Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = hemp pellet

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3279 KiB  
Article
Assessment of the Environmental Feasibility of Utilizing Hemp Fibers in Composite Production
by Denis da Silva Miranda, Douglas Alexandre Casetta, Leonardo Coelho Simon and Luiz Kulay
Polymers 2025, 17(15), 2103; https://doi.org/10.3390/polym17152103 - 31 Jul 2025
Viewed by 272
Abstract
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The [...] Read more.
This study investigated the impact of incorporating hemp fibers into composites for manufacturing industrial parts. The Global Warming Potential (GWP) of producing a traditional polymer matrix composite containing glass fibers was compared to that of producing a counterpart from natural hemp fibers. The investigation concluded that the partial replacement of synthetic fibers with biomass reduced the GWP of the product by up to 25% without compromising its mechanical properties. This study also quantified and discussed the GWP of intermediate products obtained from alternative routes, such as the manufacture of hemp stalks and pellets. In these cases, the findings showed that the amount of CO2 absorbed during plant growth exceeded the emissions related to soil preparation, farming, and processing of hemp stalks by up to 15 times, and the processing of row hemp bales into pellets could result in an even “greener” product. This study highlights the importance of using bio-based inputs in reducing greenhouse gas emissions in the materials manufacturing industry and concludes that even partial substitutions of synthetic inputs with natural fibers can show significant reductions in this type of environmental impact. Full article
(This article belongs to the Special Issue Advances in Composite Materials: Polymers and Fibers Inclusion)
Show Figures

Figure 1

23 pages, 4948 KiB  
Article
An Analysis of Structural Integrity and Durability in Determining the Optimal Compaction Parameters for Hemp and Pine
by Kamil Roman, Witold Jan Wardal and Gabriela Maksymiuk
Energies 2025, 18(7), 1853; https://doi.org/10.3390/en18071853 - 7 Apr 2025
Viewed by 514
Abstract
Research on seed hemp and pine was carried out to improve sustainability and energy efficiency. The mechanical properties of different species of lignocellulosic biomass are still undocumented in the context of granulation processes, even though lignocellulosic biomass is widely studied for biofuel production. [...] Read more.
Research on seed hemp and pine was carried out to improve sustainability and energy efficiency. The mechanical properties of different species of lignocellulosic biomass are still undocumented in the context of granulation processes, even though lignocellulosic biomass is widely studied for biofuel production. Hemp and pine have not been thoroughly compared in the granulation process. Under compressive forces pertinent to pelletizing, the study investigated the mechanical properties of lignocellulosic materials, such as hemp and Scots pine. Based on their mechanical properties, microscopic analysis and strength tests were conducted to compare hemp pellets and pine briquettes. In recent years, a significant trend has been towards eco-friendly and innovative biofuel production, motivating research on compaction technologies and material strength enhancement. The study compared hemp (Cannabis sativa L.) with Scots pine (Pinus sylvestris) during compaction. Compared with pine briquettes, hemp pellets exhibit superior mechanical durability (durability factor = 0.98) and compressive strength (average 2.5 kN), demonstrating hemp’s potential as a renewable fuel source. The study results contribute to the development of sustainable biofuel production processes. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

15 pages, 543 KiB  
Article
Occurrence of Pharmaceuticals and Personal Care Products in Cannabis sativa L. Following Application of Sewage Sludge-Based Composts and Vermicomposts
by Ales Hanc, Bayu Dume, Sarka Kusnierova, Milan Hrcka, Tereza Hrebeckova, Pavel Michal, Maha Hleibieh, Alena Nehasilova and Tomas Cajthaml
Agriculture 2025, 15(5), 470; https://doi.org/10.3390/agriculture15050470 - 22 Feb 2025
Viewed by 773
Abstract
The use of some organic fertilizers may raise concerns about the transfer of hazardous substances to soil and plants. This study examined the impact of soil amendment with compost and vermicompost derived from sewage sludge and straw pellets in different ratios on the [...] Read more.
The use of some organic fertilizers may raise concerns about the transfer of hazardous substances to soil and plants. This study examined the impact of soil amendment with compost and vermicompost derived from sewage sludge and straw pellets in different ratios on the accumulation of pharmaceuticals and personal care products (PPCPs) by hemp (Cannabis sativa L.). The concentrations of fifty different PPCPs were measured in compost-treated soil, and in the roots and above-ground biomass of cannabis grown on the soil. The highest bioaccumulation of PPCPs was recorded in plants from previously unfertilized soils low in organic matter, while the lowest concentrations were measured in soil amended with compost or vermicompost made from straw pellets only, without sewage sludge. The effect of sludge-derived compost and vermicompost application on the absorption of PPCPs was statistically determined by measurements in soil samples, roots and shoots of carbamazepine, cetirizine, lamotrigine, telmisartan, paraxanthine, tramadol, triclosan, and venlafaxine. The above-ground biomass exhibited lower PPCP content than roots, suggesting a potential plant defense mechanism for limiting contaminant translocation. Only tramadol and carbamazepine showed significantly increased content in above-ground biomass. Full article
Show Figures

Graphical abstract

21 pages, 4161 KiB  
Article
Systemic Uptake of Rhodamine Tracers Quantified by Fluorescence Imaging: Applications for Enhanced Crop–Weed Detection
by Yu Jiang, Masoume Amirkhani, Ethan Lewis, Lynn Sosnoskie and Alan Taylor
AgriEngineering 2025, 7(3), 49; https://doi.org/10.3390/agriengineering7030049 - 20 Feb 2025
Cited by 1 | Viewed by 889
Abstract
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment [...] Read more.
Systemic fluorescence tracers introduced into crop plants provide an active signal for crop–weed differentiation that can be exploited for precision weed management. Rhodamine B (RB), a widely used tracer for seeds and seedlings, possesses desirable properties; however, its application as a seed treatment has been limited due to potential phytotoxic effects on seedling growth. Therefore, investigating mitigation strategies or alternative systemic tracers is necessary to fully leverage active signaling for crop–weed differentiation. This study aimed to identify and address the phytotoxicity concerns associated with Rhodamine B and evaluate Rhodamine WT and Sulforhodamine B as potential alternatives. A custom 2D fluorescence imaging system, along with analytical methods, was developed to optimize fluorescence imaging quality and facilitate quantitative characterization of fluorescence intensity and patterns in plant seedlings, individual leaves, and leaf disc samples. Rhodamine compounds were applied as seed treatments or in-furrow (soil application). Rhodamine B phytotoxicity was mitigated by growing in a sand and perlite media due to the adsorption of RB to perlite. Additionally, in-furrow and seed treatment methods were tested for Rhodamine WT and Sulforhodamine B to evaluate their efficacy as non-phytotoxic alternatives. Experimental results demonstrated that Rhodamine B applied via seed pelleting and Rhodamine WT used as a direct seed treatment were the most effective approaches. A case study was conducted to assess fluorescence signal intensity for crop–weed differentiation at a crop–weed seed distance of 2.5 cm (1 inch). Results indicated that fluorescence from both Rhodamine B via seed pelleting and Rhodamine WT as seed treatment was clearly detected in plant tissues and was ~10× higher than that from neighboring weed plant tissues. These findings suggest that RB ap-plied via seed pelleting effectively differentiates plant seedlings from weeds with reduced phytotoxicity, while Rhodamine WT as seed treatment offers a viable, non-phytotoxic alternative. In conclusion, the combination of the developed fluorescence imaging system and RB seed pelleting presents a promising technology for crop–weed differentiation and precision weed management. Additionally, Rhodamine WT, when used as a seed treatment, provides satisfactory efficacy as a non-phytotoxic alternative, further expanding the options for fluorescence-based crop–weed differentiation in weed management. Full article
Show Figures

Graphical abstract

15 pages, 3078 KiB  
Article
Liver Transcriptomic Profiles of Ruminant Species Fed Spent Hemp Biomass Containing Cannabinoids
by Agung Irawan and Massimo Bionaz
Genes 2024, 15(7), 963; https://doi.org/10.3390/genes15070963 - 22 Jul 2024
Viewed by 1691
Abstract
The inclusion of spent hemp biomass (SHB), an extracted byproduct from industrial cannabidiol (CBD) production, in the diets of dairy cows and lambs appears to be safe with minor effects on the metabolism, including a decrease in circulating cholesterol and increase bilirubinemia, both [...] Read more.
The inclusion of spent hemp biomass (SHB), an extracted byproduct from industrial cannabidiol (CBD) production, in the diets of dairy cows and lambs appears to be safe with minor effects on the metabolism, including a decrease in circulating cholesterol and increase bilirubinemia, both associated with liver metabolism. Those effects could be consequence of the presence of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and CBD in the SHB. This study aimed to study the transcriptional profile of the liver of dairy cows and lambs fed SHB. Dairy cows received SHB or alfalfa pellet for four weeks of intervention (IP) and four weeks of withdrawal periods (WP). Finishing lambs were fed a control diet (CON), 10% (LH2), or 20% (HH2) SHB for 2 months or 1 month followed by 1-month SHB withdrawal (LH1 and HH1, respectively). RNA sequencing was performed, and the mRNA was annotated using the latest reference genomes. The RNAseq data were filtered, normalized for library size and composition, and statistically analyzed by DESeq2. The bioinformatic analysis was performed by using DAVID, Gene Set Enrichment Analysis (GSEA), and the Dynamic Impact Approach. Using a 0.2 FDR cut-off, we identified only ≤24 differentially expressed genes (DEG) in the liver by feeding SHB in dairy cows and a larger number of DEGs in lambs (from 71 in HH1 vs. CON to 552 in LH1 vs. CON). The KEGG analysis demonstrated that feeding SHB in dairy cows and lambs had relatively minor to moderate metabolic alterations in dairy cows and lambs mainly associated with amino acids and lipid metabolism whereas cholesterol synthesis was overall activated in lambs. GSEA identified activation of the PPAR signaling pathway only in dairy cows. We found an opposite effect on activation of metabolism of drug and xenobiotics by cytochrome P450 enzymes in dairy cows and lambs receiving less SHB but an inhibition in HH2 lambs. Immune system-related pathways were inhibited by feeding SHB in lambs, but the impact was minor. Cumulatively, inclusion of SHB containing cannabinoids in dairy and lambs demonstrate very little effects on the alteration of transcriptomic profile of the liver. Full article
(This article belongs to the Special Issue Livestock Genomics, Genetics and Breeding)
Show Figures

Graphical abstract

19 pages, 10150 KiB  
Article
Enhancing the Properties of Cement Composites Using Granulated Hemp Shive Aggregates
by Katarzyna Kalinowska-Wichrowska, Magdalena Joka Yildiz, Edyta Pawluczuk, Izabela Zgłobicka, Małgorzata Franus, Wojciech Nietupski and Magdalena Pantoł
Sustainability 2024, 16(14), 6142; https://doi.org/10.3390/su16146142 - 18 Jul 2024
Cited by 2 | Viewed by 1574
Abstract
In recent years, civil engineers have been exploring innovative methods of constructing buildings using environmentally friendly materials. The beneficial properties of hemp harl, an agricultural waste that is gaining popularity in construction, prompted the idea of strengthening its properties through the granulation process [...] Read more.
In recent years, civil engineers have been exploring innovative methods of constructing buildings using environmentally friendly materials. The beneficial properties of hemp harl, an agricultural waste that is gaining popularity in construction, prompted the idea of strengthening its properties through the granulation process and using it as an aggregate in cement composites. This work aimed to investigate whether the use of hemp husk in the form of granules would have a positive effect on the properties of cement composites compared to their traditional form (stems). Potato starch was introduced as an additional factor in the granulation process to improve the material. Experimental tests were carried out on organic fillers, fresh mixtures, and hardened composites. Physical, mechanical, and structural tests (SEM imaging) were carried out. The highest strength was demonstrated by samples containing hemp shive aggregate (1.186 MPa), while the use of hemp shives in the form of granules had a positive effect on the consistency and density, and it also reduced water absorption by 30% during the production of the composite. The apparent density of composites with hemp shives in the form of hemp pellets was higher (1042 ÷ 1506 kg/m3) than in the case of composites with shives in the form of harl (727 ÷ 1160 kg/m3). Nevertheless, hemp shive in both forms can be used as a natural aggregate in cement composites. Full article
Show Figures

Figure 1

19 pages, 5778 KiB  
Article
Evaluation of Multi-Crop Biofuel Pellet Properties and the Life Cycle Assessment
by Rita Petlickaitė, Algirdas Jasinskas, Kęstutis Venslauskas, Kęstutis Navickas, Marius Praspaliauskas and Egidijus Lemanas
Agriculture 2024, 14(7), 1162; https://doi.org/10.3390/agriculture14071162 - 16 Jul 2024
Cited by 7 | Viewed by 1468
Abstract
Although wood biomass is mostly used to produce solid biofuel pellets, it is important to evaluate the possibilities of using other types of biomass as well. It is not only important to obtain biofuel pellets of suitable quality but also to ensure a [...] Read more.
Although wood biomass is mostly used to produce solid biofuel pellets, it is important to evaluate the possibilities of using other types of biomass as well. It is not only important to obtain biofuel pellets of suitable quality but also to ensure a sustainable process of producing and using these pellets for energy production. This paper presents an evaluation of the quality characteristics of seven different biofuel pellets made from multi-crop plants (fibrous hemp, maize, and faba bean) and a life cycle assessment (LCA) of the heat production by burning these pellets. The physical-mechanical properties and elemental composition of the pellets are determined according to international standards, as indicated in the methodology section. The LCA was performed using the SimaPro 9.5 software. The complete life cycle from cradle-to-grave is assessed, i.e., from growing plants to spreading ash obtained from pellet burning. An analysis showed that in most cases the produced pellets met the requirements of the standard ISO 17225-6:2021. The lowest negative environmental impact associated with the production of 1 GJ of thermal energy was for pellets made from fibrous hemp and maize biomass (MIX2-1) and pellets made from fibrous hemp and faba bean biomass (MIX2-3). Production of pellets from maize biomass (S-Mz) was found to have the highest carbon footprint (29.1 CO2eq GJ−1) and was associated with the lowest crop yield compared to the other six scenarios. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

17 pages, 6668 KiB  
Article
The Comparison of Physical and Chemical Properties of Pellets and Briquettes from Hemp (Cannabis sativa L.)
by Kamil Roman and Emilia Grzegorzewska
Energies 2024, 17(9), 2210; https://doi.org/10.3390/en17092210 - 4 May 2024
Cited by 4 | Viewed by 1538
Abstract
The adaptation of lignocellulosic materials such as Cannabis sativa L. as a new renewable energy source is linked to the fact that the technology must be developed to be able to adapt to local market conditions. Bioenergy consumers are faced with this problem [...] Read more.
The adaptation of lignocellulosic materials such as Cannabis sativa L. as a new renewable energy source is linked to the fact that the technology must be developed to be able to adapt to local market conditions. Bioenergy consumers are faced with this problem because, when it comes to the selection of briquettes and pellets for energy production, there are only individual standards in place. This research is intended to provide a better understanding of hemp product potential as a new material that can be used in the production of pellets and briquettes for biofuel purpose. Nevertheless, the anisotropic raw material interferes with the compaction process and may expose a poor durability of the pellets and briquettes. The research that was conducted evaluated the conditions of the biofuels by measuring the physical and chemical parameters. The ash content, compressive strength, and durability of the samples were examined. The statistical data analysis was performed after the strength tests on the prepared samples. Full article
(This article belongs to the Special Issue Advanced Biofuels: Production, Characterization and Upgrade)
Show Figures

