Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = heterocyclic building blocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3908 KiB  
Review
Hybrid Molecules with Purine and Pyrimidine Derivatives for Antitumor Therapy: News, Perspectives, and Future Directions
by Simona Iacob (Ciobotaru), Claudia-Simona Stefan, Aurel Nechita, Madalina-Nicoleta Matei, Elena-Lacramioara Lisa, Dana Tutunaru, Iuliu Fulga, Ana Fulga, Alina-Georgiana Cristea (Hohota) and Oana-Maria Dragostin
Molecules 2025, 30(13), 2707; https://doi.org/10.3390/molecules30132707 - 23 Jun 2025
Viewed by 1185
Abstract
Cancer is a leading cause of death globally, claiming millions of lives each year. Despite the availability of numerous anticancer drugs, the need for new treatment options remains essential. Many current therapies come with significant toxicity, lead to various side effects, or do [...] Read more.
Cancer is a leading cause of death globally, claiming millions of lives each year. Despite the availability of numerous anticancer drugs, the need for new treatment options remains essential. Many current therapies come with significant toxicity, lead to various side effects, or do not consistently deliver the expected therapeutic results. Purines and pyrimidines are fundamental building blocks of nucleic acids and play crucial roles in cellular metabolism and signaling. Recent advances in medicinal chemistry have led to the development and synthesis of various derivatives that exhibit selective cytotoxic effects against cancer cells while minimizing toxicity to healthy tissues. Purine and pyrimidine scaffolds, due to their well-established biological roles and structural versatility, have emerged as key pharmacophoric fragments in anticancer drug discovery. In recent years, the rational design of hybrid molecules incorporating these heterocycles has shown promise in overcoming drug resistance, improving target selectivity, and enhancing pharmacological profiles. Purine and pyrimidines scaffolds hold significant potential as foundations for novel antitumor drugs, with established representatives in cancer treatment, including 5-fluorouracil, cladribine, capecitabine, and several others. In addition, the article discusses the challenges and future developments of purine and pyrimidine derivatives and hybrid molecules as antitumor drugs and emphasizes the need for continued research to optimize their effectiveness and reduce side effects. Overall, the innovative use of these compounds represents a major advance in targeted cancer therapy and holds promise for improving the therapeutic efficacy of malignant diseases. Full article
(This article belongs to the Special Issue Small Molecule Hybrids for Anticancer and Antiviral Therapy)
Show Figures

Figure 1

16 pages, 3984 KiB  
Article
Highly Efficient Enrichment of Heterocyclic Aromatic Amines in Meat Products Using the Magnetic Metal—Organic Framework Fe3O4@MOF-545-AMSA
by Yang Wang, Ying Liu, Ziyan Chen and Shan Liang
Molecules 2025, 30(8), 1705; https://doi.org/10.3390/molecules30081705 - 10 Apr 2025
Viewed by 533
Abstract
Heterocyclic aromatic amines (HAAs), known for their mutagenic and carcinogenic potential, are formed during the heating of protein-rich food items. Detecting HAAs swiftly and accurately poses challenges due to complex food matrices and low HAA concentrations. In this study, a simple and efficient [...] Read more.
Heterocyclic aromatic amines (HAAs), known for their mutagenic and carcinogenic potential, are formed during the heating of protein-rich food items. Detecting HAAs swiftly and accurately poses challenges due to complex food matrices and low HAA concentrations. In this study, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed for the simultaneous isolation and enrichment of three HAAs such as 2-amino-3,4,8-trimethylimidazo [4,5-f]quinoxaline (4,8-DiMeIQx), 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline (MeIQx), and 2-amino-3-methylimidazo [4,5-f]quinoline (IQ) in processed meats, employing the magnetic covalent organic framework Fe3O4@MOF-545-AMSA as an adsorbent. It was synthesized via a solvothermal method, with Fe3O4 as the magnetic core. Its building blocks are as follows: zirconium (Zr) as the coordination metal ion, tetrakis(4-carboxyphenyl)porphyrin and benzoic acid as organic ligands, and aminomethanesulfonic acid (AMSA). This composite captures targeted HAAs efficiently by exploiting the unique porous MOF-545-AMSA structure, specific metal–ligand coordination, and AMSA’s amino and sulfonic acid groups. The quantification of HAAs was achieved through the combination of Ultra-Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC-MS/MS) and MSPE, demonstrating satisfactory linearity (R2 ≥ 0.9917), high recovery rates (83.7–111.0%), and low detection limits (0.1–1.0 μg/kg). Moreover, an automated high-throughput detection system was developed using MSPE to assess the presence of HAAs in meat products. Full article
Show Figures

