scanning electron microscope. Based on a scanning electron microscope analysis of the samples, the effectiveness of a decolmatizing solution based on hydrochloric and hydrofluoric acids (taking into account the concentration of the acids in the solution) was established for the destruction of precipitate formation during the in situ leaching of uranium. Geological blocks were ranked by their clay content to select rational parameters of decolmatant solutions for the efficient enhancement of ore filtration properties and the prevention of precipitation formation. Pilot-scale testing of the selected decolmatant parameters under various mining and geological conditions allowed the optimal chemical treatment parameters to be determined based on the clay content and the composition of precipitates in the productive horizon. An analysis of pilot well trials using the new approach showed an increase in the uninterrupted operational period of wells by 30%–40% under average mineral acid concentrations and by 25%–45% under maximum concentrations with surfactant additives in complex geological settings. As a result, an effective methodology for ranking geological blocks based on their ore clay content and precipitate composition was developed to determine the rational parameters of decolmatant solutions, enabling a maximized filtration performance and an extended well service life. This makes it possible to reduce the operating costs of extraction, control the geotechnological parameters of uranium well mining, and improve the efficiency of the in situ leaching of uranium under complex mining and geological conditions. Additionally, the approach increases the environmental and operational safety during uranium ore leaching intensification. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop