Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (566)

Search Parameters:
Keywords = heat regeneration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
88 pages, 9998 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
19 pages, 29727 KiB  
Review
A Review of Methods for Increasing the Durability of Hot Forging Tools
by Jan Turek and Jacek Cieślik
Materials 2025, 18(15), 3669; https://doi.org/10.3390/ma18153669 - 4 Aug 2025
Abstract
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die [...] Read more.
The article presents a comprehensive review of key issues and challenges related to enhancing the durability of hot forging tools. It discusses modern strategies aimed at increasing tool life, including modifications to tool materials, heat treatment, surface engineering, tool and die design, die geometry, tribological conditions, and lubrication. The review is based on extensive literature data, including recent publications and the authors’ own research, which has been implemented under industrial conditions at the modern forging facility in Forge Plant “Glinik” (Poland). The study introduces original design and technological solutions, such as an innovative concept for manufacturing forging dies from alloy structural steels with welded impressions, replacing traditional hot-work tool steel dies. It also proposes a zonal hardfacing approach, which involves applying welds with different chemical compositions to specific surface zones of the die impressions, selected according to the dominant wear mechanisms in each zone. General guidelines for selecting hardfacing material compositions are also provided. Additionally, the article presents technological processes for die production and regeneration. The importance and application of computer simulations of forging processes are emphasized, particularly in predicting wear mechanisms and intensity, as well as in optimizing tool and forging geometry. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

19 pages, 4676 KiB  
Article
Self-Healing 3D-Printed Polyurethane Nanocomposites Based on Graphene
by Justyna Gołąbek, Natalia Sulewska and Michał Strankowski
Micromachines 2025, 16(8), 889; https://doi.org/10.3390/mi16080889 - 30 Jul 2025
Viewed by 204
Abstract
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These [...] Read more.
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These new materials were synthesized via a two-step process and characterized by their thermal, mechanical, chemical, and self-healing properties. The mechanical analysis revealed that all nanocomposites exhibited high self-healing efficiencies (88–91%). The PU containing 2% graphene stands out as it exhibits the highest initial mechanical strength of ~5 MPa compared to approximately 2MP for a pristine PU while maintaining excellent self-healing efficiency (88%). A cut on the PU nanocomposite with 2% graphene can be completely healed after being heated at 80 °C for 1 h, which shows that it has a fast recovery time. Moreover, 3D printing was also successfully used to assess their processability and its effect on self-healing behavior. Three-dimensional printing did not negatively affect the material regeneration properties; thus, the material can be used in a variety of applications as expected in terms of dimensions and geometry. Full article
Show Figures

Figure 1

14 pages, 1663 KiB  
Article
Carbon Dioxide Absorption by Polyethylene Glycol Dimethyl Ether Modified by 2-methylimidazole
by Yan Wu, Zicheng Wang, Hui Yu, Bin Ding, Ke Fei, Xueli Ma, Baoshen Xu, Yonghu Zhang, Xiaoning Fu, Bowen Ding and Nan Li
Separations 2025, 12(8), 198; https://doi.org/10.3390/separations12080198 - 28 Jul 2025
Viewed by 243
Abstract
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); [...] Read more.
Developing and utilizing capture and storage technologies for CO2 has become a critical research topic due to the significant greenhouse effect caused by excessive CO2 emissions. A conventional physical absorption process for CO2 capture is polyethylene glycol dimethyl ether (NHD); however, its limited application range is caused by its poor absorption of CO2 at low pressures. In this work, the CO2 absorption of NHD was enhanced by combining NHD with a novel chemical absorbent 2-methylimidazole (2-mIm)-ethylene glycol (EG) solution to improve CO2 absorption. Viscosity and CO2 solubility were examined in various compositions. The CO2 solubility in the mixed solution was found to be at maximum when the mass fractions of NHD, 2-mIm, and EG were 20%, 40%, and 40%, respectively. In comparison to pure NHD, the solubility of CO2 in this mixed solution at 30 °C and 0.5 MPa increased by 161.2%, and the desorption heat was less than 30 kJ/mol. The complex solution exhibits high selectivity and favorable regeneration performance in the short term. However, it is more sensitive to moisture content. The results of this study can provide important data to support the construction of new low-energy solvent systems and the development of novel CO2 capture processes. Full article
(This article belongs to the Section Separation Engineering)
Show Figures