Graphical abstract

8 pages, 1001 KiB  
Article
Copper-Catalyzed Four-Component A3-Based Cascade Reaction: Facile Synthesis of 3-Oxetanone-Derived Spirocycles
by Rongkang Zhang, Liliang Huang, Aiguo Gu and Huangdi Feng
Chemistry 2025, 7(1), 19; https://doi.org/10.3390/chemistry7010019 - 4 Feb 2025
Viewed by 1547
Abstract
3-Oxetanone-derived spirooxazolidines represent a class of building blocks for accessing diverse saturated heterocycles, but their synthetic methods remain unexplored. Herein, we demonstrate a highly atom-economic approach for the synthesis of diverse 3-oxetanone-derived N-propargyl spirooxazolidines via a CuBr2/TFA co-catalyzed four-component A [...] Read more.
3-Oxetanone-derived spirooxazolidines represent a class of building blocks for accessing diverse saturated heterocycles, but their synthetic methods remain unexplored. Herein, we demonstrate a highly atom-economic approach for the synthesis of diverse 3-oxetanone-derived N-propargyl spirooxazolidines via a CuBr2/TFA co-catalyzed four-component A3-based cascade reaction of a 1,2-amino alcohol, a 3-oxetanone, a formaldehyde, and an alkyne. This strategy is characterized by a wide substrate range and excellent chemoselectivity. In addition, the synthesized spirocycles could also be easily converted into other valuable compounds, facilitating potentially useful synthetic applications. Full article
Show Figures

Graphical abstract

35 pages, 9810 KiB  
Review
2-Guanidinobenzimidazole as Ligand in Supramolecular, Coordination and Organometallic Chemistry
by Itzia I. Padilla-Martínez, Alejandro Cruz and Efrén V. García-Báez
Int. J. Mol. Sci. 2025, 26(3), 1063; https://doi.org/10.3390/ijms26031063 - 26 Jan 2025
Viewed by 1146
Abstract
The benzimidazole core (BI) plays a central role in biologically active molecules. The BI nucleus is widely used as a building block to generate a variety of bioactive heterocyclic compounds to be used as antihelmintics, antiprotozoal, antimalarials, anti-inflammatories, antivirals, antimicrobials, antiparasitics, and antimycobacterials. [...] Read more.
The benzimidazole core (BI) plays a central role in biologically active molecules. The BI nucleus is widely used as a building block to generate a variety of bioactive heterocyclic compounds to be used as antihelmintics, antiprotozoal, antimalarials, anti-inflammatories, antivirals, antimicrobials, antiparasitics, and antimycobacterials. A versatile BI derivative is the 2-guanidinobenzimidazole (2GBI), which, together with its derivatives, is a very interesting poly-functional planar molecule having a delocalised 10 π electrons system conjugated with the guanidine group. The 2GBI molecule has five nitrogen atoms containing five labile N–H bonds, which interact with the out-ward-facing channel entrance, forming a labile complex with the biological receptor sites. In this work, 2GBI and their derivatives were analyzed as ligands to form host–guest, coordination and organometallic complexes. Synthesis methodology, metal geometries, hydrogen bonding (HB) interactions, and the biological activities of the complexes were discussed. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1802 KiB  
Article
6-Bromoindole- and 6-Bromoindazole-Based Inhibitors of Bacterial Cystathionine γ-Lyase Containing 3-Aminothiophene-2-Carboxylate Moiety
by Roman A. Novikov, Dmitry N. Platonov, Alexander Yu. Belyy, Konstantin V. Potapov, Maxim A. Novikov, Yury V. Tomilov, Olga I. Kechko, Tatiana A. Seregina, Anastasia S. Zemskaya, Pavel N. Solyev and Vladimir A. Mitkevich
Molecules 2025, 30(2), 388; https://doi.org/10.3390/molecules30020388 - 17 Jan 2025
Viewed by 1386
Abstract
In recent years, a number of synthetic potentiators of antibiotics have been discovered. Their action can significantly enhance the antibacterial effect and limit the spread of antibiotic resistance through inhibition of bacterial cystathionine-γ-lyase. To expand the known set of potentiators, we developed methods [...] Read more.
In recent years, a number of synthetic potentiators of antibiotics have been discovered. Their action can significantly enhance the antibacterial effect and limit the spread of antibiotic resistance through inhibition of bacterial cystathionine-γ-lyase. To expand the known set of potentiators, we developed methods for the synthesis of five new representatives of 6-bromoindole derivatives—potential inhibitors of bacterial cystathionine-γ-lyase—namely potassium 3-amino-5-((6-bromoindolyl)methyl)thiophene-2-carboxylate (MNS2) and its 6-bromoindazole analogs (MNS3 and MNS4), along with two 6-broindazole analogs of the parent compound NL2. Their syntheses are based on 6-bromoindole, 6-bromoindazole and methyl 5-(bromomethyl)-3-((ethoxycarbonyl)amino)thiophene-2-carboxylate as the main building blocks, assembling the rest of the heterocyclic system on their basis at the nitrogen atom. We assessed the ability of the new inhibitors to potentiate the antimicrobial activity of gentamicin. Full article
(This article belongs to the Special Issue Advances in Antibacterial Molecules)
Show Figures

