Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267)

Search Parameters:
Keywords = heated flat plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2649 KB  
Article
Stepwise Single-Axis Tracking of Flat-Plate Solar Collectors: Optimal Rotation Step Size in a Continental Climate
by Robert Kowalik and Aleksandar Nešović
Energies 2025, 18(21), 5776; https://doi.org/10.3390/en18215776 - 1 Nov 2025
Viewed by 305
Abstract
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was [...] Read more.
This study investigates the effect of rotation step size on the performance of flat-plate solar collectors (FPSC) equipped with single-axis tracking. Numerical simulations were carried out in EnergyPlus, coupled with a custom Python interface enabling dynamic control of collector orientation. The analysis was carried out for the city of Kragujevac in Serbia, located in a temperate continental climate zone, based on five representative summer days (3 July–29 September) to account for seasonal variability. Three collector types with different efficiency parameters were considered, and inlet water temperatures of 20 °C, 30 °C, and 40 °C were applied to represent typical operating conditions. The results show that single-axis tracking increased the incident irradiance by up to 28% and the useful seasonal heat gain by up to 25% compared to the fixed configuration. Continuous tracking (ψ = 1°) achieved the highest energy yield but required 181 daily movements, which makes it mechanically demanding. Stepwise tracking with ψ = 10–15° retained more than 90–95% of the energy benefit of continuous tracking while reducing the number of daily movements to 13–19. For larger steps (ψ = 45–90°), the advantage of tracking decreased sharply, with thermal output only 5–10% higher than the fixed case. Increasing the inlet temperature from 20 °C to 40 °C reduced seasonal heat gain by approximately 30% across all scenarios. Overall, the findings indicate that relative single-axis tracking with ψ between 10° and 15° provides the most practical balance between energy efficiency, reliability, and economic viability, making it well-suited for residential-scale solar thermal systems. This is the first study to quantify how discrete rotation steps in single-axis tracking affect both thermal and economic performance of flat-plate collectors. The proposed EnergyPlus–Python model demonstrates that a 10–15° step offers 90–95% of the continuous-tracking energy gain while reducing actuator motion by ~85%. The results provide practical guidance for optimizing low-cost solar-thermal tracking in continental climates. Full article
Show Figures

Figure 1

13 pages, 999 KB  
Article
Statistical Analysis of Heat Transfer Effects on Flow Patterns Maps in a Flat-Plate Collector/Evaporator with R600a Under Variable Tilt Angles
by William Quitiaquez, Isaac Simbaña, Alex Herrera, Patricio Quitiaquez, César Nieto-Londoño, Erika Pilataxi, Anthony Xavier Andrade and Yoalbys Retirado-Mediaceja
Processes 2025, 13(11), 3419; https://doi.org/10.3390/pr13113419 - 24 Oct 2025
Viewed by 318
Abstract
This present investigative work proceeds with the statistical study of the heat transfer coefficient (CTC) in the different flow transitions that are formed in a horizontal pipe with variation in the angles of inclination in a collector/evaporator component of a heat pump of [...] Read more.
This present investigative work proceeds with the statistical study of the heat transfer coefficient (CTC) in the different flow transitions that are formed in a horizontal pipe with variation in the angles of inclination in a collector/evaporator component of a heat pump of solar assisted direct expansion (DX-SAHP) by using R600a refrigerant as working fluid in Quito - Ecuador. The dimensions of the collector/evaporator are 3.8 and 1000 mm inside diameter and length, respectively. To determine the results obtained, five practical tests are carried out with inclination angles of 10, 20, 30, 40 and 45°, with speeds or mass flows that vary between 203.24 and 222.28 kg·m−2·s−1, the heat fluxes reached values between 200.58 and 507.23 W·m−2. The correlations proposed by Kattan, Kundu, and Mohseni, and the experimental data were considered for the analysis of the effects of heat transfer on flow patterns. The results obtained from the investigation show that the maximum CTC is 6163.83 W·m−2·K−1 with an inclination angle of 45°. Statistical analysis was performed considering the direction of Pearson presented results that for the angle of inclination of 10° a greater inverse direction of −0.316 is obtained. Full article
(This article belongs to the Special Issue Numerical Simulation of Flow and Heat Transfer Processes)
Show Figures

Figure 1

32 pages, 4620 KB  
Article
Unveiling the Potential of Solar-Powered Multistage Hollow Fiber WGMD: A Transient Performance Evaluation
by Mohamed O. Elbessomy, Kareem W. Farghaly, Osama A. Elsamni, Samy M. Elsherbiny, Ahmed Rezk and Mahmoud B. Elsheniti
Membranes 2025, 15(10), 318; https://doi.org/10.3390/membranes15100318 - 16 Oct 2025
Viewed by 566
Abstract
Solar-energy-driven membrane distillation provides a sustainable pathway to mitigate freshwater scarcity by utilizing an abundant renewable heat source. This study develops a two-dimensional axisymmetric computational fluid dynamics (CFD) model to simulate the transient performance of a hollow fiber water gap membrane distillation (HF-WGMD) [...] Read more.
Solar-energy-driven membrane distillation provides a sustainable pathway to mitigate freshwater scarcity by utilizing an abundant renewable heat source. This study develops a two-dimensional axisymmetric computational fluid dynamics (CFD) model to simulate the transient performance of a hollow fiber water gap membrane distillation (HF-WGMD) module integrated with flat-plate solar collectors (FPCs). A lumped-parameter transient FPC model is coupled with the CFD framework to predict feed water temperature under time-varying solar irradiation, evaluated across four representative days in a Mediterranean city. The model is validated against experimental data, showing strong agreement. A comprehensive parametric analysis reveals that increasing the collector area from 10 to 50 m2 enhances the average water flux by a factor of 6.4, reaching 10.9 kg/(m2h), while other parameters such as collector width, tube number and working fluid flow rate exert comparatively minor effects. The module flux strongly correlates with solar intensity, achieving a maximum instantaneous value of 18.4 kg/(m2h) with 35 m2 collectors. Multistage HF-WGMD configurations are further investigated, demonstrating substantial reductions in solar energy demand due to internal thermal recovery by the cooling stream. A 40-stage system operating with only 10 m2 of solar collectors achieves an average specific thermal energy consumption of 424 kWh/m3, while the overall solar desalination efficiency improves dramatically from 2.6% for a single-stage system with 50 m2 collectors to 57.5% for the multistage configuration. The proposed system achieves a maximum freshwater productivity of 51.5 kg/day, highlighting the viability and optimization potential of solar-driven HF-WGMD desalination. Full article
Show Figures

Figure 1

38 pages, 6482 KB  
Review
Solar Heat for Industrial Processes (SHIP): An Overview of Its Categories and a Review of Its Recent Progress
by Osama A. Marzouk
Solar 2025, 5(4), 46; https://doi.org/10.3390/solar5040046 - 11 Oct 2025
Cited by 1 | Viewed by 763
Abstract
The term SHIP (solar heat for industrial processes) or SHIPs (solar heat for industrial plants) refers to the use of collected solar radiation for meeting industrial heat demands, rather than for electricity generation. The global thermal capacity of SHIP systems at the end [...] Read more.
The term SHIP (solar heat for industrial processes) or SHIPs (solar heat for industrial plants) refers to the use of collected solar radiation for meeting industrial heat demands, rather than for electricity generation. The global thermal capacity of SHIP systems at the end of 2024 stood slightly above 1 GWth, which is comparable to the electric power capacity of a single power station. Despite this relatively small presence, SHIP systems play an important role in rendering industrial processes sustainable. There are two aims in the current study. The first aim is to cover various types of SHIP systems based on the variety of their collector designs, operational temperatures, applications, radiation concentration options, and solar tracking options. SHIP designs can be as simple as unglazed solar collectors (USCs), having a stationary structure without any radiation concentration. On the other hand, SHIP designs can be as complicated as solar power towers (SPTs), having a two-axis solar tracking mechanism with point-focused concentration of the solar radiation. The second aim is to shed some light on the status of SHIP deployment globally, particularly in 2024. This includes a drop during the COVID-19 pandemic. The findings of the current study show that more than 1300 SHIP systems were commissioned worldwide by the end of 2024 (cumulative number), constituting a cumulative thermal capacity of 1071.4 MWth, with a total collector area of 1,531,600 m2. In 2024 alone, 120.3 MWth of thermal capacity was introduced in 106 SHIP systems having a total collector area of 171,874 m2. In 2024, 65.9% of the installed global thermal capacity of SHIP systems belonged to the parabolic trough collectors (PTCs), and another 22% of this installed global thermal capacity was attributed to the unevacuated flat plate collectors (FPC-Us). Considering the 106 SHIP systems installed in 2024, the average collector area per system was 1621.4 m2/project. However, this area largely depends on the SHIP category, where it is much higher for parabolic trough collectors (37,740.5 m2/project) but lower for flat plate collectors (805.2 m2/project), and it is lowest for unglazed solar collectors (163.0 m2/project). The study anticipates large deployment in SHIP systems (particularly the PTC type) in 2026 in alignment with gigascale solar-steam utilization in alumina production. Several recommendations are provided with regard to the SHIP sector. Full article
Show Figures

Figure 1

24 pages, 2893 KB  
Article
Techno-Economic Analysis and Assessment of an Innovative Solar Hybrid Photovoltaic Thermal Collector for Transient Net Zero Emissions
by Abdelhakim Hassabou, Sadiq H. Melhim and Rima J. Isaifan
Sustainability 2025, 17(18), 8304; https://doi.org/10.3390/su17188304 - 16 Sep 2025
Cited by 1 | Viewed by 1188
Abstract
Achieving net-zero emissions in arid and high-solar-yield regions demands innovative, cost-effective, and scalable energy technologies. This study conducts a comprehensive techno-economic analysis and assessment of a novel hybrid photovoltaic–thermal solar collector (U.S. Patent No. 11,431,289) that integrates a reverse flat plate collector and [...] Read more.
Achieving net-zero emissions in arid and high-solar-yield regions demands innovative, cost-effective, and scalable energy technologies. This study conducts a comprehensive techno-economic analysis and assessment of a novel hybrid photovoltaic–thermal solar collector (U.S. Patent No. 11,431,289) that integrates a reverse flat plate collector and mini-concentrating solar thermal elements. The system was tested in Qatar and Germany and simulated via a System Advising Model tool with typical meteorological year data. The system demonstrated a combined efficiency exceeding 90%, delivering both electricity and thermal energy at temperatures up to 170 °C and pressures up to 10 bars. Compared to conventional photovoltaic–thermal systems capped below 80 °C, the system achieves a heat-to-power ratio of 6:1, offering an exceptional exergy performance and broader industrial applications. A comparative financial analysis of 120 MW utility-scale configurations shows that the PVT + ORC option yields a Levelized Cost of Energy of $44/MWh, significantly outperforming PV + CSP ($82.8/MWh) and PV + BESS ($132.3/MWh). In addition, the capital expenditure is reduced by over 50%, and the system requires 40–60% less land, offering a transformative solution for off-grid data centers, water desalination (producing up to 300,000 m3/day using MED), district cooling, and industrial process heat. The energy payback time is shortened to less than 4.5 years, with lifecycle CO2 savings of up to 1.8 tons/MWh. Additionally, the integration with Organic Rankine Cycle (ORC) systems ensures 24/7 dispatchable power without reliance on batteries or molten salt. Positioned as a next-generation solar platform, the Hassabou system presents a climate-resilient, modular, and economical alternative to current hybrid solar technologies. This work advances the deployment readiness of integrated solar-thermal technologies aligned with national decarbonization strategies across MENA and Sub-Saharan Africa, addressing urgent needs for energy security, water access, and industrial decarbonization. Full article
Show Figures

Figure 1

13 pages, 3828 KB  
Article
Arc Jet Testing and Modeling Study for Ablation of SiFRP Composites in Shear Environment
by Meicong Wang, Jixiang Shan, Xin Yang, Qianghong Chen, Yonggang Lu and Yupeng Hu
Materials 2025, 18(17), 4142; https://doi.org/10.3390/ma18174142 - 4 Sep 2025
Viewed by 808
Abstract
The ablation process of a silica fiber-reinforced polymer (SiFRP) composite under aerodynamic heating and a shear environment was investigated by experiments and numerical study. The flat plate samples were tested in an arc jet wind tunnel under heat flux and pressure ranging from [...] Read more.
The ablation process of a silica fiber-reinforced polymer (SiFRP) composite under aerodynamic heating and a shear environment was investigated by experiments and numerical study. The flat plate samples were tested in an arc jet wind tunnel under heat flux and pressure ranging from 107 W/cm2 at 2.3 kPa to 1100 W/cm2 at 84 kPa. The heating surface experiences shear as high as 1900 Pa. The in-depth thermal response and ablating surface temperature of the specimens are measured during ablation. According to the ablation experimental results, a multi-layer ablation model was established that accounts for the effects of carbon deposition, investigating the thermophysical properties of the ablation deposition layer. The accuracy of the proposed ablation model was evaluated by comparing the calculated and experimental surface ablation recession and internal temperature of a silica–phenolic composite under steady-state ablation. Carbon–silica reaction heat is the important endothermic mechanism for silica-reinforced composites. The research provides valuable reference for understanding the ablative thermal protection mechanism of silicon–phenolic composites in a high shear environment. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