Figure 1

15 pages, 4965 KiB  
Article
The Rapid Activation of MYDGF Is Critical for Cell Survival in the Acute Phase of Retinal Regeneration in Fish
by Kayo Sugitani, Yuya Omori, Takumi Mokuya, Serika Hosoi, Haruto Kobayashi, Koki Miyata, Yuhei Araiso and Yoshiki Koriyama
Int. J. Mol. Sci. 2025, 26(15), 7251; https://doi.org/10.3390/ijms26157251 - 27 Jul 2025
Viewed by 213
Abstract
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet [...] Read more.
Myeloid-derived growth factor (MYDGF), named in reference to its secretion from myeloid cells in bone marrow, is a novel protein with anti-apoptotic and tissue-repairing properties. MYDGF is found in various human tissues affected by different diseases. To date, however, MYDGF expression has yet to be reported in the nervous system. Herein, we demonstrate for the first time that MYDGF mRNA levels increased in the zebrafish retina 1 h after optic nerve injury (ONI). MYDGF-producing cells were located in the photoreceptors and infiltrating leukocytic cells. We prepared the retina for MYDGF gene knockdown by performing intraocular injections using either MYDGF-specific morpholino or the CRISPR/Cas9 system. Under these MYDGF-knockdown retinal conditions, anti-apoptotic Bcl-2 mRNA was suppressed; in comparison, apoptotic caspase-3 and inflammatory TNFα mRNA were significantly upregulated in the zebrafish retina after ONI compared to the control. Furthermore, heat shock factor 1 (HSF1) was evidently suppressed under these conditions, leading to a significant number of apoptotic neurons. These findings indicate that MYDGF is a key molecule in the stimulation of neuronal regeneration in the central nervous system. Full article
Show Figures

Figure 1

14 pages, 1281 KiB  
Article
Membrane Separation for the Treatment of LiBr + LiCl Brines and Their Application
by Jonathan Ibarra-Bahena, Ulises Dehesa-Carrasco, Yuridiana Rocio Galindo-Luna, Iván Leonardo Medina-Caballero and Wilfrido Rivera
Membranes 2025, 15(8), 219; https://doi.org/10.3390/membranes15080219 - 23 Jul 2025
Viewed by 303
Abstract
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous [...] Read more.
In sorption cooling systems, an important stage of the thermodynamic cycle is the separation of the refrigerant fluid from the absorbent mixture. This process is called “regeneration” or “desorption,” and it is similar to thermal desalination, where water is separated from an aqueous saline solution. However, since sorption systems utilize high salt concentration solutions, conventional desalination techniques such as reverse osmosis are not suitable. In this regard, membrane devices can enhance heat and mass transfer processes in compact sizes. In the present paper, a membrane device with an air gap membrane distillation configuration was evaluated, operating with the H2O/LiBr + LiCl solution (with a mass ratio of 2:1, LiBr:LiCl), to assess the produced distilled water flux. Among the operating parameters analyzed (solution temperature, cooling water temperature, salt concentration, and membrane pore size), solution temperature had the highest impact on the distilled water flux, while the membrane pore size had the lowest impact. The maximum distilled water flux was 7.63 kg/h·m2 with a solution temperature of 95.3 °C, a cooling water temperature of 25.1 °C, a salt concentration of 44.99% w/w, and a membrane pore size of 0.45 μm. On the other hand, the minimum distilled water flux was 0.28 kg/h·m2 with a solution temperature of 80.3 °C, a cooling water temperature of 40.1 °C, a salt concentration of 50.05% w/w, and with a membrane pore size of 0.22 μm. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