Graphical abstract

22 pages, 2915 KiB  
Article
Antistaphylococcal Triazole-Based Molecular Hybrids: Design, Synthesis and Activity
by Kostiantyn Shabelnyk, Alina Fominichenko, Oleksii Antypenko, Olexandr Gaponov, Svitlana Koptieva, Svitlana Shyshkina, Oleksii Voskoboinik, Sergiy Okovytyy, Serhii Kovalenko, Valentyn Oksenych and Oleksandr Kamyshnyi
Pharmaceuticals 2025, 18(1), 83; https://doi.org/10.3390/ph18010083 - 11 Jan 2025
Cited by 2 | Viewed by 1675
Abstract
Background: In the era of resistance, the design and search for new “small” molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of [...] Read more.
Background: In the era of resistance, the design and search for new “small” molecules with a narrow spectrum of activity that target a protein or enzyme specific to a certain bacterium with high selectivity and minimal side effects remains an urgent problem of medicinal chemistry. In this regard, we developed and successfully implemented a strategy for the search for new hybrid molecules, namely, the not broadly known [2-(3-R-1H-[1,2,4]-triazol-5-yl)phenyl]amines. They can act as “building blocks” and allow for the introduction of certain structural motifs into the desired final products in order to enhance the antistaphylococcal effect. Methods: The “one-pot” synthesis of the latter is based on the conversion of substituted 4-hydrazinoquinazolines or substituted 2-aminobenzonitriles and carboxylic acid derivatives to the target products. The possible molecular mechanism of the synthesized compounds (DNA gyrase inhibitors) was investigated and discussed using molecular docking, and their further study for antistaphylococcal activity was substantiated. Results: A significant part of the obtained compounds showed high antibacterial activity against Staphylococcus aureus (MIC: 10.1–62.4 µM) and 5-bromo-2-(3-(furan-3-yl)-1H-1,2,4-triazol-5-yl)aniline and 5-fluoro-2-(3-(thiophen-3-yl)-1H-1,2,4-triazol-5-yl)aniline, with MICs of 5.2 and 6.1 µM, respectively, approaching the strength of the effect of the reference drug, “Ciprofloxacin” (MIC: 4.7 µM). The conducted SAR and ADME analyses confirm the prospects of the further structural modification of these compounds. The obtained [2-(3-R-1H-[1,2,4]-triazol-5-yl)phenyl]amines reveal significant antimicrobial activity and deserve further structural modification and detailed study as effective antistaphylococcal agents. The SAR analysis revealed that the presence of a cycloalkyl or electron-rich heterocyclic fragment in the third position of the triazole ring was essential for the antibacterial activity of the obtained compounds. At the same time, the introduction of a methyl group into the aniline moiety led to an enhancement of activity. The introduction of halogen into the aniline fragment has an ambiguous effect on the level of antistaphylococcal activity and depends on the nature of the substituent in the third position. Conclusions: Obtained [2-(3-R-1H-[1,2,4]-triazol-5-yl)phenyl]amines reveal significant antistaphylococcal activity and deserve for further detailed study as effective antibacterial agents. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