7 pages, 1280 KB  
Proceeding Paper
Performance Analysis of a Novel Solar-Assisted Desiccant Wheel-Based Heating and Humidification System
by Muhammad Usman, Muhammad Usman, Owais Ahmad, Awais Mansoor, Farhan Ali, Abdul Moiz and Muzaffar Ali
Mater. Proc. 2025, 23(1), 20; https://doi.org/10.3390/materproc2025023020 - 15 Aug 2025
Viewed by 338
Abstract
The building sector accounts for nearly 40% of global primary energy consumption, with heating, ventilation, and air conditioning (HVAC) systems contributing significantly to energy use and greenhouse gas emissions. Conventional HVAC systems face challenges in addressing humidity control and efficiency, particularly in cold [...] Read more.
The building sector accounts for nearly 40% of global primary energy consumption, with heating, ventilation, and air conditioning (HVAC) systems contributing significantly to energy use and greenhouse gas emissions. Conventional HVAC systems face challenges in addressing humidity control and efficiency, particularly in cold and dry climates. This research demonstrates the development and transient simulation of a novel solar-assisted desiccant wheel-based system for heating and humidification (SDHH) in Taxila, Pakistan. The proposed system includes a desiccant wheel, heat wheel, water-to-air heat exchanger, and a direct evaporative cooler. An array of flat plate collectors supply hot water to the heat exchanger. TRNSYS simulations investigated the performance of SDHH by evaluating heating capacity, humidification, and indoor temperature and humidity values in winter. Results show that the SDHH system maintained the required temperature in the zone and improved the zone humidity level. The desiccant wheel increased the absolute humidity of product air by 0.003 kg/kg. The average indoor temperature was 21 °C, and the average absolute humidity was around 0.008 kg/kg. These results justify using the proposed system in dry and cold climate conditions. Full article
Show Figures

Figure 1

17 pages, 483 KB  
Article
A New Model to Investigate Effect of Heat Conduction Between Tubes on Overall Performance of a Coil Absorber for Flat-Plate Solar Collectors
by Elena G. Martínez-Morales, Ricardo Romero-Méndez, Francisco G. Pérez-Gutiérrez and Pedro García-Zugasti
Energies 2025, 18(16), 4360; https://doi.org/10.3390/en18164360 - 15 Aug 2025
Viewed by 548
Abstract
Solar heaters are a sustainable solution to lower operating heating costs for diverse applications. Improving the design of these devices promotes the adoption of this technology to reduce the environmental impact of traditional gas water heaters. The present paper studies heat transfer along [...] Read more.
Solar heaters are a sustainable solution to lower operating heating costs for diverse applications. Improving the design of these devices promotes the adoption of this technology to reduce the environmental impact of traditional gas water heaters. The present paper studies heat transfer along the plate-fins of serpentine-type flat-plate solar collectors. The focus of this investigation is the analysis of tube-to-tube thermal conduction through the absorbent plate and its effect on the heat gain of the circulating fluid. The model used here does not consider the adiabatic boundary condition in the plate mid-distance between tubes but applies the prescribed temperatures of the tubes as a boundary condition for the plate-fins. This type of boundary condition allows for heat conduction between rows of tubes. The analysis demonstrates that tube-to-tube heat conduction along the absorber plate has a detrimental effect on the heat gain of the circulating fluid. This effect is responsible for a decrease of up to 10% of the circulating fluid heat gain. This investigation defines the set of parameters that affect the performance of plate solar heaters because of tube-to-tube thermal conduction along the plates, and it helps to choose operation and designs parameters, leading to better design of these devices. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