21 pages, 2144 KiB  
Article
In Vitro Release and In Vivo Study of Recombinant TGF-β and EGCG from Dual Self-Cross-Linked Alginate-Di-Aldehyde In Situ Injectable Hydrogel for the Repair of a Degenerated Intervertebral Disc in a Rat Tail
by Bushra Begum, Seema Mudhol, Baseera Begum, Syeda Noor Madni, Sharath Honganoor Padmanabha, Vazir Ashfaq Ahmed and N. Vishal Gupta
Gels 2025, 11(8), 565; https://doi.org/10.3390/gels11080565 - 22 Jul 2025
Viewed by 266
Abstract
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are [...] Read more.
Background and Objective: Intervertebral disc degeneration (IVDD) is a leading cause of lower back pain with limited regenerative treatments. Among emerging regenerative approaches, growth factor-based therapies, such as recombinant human transforming growth factor-beta (Rh-TGF-β), have shown potential for disc regeneration but are hindered by rapid degradation and uncontrolled release by direct administration. Additionally, mechanical stress elevates heat shock protein 90 (HSP-90), impairing cell function and extracellular matrix (ECM) production. This study aimed to investigate a dual self-cross-linked alginate di-aldehyde (ADA) hydrogel system for the sustained delivery of Rh-TGF-β and epigallocatechin gallate (EGCG) to enhance protein stability, regulate release, and promote disc regeneration by targeting both regenerative and stress-response pathways. Methods: ELISA and UV-Vis spectrophotometry assessed Rh-TGF-β and EGCG release profiles. A rat tail IVDD model was established with an Ilizarov-type external fixator for loading, followed by hydrogel treatment with or without bioactive agents. Disc height, tissue structure, and protein expression were evaluated via radiography, histological staining, immunohistochemistry, and Western blotting. Results: The hydrogel demonstrated a biphasic release profile with 100% Rh-TGF-β released over 60 days and complete EGCG release achieved within 15 days. Treated groups showed improved disc height, structural integrity, and proteoglycan retention revealed by histological analysis and elevated HSP-90 expression by immunohistochemistry. In contrast, Western blot analysis confirmed that EGCG effectively downregulated HSP-90 expression, suggesting a reduction in mechanical stress-induced degeneration. Conclusions: ADA hydrogel effectively delivers therapeutic agents, offering a promising strategy for IVDD treatment. Full article
Show Figures

Figure 1

12 pages, 1033 KiB  
Article
Hydration-Dehydration Effects on Germination Tolerance to Water Stress of Eight Cistus Species
by Belén Luna
Plants 2025, 14(14), 2237; https://doi.org/10.3390/plants14142237 - 19 Jul 2025
Viewed by 308
Abstract
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought [...] Read more.
Seeds in soil are often exposed to cycles of hydration and dehydration, which can prime them by triggering physiological activation without leading to germination. While this phenomenon has been scarcely studied in wild species, it may play a critical role in enhancing drought resilience and maintaining seed viability under the warmer conditions predicted by climate change. In this study, I investigated the effects of hydration–dehydration cycles on germination response under water stress in eight Cistus species typical of Mediterranean shrublands. First, seeds were exposed to a heat shock to break physical dormancy, simulating fire conditions. Subsequently, they underwent one of two hydration–dehydration treatments (24 or 48 h) and were germinated under a range of water potentials (0, –0.2, –0.4, –0.6, and –0.8 MPa). Six out of eight species showed enhanced germination responses following hydration–dehydration treatments, including higher final germination percentages, earlier germination onset (T0), or increased tolerance to water stress. These findings highlight the role of water availability as a key factor regulating germination in Cistus species and evidence a hydration memory mechanism that may contribute in different ways to post-fire regeneration in Mediterranean ecosystems. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

15 pages, 2830 KiB  
Article
Postbiotic Intervention in Sarcopenia: The Role of Lactiplantibacillus plantarum HY7715 and Its Extracellular Vesicles
by Kippeum Lee, Soo Dong Park, Joo Yun Kim, Jae Jung Shim and Jae Hwan Lee
Life 2025, 15(7), 1101; https://doi.org/10.3390/life15071101 - 14 Jul 2025
Viewed by 328
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, is associated with inflammation, mitochondrial dysfunction, and gut barrier impairment. This study investigates the postbiotic effects of heat-killed Lactiplantibacillus plantarum HY7715 (HY7715) and its extracellular vesicles (EVs) on muscle health and intestinal integrity. [...] Read more.
Sarcopenia, the age-related loss of skeletal muscle mass and function, is associated with inflammation, mitochondrial dysfunction, and gut barrier impairment. This study investigates the postbiotic effects of heat-killed Lactiplantibacillus plantarum HY7715 (HY7715) and its extracellular vesicles (EVs) on muscle health and intestinal integrity. In C2C12 myotubes, both treatments enhanced myogenic differentiation by upregulating Myf5 and MYOG, and improved mitochondrial activity and biogenesis via increased PGC1α and mTOR expression. Under TNFα-induced muscle atrophy, they suppressed expression of atrophy-related markers (Fbox32, MuRF1, and myostatin). EVs showed stronger anti-inflammatory effects by reducing IL6 expression in muscle cells. In intestinal Caco-2 cells, HY7715-derived EVs improved barrier function by upregulating tight junction proteins (ZO-1, occludin, and claudins), and effectively reduced LPS-induced inflammation. These findings suggest that heat-killed HY7715 and its EVs may alleviate sarcopenia by enhancing muscle regeneration and maintaining intestinal homeostasis, highlighting their potential as safe, gut–muscle axis-targeting postbiotic interventions for healthy aging. Full article
Show Figures