1310 KiB  
Proceeding Paper
Synthesis of New Aza-Heterocyclic Based on 2-Pyridone
by Ikram Baba-Ahmed, Zahira Kibou, Julio A. Seijas, Noureddine Choukchou-Braham and M. Pilar Vázquez-Tato
Chem. Proc. 2024, 16(1), 113; https://doi.org/10.3390/ecsoc-28-20134 - 14 Nov 2024
Viewed by 339
Abstract
In this work, we present new methods of synthesis of different molecules including a 2-pyridone nucleus. First, we prepared a series of 1H-free 2-pyridones and N-alkyl 2-pyridones from ethyl cyanoacetate, aromatic aldehydes, various acetophenone derivatives and ammonium acetate or diamino-alkane. [...] Read more.
In this work, we present new methods of synthesis of different molecules including a 2-pyridone nucleus. First, we prepared a series of 1H-free 2-pyridones and N-alkyl 2-pyridones from ethyl cyanoacetate, aromatic aldehydes, various acetophenone derivatives and ammonium acetate or diamino-alkane. These molecules have served as building blocks that, in conjunction with acyl chloride derivatives, glycoside derivatives, etc. have resulted in various heterocyclic hybrid structures carrying a 2-pyridone ring. Moreover, based on the cyano group reactivity of the 2-pyridone ring, we synthesized 5-pyridone 1H-tetrazole in a single step by a cycloaddition reaction [3 + 2] between 3-cyano-2-pyridone nitriles and sodium azide in the presence of metal-free L-proline. Full article
Show Figures

Scheme 1

7 pages, 1064 KiB  
Communication
A Novel Approach for the Synthesis of 3,3′-((4-Methoxyphenyl)methylene)bis(4-hydroxyfuran-2(5H)-one) Employing Natural Deep Eutectic Solvents and Microwave Irradiation
by Maria-Anna Karadendrou, Ioanna Kostopoulou, Afroditi Christodoulou, Andromachi Tzani and Anastasia Detsi
Molbank 2024, 2024(4), M1910; https://doi.org/10.3390/M1910 - 30 Oct 2024
Viewed by 1075
Abstract
Tetronic acid, a five-membered heterocyclic moiety present in various natural products, has emerged as a significant building block for many pharmaceutically active compounds. In this study, a novel protocol for the synthesis of the bis-tetronic acid 3,3′-((4-methoxyphenyl)methylene)bis(4-hydroxyfuran-2(5H)-one) (3) via [...] Read more.
Tetronic acid, a five-membered heterocyclic moiety present in various natural products, has emerged as a significant building block for many pharmaceutically active compounds. In this study, a novel protocol for the synthesis of the bis-tetronic acid 3,3′-((4-methoxyphenyl)methylene)bis(4-hydroxyfuran-2(5H)-one) (3) via a domino Knoevenagel–Michael reaction is presented. The natural deep eutectic solvent L-proline/glycerol 1:2 molar ratio was utilized as a solvent and catalyst, while the reaction was further promoted via microwave irradiation, providing the desired product in high yield (83%). The solvent was successfully recycled and reused up to three times. Full article
Show Figures