27 pages, 5016 KB  
Article
Comparison Study of Novel Flat Evaporator Loop Heat Pipes with Different Types of Condensation Pipeline
by Kangning Xiong, Yang Liu, Zhuoyu Li and Qingsong Pan
Energies 2025, 18(16), 4247; https://doi.org/10.3390/en18164247 - 9 Aug 2025
Viewed by 920
Abstract
Chip-level cooling has become a thermal bottleneck in next-generation data centers. Although previous studies have optimized evaporator wick structures, they are limited to a single condensation path and ignore the combined effects of the loop heat pipe (LHP) orientation on the capillary wick [...] Read more.
Chip-level cooling has become a thermal bottleneck in next-generation data centers. Although previous studies have optimized evaporator wick structures, they are limited to a single condensation path and ignore the combined effects of the loop heat pipe (LHP) orientation on the capillary wick (CW) replenishment and reflux subcooling. To bridge this gap, this study successfully designed an innovative flat-plate evaporator water-cooled LHP with a parallel condensation pipeline. Experiments were conducted with a 20 °C coolant and at a 4 L/min flow rate across nine orientations. The heat transfer characteristics of LHPs with parallel and series condensation pipelines were compared. The analysis focused on the relationship between the working fluid (WF) replenishment of the CW and the WF reflux temperature in the compensating chamber (CC). The experimental results demonstrated that the parallel condensation LHP could sustainably dissipate 750 W without thermal runaway. At this power, the minimum junction temperature of 82.34 °C was measured at orientation 2 (+60°). For low power and at the nine orientations, the series LHP generally had lower temperatures. However, when the power exceeded 600 W, the parallel LHP showed lower temperatures at orientations 1 (+90°), 2 (+60°), and 3 (+30°). At orientation 9, the parallel LHP had lower temperatures when the power surpassed 200 W. Theoretical analysis indicated that the orientation changes affected the heat transfer via the WF reflux temperature, reflux resistance, and CW replenishment rate. Furthermore, the LHP system we developed in this study is capable of fully satisfying the cooling requirements of data center server chips. Full article
Show Figures

Figure 1

27 pages, 10397 KB  
Article
Methods for Measuring and Computing the Reference Temperature in Newton’s Law of Cooling for External Flows
by James Peck, Tom I-P. Shih, K. Mark Bryden and John M. Crane
Energies 2025, 18(15), 4074; https://doi.org/10.3390/en18154074 - 31 Jul 2025
Viewed by 1345
Abstract
Newton’s law of cooling requires a reference temperature (Tref) to define the heat-transfer coefficient (h). For external flows with multiple temperatures in the freestream, obtaining Tref is a challenge. One widely used method, [...] Read more.
Newton’s law of cooling requires a reference temperature (Tref) to define the heat-transfer coefficient (h). For external flows with multiple temperatures in the freestream, obtaining Tref is a challenge. One widely used method, referred to as the adiabatic-wall (AW) method, obtains Tref by requiring the surface of the solid exposed to convective heat transfer to be adiabatic. Another widely used method, referred to as the linear-extrapolation (LE) method, obtains Tref by measuring/computing the heat flux (qs) on the solid surface at two different surface temperatures (Ts) and then linearly extrapolating to qs=0. A third recently developed method, referred to as the state-space (SS) method, obtains Tref by probing the temperature space between the highest and lowest in the flow to account for the effects of Ts or qs on Tref. This study examines the foundation and accuracy of these methods via a test problem involving film cooling of a flat plate where qs switches signs on the plate’s surface. Results obtained show that only the SS method could guarantee a unique and physically meaningful Tref where Ts=Tref on a nonadiabatic surface qs=0. The AW and LE methods both assume Tref to be independent of Ts, which the SS method shows to be incorrect. Though this study also showed the adiabatic-wall temperature, TAW, to be a good approximation of Tref (<10% relative error), huge errors can occur in h about the solid surface where |TsTAW| is near zero because where Ts=TAW, qs0. Full article
Show Figures