Figure 1

20 pages, 1810 KiB  
Article
Optimization of Arrangements of Heat-Storage Bricks in a Regenerative Combustion System by Tree Search
by Tsai-Jung Chen, Ying-Ji Hong, Sheng-Chuan Chung and Chern-Shuh Wang
Appl. Sci. 2025, 15(13), 7490; https://doi.org/10.3390/app15137490 - 3 Jul 2025
Viewed by 215
Abstract
When there are several different types of heat-storage ceramic bricks (checkers) that can be arranged in a regenerative combustion system, one must find an optimal arrangement (with the highest long-term Waste Heat Recovery Ratio) of these checkers, possibly of different types, in this [...] Read more.
When there are several different types of heat-storage ceramic bricks (checkers) that can be arranged in a regenerative combustion system, one must find an optimal arrangement (with the highest long-term Waste Heat Recovery Ratio) of these checkers, possibly of different types, in this regenerative combustion system. However, the number of possible arrangements of checkers in a heat regenerator could be huge. For example, when 5 different types of checkers are available for each of 14 positions in a heat regenerator, the total number of possible arrangements of checkers is 6,103,515,625. It is impractical to completely evaluate the efficiency of each of the 6,103,515,625 arrangements of checkers by 3D CFD simulations on Ansys Fluent. Here, we propose an optimization algorithm by tree search to tackle this optimization problem. This tree search method is motivated by the recent applications of Artificial Intelligence, based on combination of Deep Learning with Monte-Carlo Tree Search, to the incredibly complicated board game Go. Empirical evidence shows that this simple tree search algorithm leads to fast convergence of an optimization search and successfully suggests the optimal arrangement of checkers. This simple tree search method/algorithm may effectively enhance the thermal efficiency of a regenerative combustion system. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

8 pages, 438 KiB  
Proceeding Paper
Assessment of the Oxidative State of Thermally Treated Sunflower Oil After Regeneration with Molecular Sieves
by Ljubica Vasiljević, Sanja Dobrnjac, Stevan Blagojević and Milenko Aćimović
Eng. Proc. 2025, 99(1), 20; https://doi.org/10.3390/engproc2025099020 - 27 Jun 2025
Viewed by 158
Abstract
Edible oils undergo undesirable changes over time or during thermal treatment due to enzymatic, microbial, and chemical processes, leading to spoilage. In this study, the oxidative state of sunflower oil was assessed by determining the peroxide value (PV), anisidine value (AV), and totox [...] Read more.
Edible oils undergo undesirable changes over time or during thermal treatment due to enzymatic, microbial, and chemical processes, leading to spoilage. In this study, the oxidative state of sunflower oil was assessed by determining the peroxide value (PV), anisidine value (AV), and totox value (TV) using standard methods. The oil was heated at temperatures ranging from 110 to 190 °C for 10 and 30 min, also in the presence of molecular sieves (zeolite 4A, clinoptilolite, and bentonite). When using the synthetic molecular sieve zeolite 4A, a reduction in the totox value by 35.72% was observed. When natural molecular sieves were used, a reduction of 33.19% was recorded for clinoptilolite, while for bentonite, the reduction was 31.08%. Both natural and synthetic molecular sieves demonstrated a strong ability to regenerate thermally treated oils. Full article
Show Figures