Figure 1

24 pages, 6486 KiB  
Article
Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study
by Mikołaj Sadowski and Karolina Kula
Molecules 2024, 29(21), 5066; https://doi.org/10.3390/molecules29215066 - 26 Oct 2024
Cited by 17 | Viewed by 1963
Abstract
In recent times, interest in the chemistry of conjugated nitrodienes is still significantly increasing. In particular, the application of these compounds as building blocks to obtain heterocycles is a popular object of research. Therefore, in continuation of our research devoted to the topic [...] Read more.
In recent times, interest in the chemistry of conjugated nitrodienes is still significantly increasing. In particular, the application of these compounds as building blocks to obtain heterocycles is a popular object of research. Therefore, in continuation of our research devoted to the topic of conjugated nitrodienes, experimental and quantum-chemical studies of a cycloaddition reaction between (1E,3E)-1,4-dinitro-1,3-butadiene and N-methyl azomethine ylide have been investigated. The computational results present that the tested reaction is realized through a pdr-type polar mechanism. In turn, the experimental study shows that in a course of this cycloaddition, only one reaction product in the form of 1-methyl-3-(trans-2-nitrovinyl)-Δ3-pyrroline is created. The constitution of this compound has been confirmed via spectroscopic methods. Finally, ADME analysis indicated that the synthesized Δ3-pyrroline exhibits biological potential, and it is a good drug candidate according to Lipinski, Veber and Egan rules. Nevertheless, PASS simulation showed that the compound exhibits weak antimicrobial, inhibitory and antagonist properties. Preliminary in silico research shows that although the obtained Δ3-pyrroline is not a good candidate for a drug, the presence of a nitrovinyl moiety in its structure indicates that the compound is an initial basis for further modifications. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Application and Theoretical Study)
Show Figures

Figure 1

22 pages, 7849 KiB  
Review
Recent Developments Towards the Synthesis of Triazole Derivatives: A Review
by Issam Ameziane El Hassani, Khouloud Rouzi, Anouar Ameziane El Hassani, Khalid Karrouchi and M’hammed Ansar
Organics 2024, 5(4), 450-471; https://doi.org/10.3390/org5040024 - 24 Oct 2024
Cited by 8 | Viewed by 6032
Abstract
The triazole scaffold is a crucial component of heterocyclic chemistry, serving as a basic building block in organic synthesis, materials science, and medicinal chemistry. Triazole is a five-membered ring composed of three nitrogen atoms and two carbon atoms, and it exists in two [...] Read more.
The triazole scaffold is a crucial component of heterocyclic chemistry, serving as a basic building block in organic synthesis, materials science, and medicinal chemistry. Triazole is a five-membered ring composed of three nitrogen atoms and two carbon atoms, and it exists in two isomeric forms: 1,2,3-triazole and 1,2,4-triazole. Compounds featuring the triazole ring are important heterocycles known for their diverse biological activities, including antimicrobial, antiproliferative, antimalarial, anticonvulsant, anti-inflammatory, antineoplastic, antiviral, analgesic, and anticancer properties. As a result, triazole derivatives have attracted significant attention from researchers. This review aims to provide a thorough overview of the published studies on the synthesis of triazole derivatives, highlighting various methods for obtaining the triazole moiety. These methods include classical approaches as well as microwave and ultrasound-assisted techniques. Full article
Show Figures

Figure 1

20 pages, 5554 KiB  
Article
Syn-Propanethial S-Oxide as an Available Natural Building Block for the Preparation of Nitro-Functionalized, Sulfur-Containing Five-Membered Heterocycles: An MEDT Study
by Mikołaj Sadowski, Ewa Dresler, Karolina Zawadzińska, Aneta Wróblewska and Radomir Jasiński
Molecules 2024, 29(20), 4892; https://doi.org/10.3390/molecules29204892 - 15 Oct 2024
Cited by 11 | Viewed by 2267
Abstract
The regio- and stereoselectivity and the molecular mechanisms of the [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and selected conjugated nitroalkenes were explored theoretically in the framework of the Molecular Electron Density Theory. It was found that cycloadditions with the participation [...] Read more.
The regio- and stereoselectivity and the molecular mechanisms of the [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and selected conjugated nitroalkenes were explored theoretically in the framework of the Molecular Electron Density Theory. It was found that cycloadditions with the participation of nitroethene as well as its methyl- and chloro-substituted analogs can be realized via a single-step mechanism. On the other hand, [3 + 2] cycloaddition reactions between Syn-propanethial S-oxide and 1,1-dinitroethene can proceed according to a stepwise mechanism with a zwitterionic intermediate. Finally, we evaluated the affinity of model reaction products for several target proteins: cytochrome P450 14α-sterol demethylase CYP51 (RSCB Database PDB ID: 1EA1), metalloproteinase gelatinase B (MMP-9; PDB ID: 4XCT), and the inhibitors of cyclooxygenase COX-1 (PDB:3KK6) and COX-2 (PDB:5KIR). Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Application and Theoretical Study)
Show Figures