Figure 1

11 pages, 1252 KiB  
Article
Decomposition of Hemp Residues in Soil as Facilitated by Different Nitrogen Sources
by Urte Stulpinaite, Vita Tilvikiene and Modupe Olufemi Doyeni
Agriculture 2024, 14(3), 508; https://doi.org/10.3390/agriculture14030508 - 21 Mar 2024
Cited by 2 | Viewed by 3148
Abstract
Improving soil health across agroecosystems has continued to receive attention around the globe, with an emphasis on sustainable organic inputs from agricultural practice. It is well known that different organic materials, such as composts, manure and cereal straws, positively affect soil carbon. The [...] Read more.
Improving soil health across agroecosystems has continued to receive attention around the globe, with an emphasis on sustainable organic inputs from agricultural practice. It is well known that different organic materials, such as composts, manure and cereal straws, positively affect soil carbon. The changing agricultural practices have continuously led to new and improved plants in farming. One of these innovative plants is industrial hemp. With the increasing cultivation of industrial hemp globally, the problem of the disposal of hemp residues has been encountered. However, the rich carbon content found in hemp residues in soil is anticipated to enhance the soil quality and address the challenge of effectively utilizing hemp straw. In this study, we conducted a two-way experimental trial to evaluate the decomposition of hemp residues using placement methods (residues incorporated into the soil or left on the soil surface) and nitrogen sources as additives. Different nitrogen additives (nitrogen fertilizer pellets, liquid nitrogen, organic fertilizers, and the preparation “Bioversio”) were selected to accelerate the decomposition of hemp residues. The results showed that the mineralization rates were faster in the residues incorporated in the soil, with a mass loss of over 54% compared to the treatments left on the soil. The influence of additives on the decomposition rates was statistically significant. Additionally, there was a significant increase in the N content in the soil, while the change in carbon content in the soil was not statistically significant. These research results reinforce nitrogen fertilizers’ positive role in accelerating hemp residue decomposition in soil. Furthermore, our findings will help contribute to the effective and sustainable utilization of hemp residues as a bioresource material to improve soil health. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 1823 KiB  
Article
Evaluation of the Hemp Shive (Cannabis sativa L.) Energy Requirements Associated with the Biocomposite Compaction Process
by Jakub Nowakowski-Pałka and Kamil Roman
Energies 2023, 16(18), 6591; https://doi.org/10.3390/en16186591 - 13 Sep 2023
Cited by 6 | Viewed by 1400
Abstract
The main purpose of the present study was to develop an environmentally friendly and economical biocomposite that can be used to make hemp shive (Cannabis sativa L.) chipboard. The study involved the creation of a sample made of hemp shives and PLA [...] Read more.
The main purpose of the present study was to develop an environmentally friendly and economical biocomposite that can be used to make hemp shive (Cannabis sativa L.) chipboard. The study involved the creation of a sample made of hemp shives and PLA (Polylactide) thermoplastic with varying amounts of concentrations of this plastic (25 and 50%) following a series of testing studies. The variabilities were differentiated fractions at four different levels (f1, f2, f3, and f4) ranging from 0–2 mm, 2–4 mm, 4–6 mm, and 6–8 mm. In this light, the purpose of this research was to optimize the parameters that will affect the compaction process and strength of the biocomposites the researchers tested, which were made from shredded hemp residues and PLA (polylactide). According to this hypothesis, the quality of the biocomposite produced depends on the variation of fractions that constitute the composite. This study aims to provide insight into the energy requirements associated with the production of a biocomposite from hemp scraps and PLA thermoplastic, in order to determine its feasibility. The study compared the densities of different hemp fraction mixtures. The conversion factor (χ) was used while calculating the specific density of the fractions, f1, f2, f3, and f4, which came to 1377.33 kg·m−3, 1122.27 kg·m−3, 1071.26 kg·m−3, and 1275.31 kg·m−3, respectively. The specific density of blends containing 50% PLA material was calculated to be 1326.32 kg·m−3. For blends containing 50% PLA, by taking into account the conversion factor, the density fractions were 1324.29 kg·m−3, 1428.34 kg·m−3, and 1479.36 kg·m−3. Using different types of mixtures and fractions to analyze the total compaction work values: Based on the addition of 50% PLA to fractions f3 (4 ÷ 6) and f4 (6 ÷ 8), bulk density ranged between 221.09 kg·m−3 and 305.31 kg·m−3. Based on the compaction process results, the density values for the various fractions ranged from 1101.28 kg·m−3 to 1292.40 kg·m−3. Depending on what density is desired, the amount of compaction work required, on average, ranges from 1.1 × 10−5 J to 4.5 × 10−5 J. Full article
(This article belongs to the Special Issue Biomass, Biofuels and Waste)
Show Figures

Figure 1

12 pages, 1567 KiB  
Article
Co-pelletization of Hemp Residues and Agricultural Biomass: Effect on Pellet Quality and Stability
by Urte Stulpinaite, Vita Tilvikiene and Egidijus Zvicevicius
Energies 2023, 16(16), 5900; https://doi.org/10.3390/en16165900 - 9 Aug 2023
Cited by 6 | Viewed by 2082
Abstract
The rising interest in lowering the use of fossil fuels, which influence environmental pollution and global warming, is driving a substantial increase in renewable sources. Agricultural residues are the likely potential source for bioenergy generation. Some of them are already utilized for energy. [...] Read more.
The rising interest in lowering the use of fossil fuels, which influence environmental pollution and global warming, is driving a substantial increase in renewable sources. Agricultural residues are the likely potential source for bioenergy generation. Some of them are already utilized for energy. Nonetheless, their potential is underutilized due to low biomass quality and high concentrations of sulfur and chloride, which induce the corrosion of adjoining equipment. However, their ash content and ash melting point make their utilization as renewable resources essential. Therefore, there is a need to find technologies to enhance biomass utilization for bioenergy processes. With the increase in hemp cultivation to extract phytocannabinoids, the amount of unused biomass has increased. The aim of this research was to investigate the use of hemp biomass for pellets and improve pellet quality by mixing them with lignin and oak sawdust. The results showed that the lowest amount of ash was found in pellets with 80% oak sawdust and 20% hemp residue compared with pellets made from mixtures of hemp residues, lignin, and oak sawdust. The highest calorific value was achieved by mixing hemp residues (20%) with lignin (80%). Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