Figure 1

21 pages, 2985 KiB  
Article
Characterization of Biochar from Hovenia dulcis Thunb. and Mimosa scabrella Benth. Species from the Mixed Ombrophyllous Forest
by Florian Empl, Miriam Schatzl, Sonja Kleucker, Alexandre Techy de Almeida Garrett, Fernando Augusto Ferraz, Luiz Henrique Natalli, Dimas Agostinho da Silva, Eduardo da Silva Lopes, Afonso Figueiredo Filho and Stefan Pelz
Forests 2025, 16(7), 1077; https://doi.org/10.3390/f16071077 - 27 Jun 2025
Viewed by 364
Abstract
The Mixed Ombrophyllous Forest (MOF), inserted in the Atlantic Forest biome, is of great ecological value, with deficient management strategies. In this context, sustainable management helps to promote the regeneration and growth of individual trees and control others, while maintaining the natural forest [...] Read more.
The Mixed Ombrophyllous Forest (MOF), inserted in the Atlantic Forest biome, is of great ecological value, with deficient management strategies. In this context, sustainable management helps to promote the regeneration and growth of individual trees and control others, while maintaining the natural forest structure. This study therefore aimed to discuss opportunities and limitations of biochar, produced from two species from the MOF, which are currently only utilized to a limited extent in the study area in southern Brazil. A slow pyrolysis process at a lab scale was designed, biochar was produced, and key properties were analyzed from Hovenia dulcis Thunb. (chosen as an invasive species) and Mimosa scabrella Benth. (chosen as a native, fast-growing species), including branches and stems. The results showed that branches of Mimosa scabrella (BMS) had the highest biochar yield (30.32 ± 0.3%) and the highest electrical conductivity (415.08 ± 24.75 mS cm−1). Stems of Mimosa scabrella (SMS) showed the highest higher heating value (HHV—31.76 ± 0.01 MJ kg−1), lower heating value (LHV—31.03 ± 0.01 MJ kg−1), and energy yield (49.1%), while the branches of Hovenia dulcis (BHD) showed the lowest values. For the elemental analysis, SMS showed the best results, with the highest amount of fixed carbon (78.62 ± 0.22%) and carbon content (85.87 ± 0.083%), and consequently the lowest amount of ash (3.52 ± 0.08%). BHD showed a better water-holding capacity (303.26 ± 15.21%) and higher pH value (7.65 ± 0.14). The investigations conducted on the biochar from both species indicate a strong suitability of these woods for producing high-quality biochar. Full article
Show Figures

Figure 1

24 pages, 2652 KiB  
Article
Influence of Water Regeneration on Chemical and Process Indices in an Energy-Integrated PVC Production Process
by Arelmys Bustamante-Miranda, Eduardo Aguilar-Vásquez, Miguel Ramos-Olmos, Segundo Rojas-Flores and Ángel Darío González-Delgado
Polymers 2025, 17(12), 1639; https://doi.org/10.3390/polym17121639 - 13 Jun 2025
Viewed by 752
Abstract
Water regeneration in PVC production is a key issue to consider, given the high freshwater consumption rate of the process. This research evaluates the inherent safety of poly(vinyl chloride) (PVC) production via suspension polymerization by implementing mass and energy integration strategies in combination [...] Read more.
Water regeneration in PVC production is a key issue to consider, given the high freshwater consumption rate of the process. This research evaluates the inherent safety of poly(vinyl chloride) (PVC) production via suspension polymerization by implementing mass and energy integration strategies in combination with wastewater regeneration under a zero-liquid-discharge (ZLD) approach. The impact of these integrations on process safety was examined by considering the risks associated with the handling of hazardous materials and critical operations, as well as the reduction in waste generation. To this end, the Inherent Safety Index (ISI) methodology was employed, which quantifies hazards based on factors such as toxicity and flammability, enabling the identification of risks arising from system condition changes due to the implementation of sustainable water treatment technologies. Although the ISI methodology has been applied to various chemical processes, there are few documented cases of its specific application in PVC plants that adopt circular production strategies and water resource sustainability. Therefore, in this study, ISI was used to thoroughly evaluate each stage of the process, providing a comprehensive picture of the safety risks associated with the use of sustainable technologies. The assessment was carried out using simulation software, computer-aided process engineering (CAPE) methodologies, and information obtained from safety repositories and expert publications. Specifically, the Chemical Safety Index score was 22 points, with the highest risk associated with flammability, which scored 4 points, followed by toxicity (5 points), explosiveness (2 points), and chemical interactions, with 4 points attributed to vinyl chloride monomer (VCM). In the toxicity sub-index, both VCM and PVC received 5 points, while substances such as sodium hydroxide (NaOH) and sodium chloride (NaCl) scored 4 points. In the heat of reaction sub-index, the main reaction scored 3 points due to its high heat of reaction (−1600 kJ/kg), while the secondary reactions from PVA biodegradation scored 0 points for the anoxic reaction (−156.5 kJ/kg) and 3 points for the aerobic reaction (−2304 kJ/kg), significantly increasing the total index. The Process Safety Index scored 15 points, with the highest risk found in the inventory of hazardous substances within the inside battery limits (ISBL) of the plant, where a flow rate of 3241.75 t/h was reported (5 points). The safe equipment sub-index received 4 points due to the presence of boilers, burners, compressors, and reactors. The process structure scored 3 points, temperature 2, and pressure 1, reflecting the criticality of certain operating conditions. Despite sustainability improvements, the process still presented significant chemical and operational risks. However, the implementation of control strategies and safety measures could optimize the process, balancing sustainability and safety without compromising system viability. Full article
(This article belongs to the Special Issue Biodegradable and Functional Polymers for Food Packaging)
Show Figures