Figure 1

24 pages, 7062 KiB  
Review
Recent Advances in Transition Metal-Catalyzed Ring-Opening Reaction of Aziridine
by Partha Sarathi Bera, Yafia Kousin Mirza, Tarunika Sachdeva and Milan Bera
Compounds 2024, 4(4), 626-649; https://doi.org/10.3390/compounds4040038 - 11 Oct 2024
Cited by 2 | Viewed by 3099
Abstract
The smallest strained, saturated N-heterocycles, such as aziridine, can be a valuable building block in synthetic organic chemistry. Ring-opening reactions with various nucleophiles could be the most important strategy to synthesize various value-added molecular entities. Therefore, regioselective ring-opening reactions of aziridines with various [...] Read more.
The smallest strained, saturated N-heterocycles, such as aziridine, can be a valuable building block in synthetic organic chemistry. Ring-opening reactions with various nucleophiles could be the most important strategy to synthesize various value-added molecular entities. Therefore, regioselective ring-opening reactions of aziridines with various heteroatomic nucleophiles and carbon nucleophiles establish a useful synthetic methodology to synthesize biologically relevant β-functionalized alkylamines. The regio-selective ring-opening of aziridines is highly dependent on the substrate combination, and stereochemical control is challenging for Lewis acid-promoted reactions. Therefore, the development of a robust, catalytic ring-opening process that assists in the accurate prediction of regioselectivity and stereochemistry is highly desirable. Consequently, a large number of publications detailing distinct methods for aziridine ring-opening reactions can be found in the literature. In this review, we discuss several transition metal catalyzed cross-coupling reaction protocols for the ring opening of substituted aziridines with various carbon nucleophiles. Full article
Show Figures

Scheme 1

18 pages, 2492 KiB  
Article
Product Selectivity Control in the Brønsted Acid-Mediated Reactions with 2-Alkynylanilines
by Valerio Morlacci, Massimiliano Aschi, Marco Chiarini, Caterina Momoli, Laura Palombi and Antonio Arcadi
Molecules 2024, 29(15), 3693; https://doi.org/10.3390/molecules29153693 - 4 Aug 2024
Cited by 1 | Viewed by 1529
Abstract
Brønsted acid-catalysed/mediated reactions of the 2-alkynylanilines are reported. While metal-catalysed reactions of these valuable building blocks have led to the establishment of robust protocols for the selective, diverse-oriented syntheses of significant heterocyclic derivatives, we here demonstrate the practical advantages of an alternative methodology [...] Read more.
Brønsted acid-catalysed/mediated reactions of the 2-alkynylanilines are reported. While metal-catalysed reactions of these valuable building blocks have led to the establishment of robust protocols for the selective, diverse-oriented syntheses of significant heterocyclic derivatives, we here demonstrate the practical advantages of an alternative methodology under metal-free conditions. Our investigation into the key factors influencing the product selectivity in Brønsted acid-catalysed/mediated reactions of 2-alkynylanilines reveals that different reaction pathways can be directed towards the formation of diverse valuable products by simply choosing appropriate reaction conditions. The origins of chemo- and regioselectivity switching have been explored through Density Functional Theory (DFT) calculations. Full article
(This article belongs to the Special Issue Advances in Heterocyclic Synthesis)
Show Figures