Figure 1

15 pages, 5165 KB  
Article
Microstructure and Mechanical Properties of Shoulder-Assisted Heating Friction Plug Welding 6082-T6 Aluminum Alloy Using a Concave Backing Hole
by Defu Li and Xijing Wang
Metals 2025, 15(8), 838; https://doi.org/10.3390/met15080838 - 27 Jul 2025
Viewed by 515
Abstract
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the [...] Read more.
Shoulder-assisted heating friction plug welding (SAH-FPW) experiments were conducted to repair keyhole-like volumetric defects in 6082-T6 aluminum alloy, employing a novel concave backing hole technique on a flat backing plate. This approach yielded well-formed plug welded joints without significant macroscopic defects. Notably, the joints exhibited no thinning on the top surface while forming a reinforcing boss structure within the concave backing hole on the backside, resulting in a slight increase in the overall load-bearing thickness. The introduction of the concave backing hole led to distinct microstructural zones compared to joints welded without it. The resulting joint microstructure comprised five regions: the nugget zone, a recrystallized zone, a shoulder-affected zone, the thermo-mechanically affected zone, and the heat-affected zone. Significantly, this process eliminated the poorly consolidated ‘filling zone’ often associated with conventional plug repairs. The microhardness across the joints was generally slightly higher than that of the base metal (BM), with the concave backing hole technique having minimal influence on overall hardness values or their distribution. However, under identical welding parameters, joints produced using the concave backing hole consistently demonstrated higher tensile strength than those without. The joints displayed pronounced ductile fracture characteristics. A maximum ultimate tensile strength of 278.10 MPa, equivalent to 89.71% of the BM strength, was achieved with an elongation at fracture of 9.02%. Analysis of the grain structure revealed that adjacent grain misorientation angle distributions deviated from a random distribution, indicating dynamic recrystallization. The nugget zone (NZ) possessed a higher fraction of high-angle grain boundaries (HAGBs) compared to the RZ and TMAZ. These findings indicate that during the SAH-FPW process, the use of a concave backing hole ultimately enhances structural integrity and mechanical performance. Full article
(This article belongs to the Special Issue Advances in Welding and Joining of Alloys and Steel)
Show Figures

Figure 1

15 pages, 5288 KB  
Article
A Mesoscale Particle Method for Simulation of Boundary Slip Phenomena in Fluid Systems
by Alexander E. Filippov, Mikhail Popov and Valentin L. Popov
Computation 2025, 13(7), 155; https://doi.org/10.3390/computation13070155 - 1 Jul 2025
Viewed by 589
Abstract
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including [...] Read more.
The present work aimed to develop a simple simulation tool to support studies of slip and other non-traditional boundary conditions in solid–fluid interactions. A mesoscale particle model (movable automata) was chosen to enable performant simulation of all relevant aspects of the system, including phase changes, plastic deformation and flow, interface phenomena, turbulence, etc. The physical system under study comprised two atomically flat surfaces composed of particles of different sizes and separated by a model fluid formed by moving particles with repulsing cores of different sizes and long-range attraction. The resulting simulation method was tested under a variety of particle densities and conditions. It was shown that the particles can enter different (solid, liquid, and gaseous) states, depending on the effective temperature (kinetic energy caused by surface motion and random noise generated by spatially distributed Langevin sources). The local order parameter and formation of solid domains was studied for systems with varying density. Heating of the region close to one of the plates could change the density of the liquid in its proximity and resulted in chaotization (turbulence); it also dramatically changed the system configuration, the direction of the average flow, and reduced the effective friction force. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

31 pages, 17047 KB  
Article
Performance Analysis of Solar-Integrated Vapour Compression Air Conditioning System for Multi-Story Residential Buildings in Hot Climates: Energy, Exergy, Economic, and Environmental Insights
by Hussein A. Al Khiro and Rabah Boukhanouf
Energies 2025, 18(11), 2781; https://doi.org/10.3390/en18112781 - 27 May 2025
Cited by 1 | Viewed by 703
Abstract
Decarbonisation in hot climates demands innovative cooling solutions that minimise environmental impact through renewable energy integration and advanced system optimisation. This study investigates the energetic and economic feasibility of a thermo-mechanical vapour compression (TMVC) cooling system that integrates a conventional vapour compression cycle [...] Read more.
Decarbonisation in hot climates demands innovative cooling solutions that minimise environmental impact through renewable energy integration and advanced system optimisation. This study investigates the energetic and economic feasibility of a thermo-mechanical vapour compression (TMVC) cooling system that integrates a conventional vapour compression cycle with an ejector and a thermally driven second-stage compressor powered by solar-heated water from evacuated flat-plate collectors. The system is designed to reduce mechanical compressor work and enhance cooling performance in hot climates. A comprehensive 4E (energy, exergy, economic, and environmental) analysis is conducted for a multi-story residential building in Baghdad, Iraq, with a total floor area of approximately 8000 m2 and a peak cooling demand of 521.75 kW. Numerical simulations were conducted to evaluate various configurations of solar collector areas, thermal storage tank volumes, and collector mass flow rate, aiming to identify the most energy-efficient combinations. These optimal configurations were then assessed from economic and environmental perspectives. Among them, the system featuring a 600 m2 collector area and a 34 m3 storage tank was selected as the optimal case based on its superior electricity savings and energy performance. Specifically, this configuration achieved a 28.28% improvement in the coefficient of performance, a 22.05% reduction in energy consumption, and an average of 15.3 h of daily solar-assisted operation compared to a baseline vapour compression system. These findings highlight the potential of the TMVC system to significantly reduce energy usage and environmental impact, thereby supporting the deployment of sustainable cooling technologies in hot climate regions. Full article
Show Figures