18 pages, 3823 KiB  
Article
Feasibility of Ecofriendly Mortars with Different Hemp Additions for Use in Building Sector
by Daniel Ferrández, Manuel Álvarez Dorado, Alicia Zaragoza-Benzal and Alberto Leal Matilla
Heritage 2023, 6(7), 4901-4918; https://doi.org/10.3390/heritage6070261 - 22 Jun 2023
Cited by 4 | Viewed by 2171
Abstract
Cement mortars are commonly used in building works for the execution of enclosures and exterior rehabilitation of facades. The incorporation of plant-based additives enables the development of ecofriendly construction materials. In this work, a physical and mechanical characterisation of cement mortars with the [...] Read more.
Cement mortars are commonly used in building works for the execution of enclosures and exterior rehabilitation of facades. The incorporation of plant-based additives enables the development of ecofriendly construction materials. In this work, a physical and mechanical characterisation of cement mortars with the incorporation of hemp in three morphologies (fibre, powder and pellet) was conducted. The results show how the additions of hemp powder and pellets with a partial replacement of natural aggregate reduce the final density of cement mortars and their thermal conductivity by more than 16% and 19%, respectively. On the other hand, the addition of hemp fibres reduces shrinkage during the setting of cement mortars, improving their flexural strength and increasing their durability. For this reason, it is possible to recommend the use of these mortars with the addition of natural hemp fibres without prior surface treatment to improve the physical-mechanical properties of these construction materials and extend their application field as ecofriendly materials for masonry work. Full article
Show Figures

Figure 1

10 pages, 603 KiB  
Article
Tenebrio molitor (Linnaeus, 1758): Microbiological Screening of Feed for a Safe Food Choice
by Barbara Pöllinger-Zierler, Andrea Lienhard, Chiara Mayer, Simon Berner, René Rehorska, Angela Schöpfer and Monika Grasser
Foods 2023, 12(11), 2139; https://doi.org/10.3390/foods12112139 - 25 May 2023
Cited by 9 | Viewed by 3258
Abstract
As a result of the increasing focus on alternative protein sources which are ideally still sustainable, the yellow mealworm, Tenebrio molitor, has come into focus. To verify its suitability as a food source in relation to human health, an analysis of the [...] Read more.
As a result of the increasing focus on alternative protein sources which are ideally still sustainable, the yellow mealworm, Tenebrio molitor, has come into focus. To verify its suitability as a food source in relation to human health, an analysis of the microbiome of larvae of T. molitor is pertinent. Subsequently, the focus of this study was, on the one hand, to analyze the influence of the substrate on the microbial load of the larvae microbiome, and, on the other hand, to determine which processing methods ensure the risk-free consumption of mealworms. For this purpose, mealworms were grown on 10 different substrates derived from by-products of food production (malt residual pellets, corn germ meal, chestnut breakage and meal, wheat bran, bread remains, draff, nettle, hemp seed oil cake, oyster mushrooms with coffee grounds, pumpkin seed oil cake) and microbial loads were analyzed using different selective media. Further starvation/defecation and heating (850 W for 10 min) methods were used to investigate how the reduction of microorganisms is enabled by these methods. The results showed that there was no significant relationship between the microbial load of the substrate and the mealworm. Starvation and defecation led to a lower stock of microorganisms. Heating led to a significant microbial reduction in non-defecated mealworms. The group of defecated and heated mealworms showed no detectable microbial load. In conclusion, firstly, the choice of substrate showed no effect on the microbial load of larvae of Tenebrio molitor and secondly, heating and starvation allow risk-free consumption. This study makes an important contribution for evaluating the safety of mealworms as a sustainable protein source in human nutrition. Full article
Show Figures