Figure 1

16 pages, 3891 KiB  
Article
Structure and Properties of Self-Reinforced Polytetrafluoroethylene-Based Materials
by Shunqi Mei, Oksana Ayurova, Undrakh Mishigdorzhiyn, Vasily Kornopoltsev, Evgeny Kovtunets, Kirill Demin, Bair Garmaev and Andrei Khagleev
Polymers 2025, 17(12), 1609; https://doi.org/10.3390/polym17121609 - 9 Jun 2025
Viewed by 553
Abstract
A promising direction in polymer material processing is the development of self-reinforced polymer composites (SRPMs), representing a relatively new group of composite materials. The self-reinforcement method allows for materials of one polymer to be combined with different molecular, supramolecular, and structural features. The [...] Read more.
A promising direction in polymer material processing is the development of self-reinforced polymer composites (SRPMs), representing a relatively new group of composite materials. The self-reinforcement method allows for materials of one polymer to be combined with different molecular, supramolecular, and structural features. The high adhesive and mechanical properties of SRPMs are due to the formation of a homogeneous system with no inter-phase boundary. Moreover, self-reinforcement considers the possibility of using polymer waste to create high-strength composites, which reduces the environmental load. In the current work, the phase composition, structure, and properties of SRPMs based on polytetrafluoroethylene (PTFE) were studied. SRPMs were prepared by mixing industrial and regenerated PTFE powders and then subjected to pressing and sintering. Two types of regenerated PTFE were used for the SRPM preparation: a commercial PTFE of the TOMFLONTM trademark and mechanically grinded PTFE waste. The degree of crystallinity of the obtained materials (41–68%) was calculated by XRD analysis; the crystallite size was determined to be 30–69 nm. Thermal analysis of the composites was carried out by the DSC method in the temperature range of 25–370 °C. The characteristics of thermal processes in self-reinforced composites correlate with the data from structural studies of XRD and FTIR analyses. The results of dynamic mechanical analysis showed that the introduction of regenerated PTFE powder into an industrial one increased the elasticity modulus from 0.6 GPa up to 2.0–3.1 GPa. It was shown that the phase state of the SRPMs depended on the method of processing polymer waste (the type of regenerated PTFE) that determined the heat resistance and mechanical properties of the obtained composite material. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

13 pages, 1291 KiB  
Article
Preparation of Cellulose-Activated Carbon Gel with High Activated Carbon Content and Its Adsorption of Methylene Blue
by Ung-Jin Kim
Nanomaterials 2025, 15(11), 799; https://doi.org/10.3390/nano15110799 - 26 May 2025
Viewed by 473
Abstract
Activated carbon is a useful adsorbent for the removal of pollutants from the aqueous phase. In this study, an easy method to overcome the difficulty in separating activated carbon from a solution after adsorption has been developed. Cellulose-activated carbon gels with a high [...] Read more.
Activated carbon is a useful adsorbent for the removal of pollutants from the aqueous phase. In this study, an easy method to overcome the difficulty in separating activated carbon from a solution after adsorption has been developed. Cellulose-activated carbon gels with a high activated carbon content up to 70% in the total solids were successfully prepared via the dissolution–regeneration process of cellulose using a LiBr aqueous solution. Activated carbon suspended in a cellulose solution dissolved by heating with a LiBr aqueous solution was embedded into a gel directly formed by lowering the temperature of the cellulose solution. The cellulose-activated carbon gels exhibited large specific surface areas and sufficient mechanical properties. The adsorption capacity of methylene blue onto the cellulose-activated carbon gels proportionally increased with the increasing content of activated carbon. The cellulose-activated carbon gels maintained a high adsorption capacity even after repeated adsorption–desorption cycles, demonstrating their potential as reusable adsorbents. Full article
Show Figures

Figure 1

Back to TopTop