Figure 1

20 pages, 19262 KB  
Article
Research on the Reconstruction of the Temperature Field in Two-Dimensional Steady-State Thermal Conductivity Based on Physics-Informed Neural Networks
by Yufan Pan, Ke Zhang, Ji Zhang and Ning Mei
Eng 2025, 6(5), 99; https://doi.org/10.3390/eng6050099 - 13 May 2025
Viewed by 1658
Abstract
This study investigates a simulation-based approach to the inverse problem of two-dimensional steady-state heat conduction in flat plates by employing Physics-Informed Neural Networks (PINNs). The primary objective is to reconstruct the temperature field and deduce unknown boundary conditions using limited labeled data sourced [...] Read more.
This study investigates a simulation-based approach to the inverse problem of two-dimensional steady-state heat conduction in flat plates by employing Physics-Informed Neural Networks (PINNs). The primary objective is to reconstruct the temperature field and deduce unknown boundary conditions using limited labeled data sourced from conventional numerical methods. This work specifically validates the methodology using simulated data with known original conditions, rather than addressing truly unknown boundary conditions in real-world scenarios. By leveraging PINNs, the approach integrates physical laws with data-driven learning, facilitating the efficient inversion of boundary conditions and precise reconstruction of the temperature field. Within a temperature range of 10 °C to 40 °C, the method consistently achieves an average relative error of less than 10% and maintains an absolute error within 1 °C across the computational domain. By optimizing the distribution of sample points without increasing their quantity, the average relative error is further reduced by approximately 1%, thereby enhancing inversion accuracy. Additionally, implementing an adaptive weight adjustment strategy, based on learning rate annealing, further refines the method, reducing the maximum absolute error by 0.4 °C and the average relative error by 2% when compared to traditional PINNs. This research demonstrates the capability of PINNs to provide a rapid and effective solution for inverse heat conduction problems, establishing a foundation for their potential application in addressing complex inverse heat transfer challenges. Full article
Show Figures

Figure 1

17 pages, 1712 KB  
Article
Levenberg–Marquardt Analysis of MHD Hybrid Convection in Non-Newtonian Fluids over an Inclined Container
by Julien Moussa H. Barakat, Zaher Al Barakeh and Raymond Ghandour
Eng 2025, 6(5), 92; https://doi.org/10.3390/eng6050092 - 30 Apr 2025
Viewed by 843
Abstract
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the [...] Read more.
This work aims to explore the magnetohydrodynamic mixed convection boundary layer flow (MHD-MCBLF) on a slanted extending cylinder using Eyring–Powell fluid in combination with Levenberg–Marquardt algorithm–artificial neural networks (LMA-ANNs). The thermal properties include thermal stratification, which has a higher temperature surface on the cylinder than on the surrounding fluid. The mathematical model incorporates essential factors involving mixed conventions, thermal layers, heat absorption/generation, geometry curvature, fluid properties, magnetic field intensity, and Prandtl number. Partial differential equations govern the process and are transformed into coupled nonlinear ordinary differential equations with proper changes of variables. Datasets are generated for two cases: a flat plate (zero curving) and a cylinder (non-zero curving). The applicability of the LMA-ANN solver is presented by solving the MHD-MCBLF problem using regression analysis, mean squared error evaluation, histograms, and gradient analysis. It presents an affordable computational tool for predicting multicomponent reactive and non-reactive thermofluid phase interactions. This study introduces an application of Levenberg–Marquardt algorithm-based artificial neural networks (LMA-ANNs) to solve complex magnetohydrodynamic mixed convection boundary layer flows of Eyring–Powell fluids over inclined stretching cylinders. This approach efficiently approximates solutions to the transformed nonlinear differential equations, demonstrating high accuracy and reduced computational effort. Such advancements are particularly beneficial in industries like polymer processing, biomedical engineering, and thermal management systems, where modeling non-Newtonian fluid behaviors is crucial. Full article
Show Figures

Figure 1

Back to TopTop