Graphical abstract

22 pages, 6201 KiB  
Review
Recent Advances in Structural Optimization of Quinazoline-Based Protein Kinase Inhibitors for Cancer Therapy (2021–Present)
by Heba T. Abdel-Mohsen, Manal M. Anwar, Nesreen S. Ahmed, Somaia S. Abd El-Karim and Sameh H. Abdelwahed
Molecules 2024, 29(4), 875; https://doi.org/10.3390/molecules29040875 - 16 Feb 2024
Cited by 14 | Viewed by 3976
Abstract
Cancer is a complicated, multifaceted disease that can impact any organ in the body. Various chemotherapeutic agents have a low selectivity and are very toxic when used alone or in combination with others. Resistance is one of the most important hurdles that develop [...] Read more.
Cancer is a complicated, multifaceted disease that can impact any organ in the body. Various chemotherapeutic agents have a low selectivity and are very toxic when used alone or in combination with others. Resistance is one of the most important hurdles that develop due to the use of many anticancer therapeutics. As a result, treating cancer requires a target-specific palliative care strategy. Remarkable scientific discoveries have shed light on several of the molecular mechanisms underlying cancer, resulting in the development of various targeted anticancer agents. One of the most important heterocyclic motifs is quinazoline, which has a wide range of biological uses and chemical reactivities. Newer, more sophisticated medications with quinazoline structures have been found in the last few years, and great strides have been made in creating effective protocols for building these pharmacologically active scaffolds. A new class of chemotherapeutic agents known as quinazoline-based derivatives possessing anticancer properties consists of several well-known compounds that block different protein kinases and other molecular targets. This review highlights recent updates (2021–2024) on various quinazoline-based derivatives acting against different protein kinases as anticancer chemotherapeutics. It also provides guidance for the design and synthesis of novel quinazoline analogues that could serve as lead compounds. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

16 pages, 3496 KiB  
Article
Synthesis, Hydrolytic Stability and In Vivo Biological Study of Bioconjugates of the Tetrapeptides FELL Containing Pyrrole Moiety
by Boryana Borisova, Stanislava Vladimirova, Hristina Nocheva, Marie Laronze-Cochard, Stéphane Gérard, Stoyko Petrin and Dancho Danalev
Biomedicines 2023, 11(12), 3265; https://doi.org/10.3390/biomedicines11123265 - 9 Dec 2023
Cited by 1 | Viewed by 1930
Abstract
Background: Bioconjugates are promising alternatives for the multiple targeting of any disease. Pyrrole heterocycle is well known with many activities and is a building block of a lot of medical drugs. On the other hand, peptides are short molecules with many advantages such [...] Read more.
Background: Bioconjugates are promising alternatives for the multiple targeting of any disease. Pyrrole heterocycle is well known with many activities and is a building block of a lot of medical drugs. On the other hand, peptides are short molecules with many advantages such as small size, ability to penetrate the cell membrane and bond-specific receptors, vectorizing potential, etc. Thus, hybrid molecules between peptide and pyrrole moiety could be a promising alternative as an anti-pain tool. Methods: New bioconjugates with a general formula Pyrrole (α-/β-acid)-FELL-OH (NH2) were synthesized using Fmoc/OtBu peptide synthesis on solid support. HPLC was used to monitor the purity of newly synthesized bioconjugates. Their structures were proven by electrospray ionization mass spectrometry. The Paw Pressure test (Randall–Selitto test) was used to examinate the analgesic activity. Hydrolytic stability of targeted structures was monitored in three model systems with pH 2.0, 7.4 and 9.0, including specific enzymes by means of the HPLC-UV method. Results: The obtained results reveal that all newly synthesized bioconjugates have analgesic activity according to the used test but free pyrrole acids have the best analgesic activity. Conclusions: Although free pyrrole acids showed the best analgesic activity, they are the most unstable for hydrolysis. Combination with peptide structure leads to the hydrolytic stabilization of the bioconjugates, albeit with slightly reduced activity. Full article
(This article belongs to the Special Issue Peptides and Amino Acids in Drug Development: Here and Now)
Show Figures

Graphical abstract

Back to TopTop