Figure 1

17 pages, 2876 KiB  
Article
Evaluation of the Processing of Multi-Crop Plants into Pelletized Biofuel and Its Use for Energy Conversion
by Rita Petlickaitė, Algirdas Jasinskas, Rolandas Domeika, Nerijus Pedišius, Egidijus Lemanas, Marius Praspaliauskas and Savelii Kukharets
Processes 2023, 11(2), 421; https://doi.org/10.3390/pr11020421 - 31 Jan 2023
Cited by 8 | Viewed by 2476
Abstract
Multi-crop plants (fibrous hemp, maize, and faba bean) can potentially be an alternative to wood biomass pellets, but there is no detailed knowledge to support the suitability of this biomass for solid biofuel production. The aim of this study is to analyze and [...] Read more.
Multi-crop plants (fibrous hemp, maize, and faba bean) can potentially be an alternative to wood biomass pellets, but there is no detailed knowledge to support the suitability of this biomass for solid biofuel production. The aim of this study is to analyze and justify the suitability of multi-crop plant biomass for the production of biofuel pellets and to assess the environmental impact of burning them. This paper presents studies of physical-mechanical, thermal, and chemical characteristics of biofuel pellets from multi-crop plants and emissions during their combustion under laboratory conditions. The main parameters of the produced pellets were determined according to international standards, which are detailed in the methodology part. The length of the produced pellets ranged from 17.6 to 26.6 mm, and the diameter was about 6 mm. The density of wet pellets varied from 1077.67 to 1249.78 kg m−3. The amount of ash in the pellets varied from 5.75% to 8.02%. Determined lower calorific value of all pellets was close to 17.1 MJ kg−1. The lowest CO and CxHy emissions were determined when burning MIX2-1 pellets (biomass of the binary crop); their values were 572 and 29 ppm, respectively. The lowest content of CO2 was determined when burning S-Mz pellets (mono crop biomass), and it was 3.5%. The lowest NOx emissions were also determined when burning the pellets of this sample, with a value of 124 ppm. Research results show that multi-crop plants are a suitable raw material for the production of solid biofuel, the burning of which does not cause negative consequences for the environment. Full article
Show Figures

Figure 1

17 pages, 4707 KiB  
Article
Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets
by Anita Konieczna, Kamila Mazur, Adam Koniuszy, Andrzej Gawlik and Igor Sikorski
Energies 2022, 15(24), 9458; https://doi.org/10.3390/en15249458 - 13 Dec 2022
Cited by 6 | Viewed by 2377
Abstract
This paper presents the results of research on the energetic use of self-combusted hemp pellets and co-firing with pine pellets. The tests were carried out with the use of a boiler equipped with a Lester Projekt Company gasifying burner and an automatic fuel [...] Read more.
This paper presents the results of research on the energetic use of self-combusted hemp pellets and co-firing with pine pellets. The tests were carried out with the use of a boiler equipped with a Lester Projekt Company gasifying burner and an automatic fuel feeding system. The boiler is equipped with an additional heat exchanger that enables the simulation of any heat load. The experimental stand so built guaranteed to obtain results adequate to the real operating conditions. The research material consisted of pellets made of waste biomass of the Futura 75 sowing hemp and pine sawdust pellets. The experiment was carried out in five proportions by mass of mixtures of both fuels (C-hemp, P-pine): 0:100 (P100), 25:75 (C25/P75), 50:50 (C50/P50), 75:25 (C75/P25), 100:0 (C100). For each variant, the following were determined: effective boiler power, boiler energy balance, boiler energy efficiency, the volumetric composition of flue gas (carbon monoxide, carbon dioxide, hydrogen, sulfur dioxide, nitrous oxide), excess air coefficient and the dust content of particle matter—PM10, PM2.5. The heating value was also determined for hemp pellets and pine sawdust pellets, accordingly 17.34 and 19.87 MJ·kg−1. The obtained test results were related both to the volume of exhaust gases leaving the boiler and to one kilowatt hour of heat produced. The obtained test results showed that the boiler fed with pine pellets achieved the highest thermal power (P100)—14.17 kW, while the smallest—hemp pellets (C100)—4.92 kW. The CO2 emissivity increased with the addition of pine pellets, from 26.13 g (C100) to 112.36 g (P100) relating to 1 m3 and from 430.04 g (C100) to 616.46 g (C25/P75) relating to 1 kWh of heat. In terms of dust emissions, it was found that the combustion of hemp pellets and mixtures thereof is a little worse than that of pine pellets. Full article
(This article belongs to the Special Issue Biomass Energy Fuels)
Show Figures

Figure 1

Back to TopTop